A Langevin-Type q-Variant System of Nonlinear Fractional Integro-Difference Equations with Nonlocal Boundary Conditions
Abstract
:1. Introduction
2. Preliminaries on Fractional q-Calculus
3. Existence and Uniqueness Results
- (A1)
- There exist positive constants such that for each and ,
- (A2)
- There exist positive constants such that for each and ,
- are continuous functions and that there exist real constants and such that,
4. Examples
- I.
- Illustration of Theorem 1Example 1.Let us consider a nonlinear system of coupled fractional q-integro-difference equations:Then as
- II.
- Illustration of Theorem 2Notice that the condition holds true as
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kobelev, V.; Romanov, E. Fractional Langevin equation to describe anomalous diffusion. Prog. Theor. Phys. Suppl. 2000, 139, 470–476. [Google Scholar] [CrossRef] [Green Version]
- Mazo, R.M. Brownian Motion: Fluctuations, Dynamics, and Applications; Oxford University Press on Demand: Oxford, UK, 2002. [Google Scholar]
- Zwanzig, R. Nonequilibrium Statistical Mechanics; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Eule, S.; Friedrich, R.; Jenko, F.; Kleinhans, D. Langevin approach to fractional diffusion equations including inertial effects. J. Phys. Chem. B 2007, 111, 11474–11477. [Google Scholar] [CrossRef] [Green Version]
- West, B.J.; Latka, M. Fractional Langevin model of gait variability. J. Neuroeng. Rehabil. 2005, 2, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lizana, L.; Ambjörnsson, T.; Taloni, A.; Barkai, E.; Lomholt, M.A. Foundation of fractional Langevin equation: Harmonization of a many-body problem. Phys. Rev. E 2010, 81, 051118. [Google Scholar] [CrossRef] [Green Version]
- Picozzi, S.; West, B.J. Fractional Langevin model of memory in financial markets. Phys. Rev. E. 2002, 66, 46–118. [Google Scholar] [CrossRef]
- Lim, S.C.; Teo, L.P. The fractional oscillator process with two indices. J. Phys. A Math. Theor. 2009, 42, 065208. [Google Scholar] [CrossRef] [Green Version]
- Uranagase, M.; Munakata, T. Generalized Langevin equation revisited: Mechanical random force and self-consistent structure. J. Phys. A Math. Theor. 2010, 43, 455003. [Google Scholar] [CrossRef]
- Denisov, S.I.; Kantz, H.; Hänggi, P. Langevin equation with super-heavy-tailed noise. J. Phys. A Math. Theor. 2010, 43, 285004. [Google Scholar] [CrossRef] [Green Version]
- Lozinski, A.; Owens, R.G.; Phillips, T.N. The Langevin and Fokker-Planck Equations in Polymer Rheology. In Handbook of Numerical Analysis; Elsevier: Amsterdam, The Netherlands, 2011; Volume 16, pp. 211–303. [Google Scholar]
- Ahmad, B.; Nieto, J.J.; Alsaedi, A.; El-Shahed, M. A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Anal. Real World Appl. 2012, 13, 599–606. [Google Scholar] [CrossRef]
- Bangerezako, G. q-difference linear control systems. J. Differ. Equ. Appl. 2011, 17, 1229–1249. [Google Scholar] [CrossRef]
- Bangerezako, G. Variational q-calculus. J. Math. Anal. Appl. 2004, 289, 650–665. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, O.P. Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 2002, 272, 368–379. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, O.P. A formulation and numerical scheme for fractional optimal control problems. J. Vib. Control 2008, 14, 12911299. [Google Scholar] [CrossRef]
- Frederico, G.S.F.; Torres, D.F.M. Fractional conservation laws in optimal control theory. Nonlinear Dynam. 2008, 53, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Jelicic, Z.D.; Petrovacki, N. Optimality conditions and a solution scheme for fractional optimal control problems. Struct. Multidiscip. Optim. 2009, 38, 571–581. [Google Scholar] [CrossRef]
- Li, C.; Wang, J. Robust stability and stabilization of fractional order interval systems with coupling relationships: The 0 < a < 1 case. J. Frankl. Inst. 2012, 349, 2406–2419. [Google Scholar]
- Biswas, R.K.; Sen, S. Free final time fractional optimal control problems. J. Frankl. Inst. 2014, 351, 941–951. [Google Scholar] [CrossRef]
- Gong, Z.; Liu, C.; Teo, K.L.; Wang, S.; Wu, Y. Numerical solution of free final time fractional optimal control problems. Appl. Math. Comput. 2021, 405, 126270. [Google Scholar] [CrossRef]
- Annaby, M.H.; Mansour, Z.S. q-Fractional Calculus and Equations; Lecture Notes in Mathematics 2056; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K.; Tariboon, J. Quantum Calculus. New Concepts, Impulsive IVPs and BVPs, Inequalities; Trends in Abstract and Applied Analysis; World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, USA, 2016. [Google Scholar]
- Ma, J.; Yang, J. Existence of solutions for multi-point boundary value problem of fractional q-difference equation. Electron. J. Qual. Theory Differ. Equ. 2011, 92, 10. [Google Scholar] [CrossRef]
- Ferreira, R.A.C. Positive solutions for a class of boundary value problems with fractional q-differences. Comput. Math. Appl. 2011, 61, 367–373. [Google Scholar] [CrossRef]
- Graef, J.R.; Kong, L. Positive solutions for a class of higher order boundary value problems with fractional q-derivatives. Appl. Math. Comput. 2012, 218, 9682–9689. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K.; Alsaedi, A. Existence results for nonlocal boundary value problems of nonlinear fractional q-difference equations. Adv. Differ. Equ. 2012, 2012, 140. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Zhang, J. Existence and uniqueness of positive solutions for three-point boundary value problem with fractional q-differences. J. Appl. Math. Comput. 2012, 40, 277–288. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, H.; Zhang, Q. Existence results for fractional q-difference equations with nonlocal q-integral boundary conditions. Adv. Differ. Equ. 2013, 2013, 48. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.X.; Liu, H.Z. Existence solutions for boundary value problem of nonlinear fractional q-difference equations. Adv. Differ. Equ. 2013, 2013, 113. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Nieto, J.J.; Alsaedi, A.; Al-Hutami, H. Boundary value problems of nonlinear fractional q-difference (integral) equations with two fractional orders and four-point nonlocal integral boundary conditions. Filomat 2014, 28, 1719–1736. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; Alsaedi, A.; Ahmad, B.; Al-Hutami, H. Sequential fractional Q-difference equations with nonlocal sub-strip boundary conditions. Dyn. Contin. Discret. Impuls. Syst. Ser. A Math. Anal. 2015, 22, 1–12. [Google Scholar]
- Etemad, S.; Ettefagh, M.; Rezapour, S. On the existence of solutions for nonlinear fractional q-difference equations with q-integral boundary conditions. J. Adv. Math. Stud. 2015, 8, 265–285. [Google Scholar]
- Ahmad, B.; Etemad, S.; Ettefagh, M.; Rezapour, S. On the existence of solutions for fractional q-difference inclusions with q-anti-periodic boundary conditions. Bull. Math. Soc. Sci. Math. Roum. 2016, 59, 119–134. [Google Scholar]
- Patanarapeelert, N.; Sriphanomwan, U.; Sitthiwirattham, T. On a class of sequential fractional q-integrodifference boundary value problems involving different numbers of q in derivatives and integrals. Adv. Differ. Equ. 2016, 2016, 148. [Google Scholar] [CrossRef] [Green Version]
- Sitthiwirattham, T. On a fractional q-integral boundary value problems for fractional q-difference equations and fractional q-integro-difference equations involving different numbers of order q. Bound. Value Probl. 2016, 2016, 12. [Google Scholar] [CrossRef] [Green Version]
- Zhai, C.B.; Ren, J. Positive and negative solutions of a boundary value problem for a fractional q-difference equation. Adv. Differ. Equ. 2017, 2017, 82. [Google Scholar] [CrossRef] [Green Version]
- Etemad, S.; Ntouyas, S.K.; Ahmad, B. Existence theory for a fractional q-integro-difference equation with q-integral boundary conditions of different orders. Mathematics 2019, 7, 659. [Google Scholar] [CrossRef] [Green Version]
- Suantai, S.; Ntouyas, S.K.; Asawasamrit, S.; Tariboon, J. A coupled system of fractional q-integro-difference equations with nonlocal fractional q-integral boundary conditions. Adv. Differ. Equ. 2015, 124, 21. [Google Scholar] [CrossRef] [Green Version]
- Alsaedi, A.; Al-Hutami, H.; Ahmad, B.; Agarwal, R.P. Existence results for a coupled system of nonlinear fractional q-integro-difference equations with q-integral coupled boundary conditions. Fractals 2022, 30, 2240042. [Google Scholar] [CrossRef]
- Il’in, V.A. Optimization of the boundary control by a displacement or by an elastic force on one end of a string under a model nonlocal boundary condition. Tr. Mat. Inst. Steklova 2010, 268, 124–136. [Google Scholar] [CrossRef]
- Moiseev, E.I.; Kholomeeva, A.A. Optimal boundary displacement control of string vibrations with a nonlocal oddness condition of the first kind. Differ. Equ. 2010, 46, 1624–1630. [Google Scholar] [CrossRef]
- Kholomeeva, A.A. Optimal boundary control of string vibrations with a model nonlocal boundary condition of one of two types. Dokl. Math. 2011, 83, 171–174. [Google Scholar] [CrossRef]
- Devadze, D.; Dumbadze, M. An optimal control problem for a nonlocal boundary value problem. Bull. Georgian Natl. Acad. Sci. 2013, 7, 71–74. [Google Scholar]
- Rajkovic, P.M.; Marinkovic, S.D.; Stankovic, M.S. On q-analogues of Caputo derivative and Mittag-Leffler function. Fract. Calc. Appl. Anal. 2007, 10, 359–373. [Google Scholar]
- Rajkovic, P.M.; Marinkovic, S.D.; Stankovic, M.S. Fractional integrals and derivatives in q-calculus. Appl. Anal. Discret. Math. 2007, 1, 311–323. [Google Scholar]
- Deimling, K. Nonlinear Functional Analysis; Springer: New York, NY, USA, 1985. [Google Scholar]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarwal, R.P.; Al-Hutami, H.; Ahmad, B. A Langevin-Type q-Variant System of Nonlinear Fractional Integro-Difference Equations with Nonlocal Boundary Conditions. Fractal Fract. 2022, 6, 45. https://doi.org/10.3390/fractalfract6010045
Agarwal RP, Al-Hutami H, Ahmad B. A Langevin-Type q-Variant System of Nonlinear Fractional Integro-Difference Equations with Nonlocal Boundary Conditions. Fractal and Fractional. 2022; 6(1):45. https://doi.org/10.3390/fractalfract6010045
Chicago/Turabian StyleAgarwal, Ravi P., Hana Al-Hutami, and Bashir Ahmad. 2022. "A Langevin-Type q-Variant System of Nonlinear Fractional Integro-Difference Equations with Nonlocal Boundary Conditions" Fractal and Fractional 6, no. 1: 45. https://doi.org/10.3390/fractalfract6010045
APA StyleAgarwal, R. P., Al-Hutami, H., & Ahmad, B. (2022). A Langevin-Type q-Variant System of Nonlinear Fractional Integro-Difference Equations with Nonlocal Boundary Conditions. Fractal and Fractional, 6(1), 45. https://doi.org/10.3390/fractalfract6010045