A Langevin-Type q-Variant System of Nonlinear Fractional Integro-Difference Equations with Nonlocal Boundary Conditions
Abstract
1. Introduction
2. Preliminaries on Fractional q-Calculus
3. Existence and Uniqueness Results
- (A1)
- There exist positive constants such that for each and ,
- (A2)
- There exist positive constants such that for each and ,
- are continuous functions and that there exist real constants and such that,
4. Examples
- I.
- Illustration of Theorem 1Example 1.Let us consider a nonlinear system of coupled fractional q-integro-difference equations:supplemented with four-point coupled boundary conditionswhere , , , , , , , , , , , , , , andThen as
- II.
- Illustration of Theorem 2Notice that the condition holds true aswith Moreover,
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kobelev, V.; Romanov, E. Fractional Langevin equation to describe anomalous diffusion. Prog. Theor. Phys. Suppl. 2000, 139, 470–476. [Google Scholar] [CrossRef]
- Mazo, R.M. Brownian Motion: Fluctuations, Dynamics, and Applications; Oxford University Press on Demand: Oxford, UK, 2002. [Google Scholar]
- Zwanzig, R. Nonequilibrium Statistical Mechanics; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Eule, S.; Friedrich, R.; Jenko, F.; Kleinhans, D. Langevin approach to fractional diffusion equations including inertial effects. J. Phys. Chem. B 2007, 111, 11474–11477. [Google Scholar] [CrossRef]
- West, B.J.; Latka, M. Fractional Langevin model of gait variability. J. Neuroeng. Rehabil. 2005, 2, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Lizana, L.; Ambjörnsson, T.; Taloni, A.; Barkai, E.; Lomholt, M.A. Foundation of fractional Langevin equation: Harmonization of a many-body problem. Phys. Rev. E 2010, 81, 051118. [Google Scholar] [CrossRef]
- Picozzi, S.; West, B.J. Fractional Langevin model of memory in financial markets. Phys. Rev. E. 2002, 66, 46–118. [Google Scholar] [CrossRef]
- Lim, S.C.; Teo, L.P. The fractional oscillator process with two indices. J. Phys. A Math. Theor. 2009, 42, 065208. [Google Scholar] [CrossRef]
- Uranagase, M.; Munakata, T. Generalized Langevin equation revisited: Mechanical random force and self-consistent structure. J. Phys. A Math. Theor. 2010, 43, 455003. [Google Scholar] [CrossRef]
- Denisov, S.I.; Kantz, H.; Hänggi, P. Langevin equation with super-heavy-tailed noise. J. Phys. A Math. Theor. 2010, 43, 285004. [Google Scholar] [CrossRef][Green Version]
- Lozinski, A.; Owens, R.G.; Phillips, T.N. The Langevin and Fokker-Planck Equations in Polymer Rheology. In Handbook of Numerical Analysis; Elsevier: Amsterdam, The Netherlands, 2011; Volume 16, pp. 211–303. [Google Scholar]
- Ahmad, B.; Nieto, J.J.; Alsaedi, A.; El-Shahed, M. A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Anal. Real World Appl. 2012, 13, 599–606. [Google Scholar] [CrossRef]
- Bangerezako, G. q-difference linear control systems. J. Differ. Equ. Appl. 2011, 17, 1229–1249. [Google Scholar] [CrossRef]
- Bangerezako, G. Variational q-calculus. J. Math. Anal. Appl. 2004, 289, 650–665. [Google Scholar] [CrossRef]
- Agrawal, O.P. Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 2002, 272, 368–379. [Google Scholar] [CrossRef]
- Agrawal, O.P. A formulation and numerical scheme for fractional optimal control problems. J. Vib. Control 2008, 14, 12911299. [Google Scholar] [CrossRef]
- Frederico, G.S.F.; Torres, D.F.M. Fractional conservation laws in optimal control theory. Nonlinear Dynam. 2008, 53, 215–222. [Google Scholar] [CrossRef]
- Jelicic, Z.D.; Petrovacki, N. Optimality conditions and a solution scheme for fractional optimal control problems. Struct. Multidiscip. Optim. 2009, 38, 571–581. [Google Scholar] [CrossRef]
- Li, C.; Wang, J. Robust stability and stabilization of fractional order interval systems with coupling relationships: The 0 < a < 1 case. J. Frankl. Inst. 2012, 349, 2406–2419. [Google Scholar]
- Biswas, R.K.; Sen, S. Free final time fractional optimal control problems. J. Frankl. Inst. 2014, 351, 941–951. [Google Scholar] [CrossRef]
- Gong, Z.; Liu, C.; Teo, K.L.; Wang, S.; Wu, Y. Numerical solution of free final time fractional optimal control problems. Appl. Math. Comput. 2021, 405, 126270. [Google Scholar] [CrossRef]
- Annaby, M.H.; Mansour, Z.S. q-Fractional Calculus and Equations; Lecture Notes in Mathematics 2056; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K.; Tariboon, J. Quantum Calculus. New Concepts, Impulsive IVPs and BVPs, Inequalities; Trends in Abstract and Applied Analysis; World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, USA, 2016. [Google Scholar]
- Ma, J.; Yang, J. Existence of solutions for multi-point boundary value problem of fractional q-difference equation. Electron. J. Qual. Theory Differ. Equ. 2011, 92, 10. [Google Scholar] [CrossRef]
- Ferreira, R.A.C. Positive solutions for a class of boundary value problems with fractional q-differences. Comput. Math. Appl. 2011, 61, 367–373. [Google Scholar] [CrossRef]
- Graef, J.R.; Kong, L. Positive solutions for a class of higher order boundary value problems with fractional q-derivatives. Appl. Math. Comput. 2012, 218, 9682–9689. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K.; Alsaedi, A. Existence results for nonlocal boundary value problems of nonlinear fractional q-difference equations. Adv. Differ. Equ. 2012, 2012, 140. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, J. Existence and uniqueness of positive solutions for three-point boundary value problem with fractional q-differences. J. Appl. Math. Comput. 2012, 40, 277–288. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, H.; Zhang, Q. Existence results for fractional q-difference equations with nonlocal q-integral boundary conditions. Adv. Differ. Equ. 2013, 2013, 48. [Google Scholar] [CrossRef]
- Zhou, W.X.; Liu, H.Z. Existence solutions for boundary value problem of nonlinear fractional q-difference equations. Adv. Differ. Equ. 2013, 2013, 113. [Google Scholar] [CrossRef]
- Ahmad, B.; Nieto, J.J.; Alsaedi, A.; Al-Hutami, H. Boundary value problems of nonlinear fractional q-difference (integral) equations with two fractional orders and four-point nonlocal integral boundary conditions. Filomat 2014, 28, 1719–1736. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Alsaedi, A.; Ahmad, B.; Al-Hutami, H. Sequential fractional Q-difference equations with nonlocal sub-strip boundary conditions. Dyn. Contin. Discret. Impuls. Syst. Ser. A Math. Anal. 2015, 22, 1–12. [Google Scholar]
- Etemad, S.; Ettefagh, M.; Rezapour, S. On the existence of solutions for nonlinear fractional q-difference equations with q-integral boundary conditions. J. Adv. Math. Stud. 2015, 8, 265–285. [Google Scholar]
- Ahmad, B.; Etemad, S.; Ettefagh, M.; Rezapour, S. On the existence of solutions for fractional q-difference inclusions with q-anti-periodic boundary conditions. Bull. Math. Soc. Sci. Math. Roum. 2016, 59, 119–134. [Google Scholar]
- Patanarapeelert, N.; Sriphanomwan, U.; Sitthiwirattham, T. On a class of sequential fractional q-integrodifference boundary value problems involving different numbers of q in derivatives and integrals. Adv. Differ. Equ. 2016, 2016, 148. [Google Scholar] [CrossRef]
- Sitthiwirattham, T. On a fractional q-integral boundary value problems for fractional q-difference equations and fractional q-integro-difference equations involving different numbers of order q. Bound. Value Probl. 2016, 2016, 12. [Google Scholar] [CrossRef][Green Version]
- Zhai, C.B.; Ren, J. Positive and negative solutions of a boundary value problem for a fractional q-difference equation. Adv. Differ. Equ. 2017, 2017, 82. [Google Scholar] [CrossRef]
- Etemad, S.; Ntouyas, S.K.; Ahmad, B. Existence theory for a fractional q-integro-difference equation with q-integral boundary conditions of different orders. Mathematics 2019, 7, 659. [Google Scholar] [CrossRef]
- Suantai, S.; Ntouyas, S.K.; Asawasamrit, S.; Tariboon, J. A coupled system of fractional q-integro-difference equations with nonlocal fractional q-integral boundary conditions. Adv. Differ. Equ. 2015, 124, 21. [Google Scholar] [CrossRef]
- Alsaedi, A.; Al-Hutami, H.; Ahmad, B.; Agarwal, R.P. Existence results for a coupled system of nonlinear fractional q-integro-difference equations with q-integral coupled boundary conditions. Fractals 2022, 30, 2240042. [Google Scholar] [CrossRef]
- Il’in, V.A. Optimization of the boundary control by a displacement or by an elastic force on one end of a string under a model nonlocal boundary condition. Tr. Mat. Inst. Steklova 2010, 268, 124–136. [Google Scholar] [CrossRef]
- Moiseev, E.I.; Kholomeeva, A.A. Optimal boundary displacement control of string vibrations with a nonlocal oddness condition of the first kind. Differ. Equ. 2010, 46, 1624–1630. [Google Scholar] [CrossRef]
- Kholomeeva, A.A. Optimal boundary control of string vibrations with a model nonlocal boundary condition of one of two types. Dokl. Math. 2011, 83, 171–174. [Google Scholar] [CrossRef]
- Devadze, D.; Dumbadze, M. An optimal control problem for a nonlocal boundary value problem. Bull. Georgian Natl. Acad. Sci. 2013, 7, 71–74. [Google Scholar]
- Rajkovic, P.M.; Marinkovic, S.D.; Stankovic, M.S. On q-analogues of Caputo derivative and Mittag-Leffler function. Fract. Calc. Appl. Anal. 2007, 10, 359–373. [Google Scholar]
- Rajkovic, P.M.; Marinkovic, S.D.; Stankovic, M.S. Fractional integrals and derivatives in q-calculus. Appl. Anal. Discret. Math. 2007, 1, 311–323. [Google Scholar]
- Deimling, K. Nonlinear Functional Analysis; Springer: New York, NY, USA, 1985. [Google Scholar]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarwal, R.P.; Al-Hutami, H.; Ahmad, B. A Langevin-Type q-Variant System of Nonlinear Fractional Integro-Difference Equations with Nonlocal Boundary Conditions. Fractal Fract. 2022, 6, 45. https://doi.org/10.3390/fractalfract6010045
Agarwal RP, Al-Hutami H, Ahmad B. A Langevin-Type q-Variant System of Nonlinear Fractional Integro-Difference Equations with Nonlocal Boundary Conditions. Fractal and Fractional. 2022; 6(1):45. https://doi.org/10.3390/fractalfract6010045
Chicago/Turabian StyleAgarwal, Ravi P., Hana Al-Hutami, and Bashir Ahmad. 2022. "A Langevin-Type q-Variant System of Nonlinear Fractional Integro-Difference Equations with Nonlocal Boundary Conditions" Fractal and Fractional 6, no. 1: 45. https://doi.org/10.3390/fractalfract6010045
APA StyleAgarwal, R. P., Al-Hutami, H., & Ahmad, B. (2022). A Langevin-Type q-Variant System of Nonlinear Fractional Integro-Difference Equations with Nonlocal Boundary Conditions. Fractal and Fractional, 6(1), 45. https://doi.org/10.3390/fractalfract6010045

