Improved Biogeography-Based Optimization Algorithm Based on Hybrid Migration and Dual-Mode Mutation Strategy
(This article belongs to the Section Engineering)
Abstract
:1. Introduction
2. Improved BBO Algorithm and Strategies
2.1. HDBBO Algorithm
2.2. Hyperbolic Tangent Mobility Model
2.3. Hybrid Migration Operation
Algorithm 1 Hybrid Migration Strategy. |
1: Parameter:, , , , |
2: Initialization: Generate habitats as size as population size; |
3: Population evaluation: Evaluate habitats |
4: for : Population size |
5: for : Feature dimension |
6: if , then // Determine whether immigrates by |
7: Select the that is considered as immigrating; |
8: end |
9: if , then // Determine whether immigrates by |
10: Select the that is regarded as emigrating |
11: end |
12: Realize hybrid migration and update according to Equation (3). |
13: end |
2.4. Dual-Mode Mutation Operation
Algorithm 2 Dual-mode Mutation Operation |
1: Sort the population according to the HSI of the habitats from high to low |
2: for : Population size |
3: for : Feature dimension |
4: if , then; |
5: The basic BBO mutation is used in habitats with higher HSI; |
6: else |
7: Gaussian mutation is used in habitats with lower HSI according to Equation (8). |
8: end |
9: end |
3. Simulations and Discussion
3.1. Selection of Benchmark Functions
3.2. Parameters Setting
3.3. Analysis of the Simulation Results
3.3.1. Comparison of Different Algorithms
3.3.2. Further Research on HDBBO Algorithm
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.H.; Li, A.P.; Liu, X.M. Hybrid genetic algorithm for a type-II robust mixed-model assembly line balancing problem with interval task times. Adv. Manuf. 2019, 7, 117–132. [Google Scholar] [CrossRef] [Green Version]
- Chaudhari, R.; Vora, J.J.; Prabu, S.S.; Palani, I.A.; Patel, V.K.; Parikh, D.M. Pareto optimization of WEDM process parameters for machining a NiTi shape memory alloy using a combined approach of RSM and heat transfer search algorithm. Adv. Manuf. 2021, 9, 64–80. [Google Scholar] [CrossRef]
- Cui, L.; Tao, Y.; Deng, J.; Liu, X.; Xu, D.; Tang, G. BBO-BPNN and AMPSO-BPNN for multiple-criteria inventory classification. Expert Syst. Appl. 2021, 175, 114842. [Google Scholar] [CrossRef]
- Lim, W.L.; Wibowo, A.; Desa, M.I.; Haron, H. A Biogeography-Based Optimization Algorithm Hybridized with Tabu Search for the Quadratic Assignment Problem. Comput. Intell. Neurosci. 2016, 2016, 5803893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalpanadevi, M.; Neela, R. BBO Algorithm for Line Flow Based WLS State Estimation. Mater. Today Proc. 2018, 5, 318–328. [Google Scholar] [CrossRef]
- Simon, D. Biogeography-Based Optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.P.; Li, X.; Lin, S.D. Analysis of migration rate models for biogeography-based optimization. J. Southeast Univ. 2009, 39, 16–21. [Google Scholar]
- Giri, P.K.; De, S.S.; Dehuri, S. Adaptive neighbourhood for locally and globally tune biogeography based optimization algorithm. J. King Saud Univ.-Comput. Inf. Sci. 2021, 33, 453–467. [Google Scholar]
- Jalaee, S.A.; Shakibaei, A.; Horry, H.R.; Akbarifard, H.; GhasemiNejad, A.; Robati, F.N.; Zarin, N.A. A new hybrid metaheuristic method based on biogeography-based optimization and particle swarm optimization algorithm to estimate money demand in Iran. MethodsX 2021, 8, 101226. [Google Scholar] [CrossRef]
- Zhang, X.; Kang, Q.; Cheng, J.; Wang, X. A novel hybrid algorithm based on Biogeography-Based Optimization and Grey Wolf Optimizer. Appl. Soft Comput. 2018, 67, 197–214. [Google Scholar] [CrossRef]
- Zhao, F.; Qin, S.; Zhang, Y.; Ma, W.; Zhang, C.; Song, H. A two-stage differential biogeography-based optimization algorithm and its performance analysis. Expert Syst. Appl. 2019, 115, 329–345. [Google Scholar] [CrossRef]
- Singh, S.K.; Sinha, N.; Goswami, A.K.; Sinha, N. Powersystem harmonic estimation using biogeography hybridized recursive least square algorithm. Int. J. Electr. Power Energy Syst. 2016, 83, 219–228. [Google Scholar] [CrossRef]
- Chen, Y.; He, F.; Li, H.; Zhang, D.; Wu, Y. A full migra-tion BBO algorithm with enhanced population qualitybounds for multimodal biomedical image registration. Appl. Soft Comput. 2020, 93, 106335. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, S.; Zhang, W.; Yu, D.; Chen, K. A hybrid a-pproach combining an extended BBO algorithm with an intuitionistic fuzzy entropy weight method for QoS-aware manufacturing service supply chain optimization. Neurocomputing 2018, 272, 439–452. [Google Scholar] [CrossRef]
- Hadidi, A. A robust approach for optimal design of plate fin heat exchangers using biogeography based optimization (BBO) algorithm. Appl. Energy 2015, 150, 196–210. [Google Scholar] [CrossRef]
- Liu, F.; Gu, B.; Qin, S.; Zhang, K.; Cui, L.; Xie, G. Power grid partition with improved biogeography-based optimization algorithm. Sustain. Energy Technol. Assess. 2021, 46, 101267. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, X. Biogeography-based optimization algorithm for large-scale multistage batch plant scheduling. Expert Syst. Appl. 2020, 162, 113776. [Google Scholar] [CrossRef]
- Zheng, Y.J.; Ling, H.F.; Shi, H.H.; Chen, H.S.; Chen, S.Y. Emergency railway wagon scheduling by hybrid biogeography-based optimization. Comput. Oper. Res. 2014, 43, 1–8. [Google Scholar] [CrossRef]
- Giri, P.K.; De, S.S.; Dehuri, S. A Novel Locally and Globally Tuned Biogeography-based Optimization Algorithm. Soft. Comput. Theor. Appl. 2018, 583, 635–647. [Google Scholar]
- Wang, Y.; Zhang, Z.; Yan, Z.; Jin, Y. Biogeography-based optimization algorithms based on improved migration rate models. J. Comput. Appl. 2019, 39, 2511–2516. [Google Scholar]
- Zhang, X.; Wang, D.; Fu, Z.; Liu, S.; Mao, W.; Liu, G.; Jiang, Y.; Li, S. Novel biogeography-based optimization algorithm with hybridmigration and global-best Gaussian mutation. Appl. Math. Model. 2020, 86, 74–91. [Google Scholar] [CrossRef]
- Chen, X. Novel dual-population adaptive differential evolution algorithm for large-scale multi-fuel economic dispatch with valve-point effects. Energy 2020, 203, 117874. [Google Scholar] [CrossRef]
- Zhang, X.; Kang, Q.; Tu, Q.; Cheng, J.; Wang, X. Efficient and merged biogeography-based optimization algorithm for global optimization problems. Soft. Comput. 2019, 23, 4483–4502. [Google Scholar] [CrossRef]
- Nemade, S.N.; Kolte, M.T.; Nemade, S. Multi-user Detection in DS-CDMA System Using Biogeography Based Optimization. Proc. Comput. Sci. 2015, 49, 289–297. [Google Scholar] [CrossRef]
- Wang, N.; Wei, L.S. A Novel Biogeography-Based Optimization Algorithm Research Based on GA. J. Syst. Simul. 2020, 32, 1717–1723. [Google Scholar]
Biogeography Theory | BBO Algorithm |
---|---|
Habitat | Individual (candidate solutions) |
Habitat suitability index (HSI) | Evaluation function value |
Suitable index vector (SIV) | Component of candidate solutions |
Number of habitats | Population size |
Habitat with high HSI value | An excellent solution |
Habitat with low HSI value | An adverse solution |
Species migration | Migration operation |
Catastrophic events lead to dramatic changes in habitats | Mutation operation |
Function | Name | Scope | Dimension | Optimal Solution | Type |
---|---|---|---|---|---|
Sphere | 30 | 0 | Unimodality | ||
Step | 30 | 0 | Unimodality | ||
Quartic | 30 | 0 | Unimodality | ||
Rosenbrock | 30 | 0 | Unimodality | ||
Schwefel2.21 | 30 | 0 | Unimodality | ||
Schwefel2.22 | 30 | 0 | Unimodality | ||
Rastrigin | 30 | 0 | Multimodality | ||
Ackley | 30 | 0 | Multimodality | ||
Griewank | 30 | 0 | Multimodality | ||
Penalty1 | 30 | 0 | Multimodality | ||
Penalty2 | 30 | 0 | Multimodality |
Function | BBO | GBBO | HDBBO | ||||||
---|---|---|---|---|---|---|---|---|---|
Average | Best | Std | Average | Best | Std | Average | Best | Std | |
1.15 × 103 | 1.04 × 102 | 1.71 × 103 | 1.39 × 103 | 4.58 × 102 | 1.93 × 103 | 3.08 × 102 | 1.23 × 101 | 1.06 × 103 | |
3.42 × 102 | 3.00 × 101 | 1.83 × 103 | 4.18 × 102 | 2.93 × 101 | 1.75 × 103 | 3.20 × 102 | 2.19 × 100 | 1.55 × 103 | |
2.08 × 10−1 | 0.15 × 10−1 | 7.04 × 10−1 | 1.47 × 10−1 | 2.06 × 10−2 | 4.95 × 10−1 | 0 | 0 | 4.65 × 10−1 | |
2.22 × 105 | 1.54 × 103 | 1.78 × 106 | 4.97 × 105 | 1.51 × 102 | 2.44 × 106 | 1.30 × 105 | 6.81 × 101 | 1.08 × 106 | |
1.80 × 101 | 1.19 × 101 | 9.34 × 100 | 1.54 × 101 | 7.85 × 100 | 1.12 × 101 | 5.47 × 100 | 3.02 × 100 | 5.76 × 100 | |
2.87 × 100 | 9.27 × 10−1 | 6.12 × 100 | 2.13 × 100 | 5.68 × 10−1 | 5.63 × 100 | 1.97 × 100 | 3.66 × 10−1 | 3.26 × 100 | |
9.58 × 100 | 2.71 × 100 | 1.51 × 101 | 1.11 × 101 | 2.73 × 100 | 1.72 × 101 | 9.31 × 100 | 0 | 1.19 × 101 | |
6.48 × 100 | 3.54 × 100 | 3.30 × 100 | 5.46 × 100 | 2.88 × 100 | 3.89 × 100 | 3.58 × 100 | 2.05 × 100 | 2.71 × 100 | |
6.13 × 100 | 1.24 × 100 | 1.38 × 101 | 5.62 × 100 | 1.34 × 100 | 1.36 × 101 | 2.84 × 100 | 6.49 × 10−1 | 8.82 × 100 | |
5.02 × 105 | 7.35 × 10−2 | 4.20 × 106 | 2.69 × 105 | 7.13 × 10−1 | 3.30 × 106 | 4.26 × 105 | 0 | 2.97 × 106 | |
1.78 × 106 | 1.59 × 100 | 1.05 × 107 | 8.10 × 105 | 2.23× 100 | 5.16 × 106 | 7.39 × 105 | 6.58 × 10−1 | 3.81 × 106 |
Function | ||||||
---|---|---|---|---|---|---|
Average | Best | Std | Average | Best | Std | |
7.16 × 102 | 7.01 × 101 | 2.54 × 103 | 2.49 × 102 | 2.08 × 101 | 9.36 × 102 | |
2.59 × 102 | 1.89 × 101 | 1.23 × 103 | 2.38 × 102 | 0 | 1.64 × 103 | |
6.42 × 10−2 | 1.05 × 10−2 | 3.95 × 10−2 | 4.84 × 10−2 | 0 | 2.51 × 10−1 | |
2.28 × 105 | 6.52 × 101 | 2.64 × 106 | 1.56 × 105 | 8.19 × 101 | 1.10 × 106 | |
9.17 × 100 | 6.15 × 100 | 7.78 × 100 | 7.72 × 100 | 4.58 × 100 | 6.49 × 100 | |
2.82 × 100 | 8.57 × 10−3 | 2.13 × 101 | 2.27 × 100 | 4.24 × 10−1 | 5.66 × 100 | |
1.43 × 101 | 2.77 × 10−1 | 1.85 × 101 | 1.03 × 101 | 2.13 × 10−1 | 1.25 × 101 | |
4.55 × 100 | 3.52 × 100 | 2.05 × 100 | 2.07 × 100 | 0 | 1.36 × 100 | |
3.24 × 100 | 3.89 × 10−1 | 1.40 × 101 | 2.36 × 100 | 9.49 × 10−1 | 6.16 × 100 | |
3.59 × 105 | 3.05 × 10−2 | 3.29 × 106 | 1.01 × 105 | 0 | 7.24 × 105 | |
9.52 × 105 | 5.93 × 10−1 | 1.11 × 107 | 6.23 × 105 | 0 | 4.75 × 106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Zhang, Q.; Yang, B. Improved Biogeography-Based Optimization Algorithm Based on Hybrid Migration and Dual-Mode Mutation Strategy. Fractal Fract. 2022, 6, 597. https://doi.org/10.3390/fractalfract6100597
Wei L, Zhang Q, Yang B. Improved Biogeography-Based Optimization Algorithm Based on Hybrid Migration and Dual-Mode Mutation Strategy. Fractal and Fractional. 2022; 6(10):597. https://doi.org/10.3390/fractalfract6100597
Chicago/Turabian StyleWei, Lisheng, Qian Zhang, and Benben Yang. 2022. "Improved Biogeography-Based Optimization Algorithm Based on Hybrid Migration and Dual-Mode Mutation Strategy" Fractal and Fractional 6, no. 10: 597. https://doi.org/10.3390/fractalfract6100597
APA StyleWei, L., Zhang, Q., & Yang, B. (2022). Improved Biogeography-Based Optimization Algorithm Based on Hybrid Migration and Dual-Mode Mutation Strategy. Fractal and Fractional, 6(10), 597. https://doi.org/10.3390/fractalfract6100597