Next Article in Journal
On Global Convergence of Third-Order Chebyshev-Type Method under General Continuity Conditions
Next Article in Special Issue
A New Approach to Fractional Kinetic Evolutions
Previous Article in Journal
Maximum Likelihood Estimation for Mixed Fractional Vasicek Processes
Previous Article in Special Issue
Elementary Fractal Geometry. 2. Carpets Involving Irrational Rotations
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A Langevin-Type q-Variant System of Nonlinear Fractional Integro-Difference Equations with Nonlocal Boundary Conditions

1
Department of Mathematics, Texas A& M University, Kingsville, TX 78363-8202, USA
2
Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
*
Author to whom correspondence should be addressed.
Fractal Fract. 2022, 6(1), 45; https://doi.org/10.3390/fractalfract6010045
Submission received: 26 November 2021 / Revised: 27 December 2021 / Accepted: 7 January 2022 / Published: 14 January 2022
(This article belongs to the Special Issue 2021 Feature Papers by Fractal Fract's Editorial Board Members)

Abstract

:
We introduce a new class of boundary value problems consisting of a q-variant system of Langevin-type nonlinear coupled fractional integro-difference equations and nonlocal multipoint boundary conditions. We make use of standard fixed-point theorems to derive the existence and uniqueness results for the given problem. Illustrative examples for the obtained results are also presented.

1. Introduction

The Langevin equation provides a decent approach to describe the evolution of fluctuating physical phenomena. Examples include anomalous diffusion [1], time evolution of the velocity of the Brownian motion [2,3], diffusion with inertial effects [4], gait variability [5], harmonization of a many-body problem [6], financial aspects [7], etc. However, the failure of the ordinary Langevin equation for correct description of the dynamical systems in complex media led to its several generalizations. One such example is that of the Langevin equation, involving fractional-order derivative operators, which provides a more flexible model for fractal processes. For some recent results on Langevin equation, see ([8,9,10,11,12]) and the references therein.
The topic of q-difference equations has evolved into an important area of research, as such equations are always completely controllable and appear in the q-optimal control problem [13]. Furthermore, the variational q-calculus is regarded as a generalization of the continuous variational calculus due to the presence of an extra parameter q whose nature may be physical or economical. The variational calculus on the q-uniform lattice is concerned with the study of the q-Euler equation and its applications to commutation equations, and isoperimetric and Lagrange problems. In other words, the q-Euler–Lagrange equation is solved for finding the extremum of the functional involved instead of solving the Euler–Lagrange equation [14]. There do exist q-variants of certain significant concepts, such as q-analogues of fractional operators, q-Laplace transform, q-Taylor’s formula, etc.
Fractional-order operators are found to be of great utility in improving the mathematical modeling of several real-world problems. The variational principles based on fractional derivative operators lead to the class of fractional Euler–Lagrange equations [15]. In addition, one can find some interesting results on optimal control theories for fractional differential systems in the articles [16,17,18,19,20,21].
The popularity of fractional calculus in the recent years led to the birth of the fractional analogue of q-difference equations (fractional q-difference equations), for instance, see [22,23]. One can find interesting results on nonlinear boundary value problems involving fractional q-derivative and q-integral operators, and different kinds of boundary conditions in the articles [24,25,26,27,28,29,30,31,32,33,34,35,36,37]. In a recent work [38], the authors studied the existence of solutions for a nonlinear fractional q-integro-difference equation equipped with q-integral boundary conditions. However, it is observed that there are a few results for coupled systems of fractional q-integro-difference equations [39]. More recently, a coupled system of nonlinear fractional q-integro-difference equations with q-integral coupled boundary conditions was studied in [40].
The objective of the present work is to enrich the literature on boundary value problems of coupled systems of fractional q-integro-difference equations. Keeping in mind the importance of the fractional Langevin equation, we introduce and study a new problem consisting of a coupled system of Langevin-type nonlinear fractional q-integro-difference equations complemented with nonlocal multipoint boundary conditions. The proposed problem is interesting in the sense that it enhances the literature on fractional q-variant of Langevin equations with mixed nonlinearities in terms of the parameter q . On the other hand, the consideration of multipoint non-separated boundary conditions involving the values of the unknown functions together with their q-derivatives at the end points as well as the interior nonlocal positions of given domain extends the scope of the present work to a more general situation (also see Section 5). For the motivation of nonlocal boundary conditions, we recall that nonlocal multipoint boundary conditions appear in feedback controls problems, optimal boundary control of (finite) string vibrations arising from interior arbitrary positions, etc. For more details, see [41,42,43,44]. In precise terms, we investigate the following boundary value problem:
c D q p 1 ( c D q p 2 + λ 1 ) x ( t ) = α 1 f 1 ( t , x ( t ) , y ( t ) ) + β 1 I q ξ 1 g 1 ( t , x ( t ) , y ( t ) ) , 0 t 1 , c D q r 1 ( c D q r 2 + λ 2 ) y ( t ) = α 2 f 2 ( t , x ( t ) , y ( t ) ) + β 2 I q ξ 2 g 2 ( t , x ( t ) , y ( t ) ) , 0 t 1 ,
μ 1 x ( 0 ) μ 2 t ( 1 p 2 ) D q x ( t ) | t = 0 = j = 1 n a j y ( η j ) , μ 3 y ( 0 ) μ 4 t ( 1 r 2 ) D q y ( t ) | t = 0 = j = 1 n b j x ( η j ) , σ 1 x ( 1 ) + σ 2 D q x ( 1 ) = j = 1 n k j D q y ( η j ) , σ 3 y ( 1 ) + σ 4 D q y ( 1 ) = j = 1 n m j D q x ( η j ) ,
where c D q p i and c D q r i denote the fractional q-derivative operators of the Caputo type, 0 < p i , r i 1 , 0 < q < 1 , I q ξ i ( . ) denotes Riemann–Liouville integral of order ξ i > 0 , f i , g i are given continuous functions, λ i 0 , α i , β i , i = 1 , 2 , and a j , b j , k j , m j , j = 1 , , n are real constants and μ 1 , μ 2 , μ 3 , μ 4 , σ 1 , σ 2 , σ 3 , σ 4 R , η j ( 0 , 1 ) , j = 1 , , n .
Here, one can notice that the right-hand sides of the fractional q-Langevin equations in the system (1) involve the usual as well as q-integral-type nonlinearities. These equations correspond to different combinations of nonlinearities, such as ordinary nonlinearities, f 1 ( t , x ( t ) , y ( t ) ) and f 2 ( t , x ( t ) , y ( t ) ) for β 1 = 0 = β 2 , purely q-integral-type nonlinearities, I q ξ 1 g 1 ( t , x ( t ) , y ( t ) ) and I q ξ 2 g 2 ( t , x ( t ) , y ( t ) ) for α 1 = 0 = α 2 , and so on.
The paper is organized as follows. In Section 2, we recall some general concepts and results on q-calculus and fractional calculus. We then solve a linear variant of the given problem that provides a platform to define the solution for the problem at hand. Section 3 is devoted to the main existence results, which are established with the aid of some classical fixed-point theorems. The paper concludes with an illustrative example.

2. Preliminaries on Fractional q-Calculus

Here, we recall some basic definitions and known results on fractional q-calculus.
Definition 1.
Let β 0 , 0 < q < 1 , and f be a function defined on [ 0 , 1 ] . The fractional q-integral of the Riemann–Liouville type is ( I q 0 f ) ( t ) = f ( t ) and
( I q β f ) ( t ) = 0 t ( t q s ) ( β 1 ) Γ q ( β ) f ( s ) d q ( s ) , β > 0 , t [ 0 , 1 ] ,
where
Γ q ( β ) = ( 1 q ) ( β 1 ) ( 1 q ) β 1 , 0 < q < 1
and satisfies the relation:
Γ q ( β + 1 ) = [ β ] q Γ q ( β ) , with
[ β ] q = q β 1 q 1 , ( 1 q ) ( 0 ) = 1 , ( 1 q ) ( n ) = k = 0 n 1 ( 1 q k + 1 ) , n N .
More generally, if α R , then
( 1 q ) ( α ) = i = 0 ( 1 q i + 1 ) ( 1 q 1 + α + i ) .
For 0 < q < 1 , we define the q-derivative of a real valued function f as
D q f ( t ) = f ( t ) f ( q t ) ( 1 q ) t , t 0 , D q f ( 0 ) = lim n f ( s q n ) f ( 0 ) s q n , s 0 .
For more details, see [22].
Definition 2
([45]). The fractional q-derivative of the Riemann–Liouville type of order β 0 is defined by ( D q 0 f ) ( t ) = f ( t ) and
( D q β f ) ( t ) = ( D q [ β ] I q [ β ] β f ) ( t ) , β > 0 ,
where [ β ] is the smallest integer greater than or equal to β .
Definition 3
([45]). The fractional q-derivative of the Caputo type of order β 0 is defined by
( c D q β f ) ( t ) = ( I q [ β ] β D q [ β ] f ) ( t ) , β > 0 ,
where [ β ] is the smallest integer greater than or equal to β .
Definition 4.
(q-Beta function) For any x , y > 0 ,
B q ( x , y ) = 0 1 t ( x 1 ) ( 1 q t ) ( y 1 ) d q t
is called the q-beta function.
Recall that
B q ( x , y ) = Γ q ( x ) Γ q ( y ) Γ q ( x + y ) .
Lemma 1
([45]). Let β , γ 0 and let f be a function defined on [ 0 , 1 ] . Then
(i) ( I q γ I q β f ) ( t ) = ( I q β + γ f ) ( t ) ,
(ii) ( D q β I q β f ) ( t ) = f ( t ) .
Lemma 2
([45]). Let β > 0 . Then the following equality holds:
( I q β c D q β f ) ( t ) = f ( t ) k = 0 [ β ] 1 t k Γ q ( k + 1 ) ( D q k f ) ( 0 ) .
Lemma 3
([25]). Let β 0 and n N . Then the following equality holds:
( I q β D q n f ) ( t ) = D q n I q β f ( t ) k = 0 [ β ] 1 t β n + k Γ q ( β n + k ) ( D q k f ) ( 0 ) .
Lemma 4
([46]). For β R + , λ ( 1 , ) , the following is valid
I q β ( x a ) ( λ ) = Γ q ( λ + 1 ) Γ q ( β + λ + 1 ) ( x a ) ( β + λ ) , 0 < a < x < b .
In particular, for λ = 0 , a = 0 , using q-integration by parts, we have
( I q β 1 ) ( x ) = 1 Γ q ( β ) 0 x ( x q t ) ( β 1 ) d q t = 1 Γ q ( β ) 0 x D q ( ( x t ) ( β ) ) [ β ] q d q t = 1 Γ q ( β + 1 ) 0 x D q ( ( x t ) ( β ) ) d q t = 1 Γ q ( β + 1 ) x ( β ) .
In order to define the solution for the problem (1) and (2), we need the following lemma.
Lemma 5.
Let Λ 0 and h 1 , h 2 C ( [ 0 , 1 ] , R ) . Then the unique solution of the following linear system of equations:
c D q p 1 ( c D q p 2 + λ 1 ) x ( t ) = h 1 ( t ) , 0 t 1 , c D q r 1 ( c D q r 2 + λ 2 ) y ( t ) = h 2 ( t ) , 0 t 1 ,
subject to the boundary conditions (2) is given by
x ( t ) = 0 t ( t q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) h 1 ( u ) d q u λ 1 0 t ( t q u ) ( p 2 1 ) Γ q ( p 2 ) x ( u ) d q u δ 1 ρ 1 t p 2 + ρ 5 Λ 0 η j ( η j q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) h 2 ( u ) d q u λ 2 0 η j ( η j q u ) ( r 2 1 ) Γ q ( r 2 ) y ( u ) d q u δ 2 ρ 2 t p 2 + ρ 6 Λ 0 η j ( η j q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) h 1 ( u ) d q u λ 1 0 η j ( η j q u ) ( p 2 1 ) Γ q ( p 2 ) x ( u ) d q u δ 3 ρ 3 t p 2 + ρ 7 Λ 0 η j ( η j q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) h 2 ( u ) d q u λ 2 0 η j ( η j q u ) ( r 2 2 ) Γ q ( r 2 1 ) y ( u ) d q u + σ 1 ρ 3 t p 2 + ρ 7 Λ 0 1 ( 1 q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) h 1 ( u ) d q u λ 1 0 1 ( 1 q u ) ( p 2 1 ) Γ q ( p 2 ) x ( u ) d q u + σ 2 ρ 3 t p 2 + ρ 7 Λ 0 1 ( 1 q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) h 1 ( u ) d q u λ 1 0 1 ( 1 q u ) ( p 2 2 ) Γ q ( p 2 1 ) x ( u ) d q u δ 4 ρ 4 t p 2 + ρ 8 Λ 0 η j ( η j q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) h 1 ( u ) d q u λ 1 0 η j ( η j q u ) ( p 2 2 ) Γ q ( p 2 1 ) x ( u ) d q u + σ 3 ρ 4 t p 2 + ρ 8 Λ 0 1 ( 1 q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) h 2 ( u ) d q u λ 2 0 1 ( 1 q u ) ( r 2 1 ) Γ q ( r 2 ) y ( u ) d q u + σ 4 ρ 4 t p 2 + ρ 8 Λ 0 1 ( 1 q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) h 2 ( u ) d q u λ 2 0 1 ( 1 q u ) ( r 2 2 ) Γ q ( r 2 1 ) y ( u ) d q u ,
and
y ( t ) = 0 t ( t q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) h 2 ( u ) d q u λ 2 0 t ( t q u ) ( r 2 1 ) Γ q ( r 2 ) y ( u ) d q u δ 1 ρ 9 t r 2 + ρ 13 Λ 0 η j ( η j q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) h 2 ( u ) d q u λ 2 0 η j ( η j q u ) ( r 2 1 ) Γ q ( r 2 ) y ( u ) d q u δ 2 ρ 10 t r 2 + ρ 14 Λ 0 η j ( η j q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) h 1 ( u ) d q u λ 1 0 η j ( η j q u ) ( p 2 1 ) Γ q ( p 2 ) x ( u ) d q u δ 3 ρ 11 t r 2 + ρ 15 Λ 0 η j ( η j q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) h 2 ( u ) d q u λ 2 0 η j ( η j q u ) ( r 2 2 ) Γ q ( r 2 1 ) y ( u ) d q u + σ 1 ρ 11 t r 2 + ρ 15 Λ 0 1 ( 1 q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) h 1 ( u ) d q u λ 1 0 1 ( 1 q u ) ( p 2 1 ) Γ q ( p 2 ) x ( u ) d q u + σ 2 ρ 11 t r 2 + ρ 15 Λ 0 1 ( 1 q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) h 1 ( u ) d q u λ 1 0 1 ( 1 q u ) ( p 2 2 ) Γ q ( p 2 1 ) x ( u ) d q u δ 4 ρ 12 t r 2 + ρ 16 Λ 0 η j ( η j q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) h 1 ( u ) d q u λ 1 0 η j ( η j q u ) ( p 2 2 ) Γ q ( p 2 1 ) x ( u ) d q u + σ 3 ρ 12 t r 2 + ρ 16 Λ 0 1 ( 1 q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) h 2 ( u ) d q u λ 2 0 1 ( 1 q u ) ( r 2 1 ) Γ q ( r 2 ) y ( u ) d q u + σ 4 ρ 12 t r 2 + ρ 16 Λ 0 1 ( 1 q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) h 2 ( u ) d q u λ 2 0 1 ( 1 q u ) ( r 2 2 ) Γ q ( r 2 1 ) y ( u ) d q u ,
where
Λ = ( δ 1 δ 2 μ 1 μ 3 ) ( σ 1 + σ 2 [ p 2 ] q ) ( σ 3 + σ 4 [ r 2 ] q ) σ 1 ( δ 1 δ 6 + μ 2 μ 3 [ p 2 ] q ) ( σ 3 + σ 4 [ r 2 ] q ) + ( μ 1 μ 3 δ 7 δ 8 μ 2 δ 2 δ 7 σ 3 μ 2 μ 4 σ 1 σ 3 δ 1 δ 2 δ 7 δ 8 μ 4 δ 1 δ 8 σ 1 ) [ p 2 ] q [ r 2 ] q σ 3 ( δ 2 δ 5 + μ 1 μ 4 [ r 2 ] q ) ( σ 1 + σ 2 [ p 2 ] q ) μ 3 δ 5 δ 8 σ 1 [ p 2 ] q μ 1 δ 6 δ 7 σ 3 [ r 2 ] q + δ 5 δ 6 σ 1 σ 3 ,
δ 1 = j = 1 n a j , δ 2 = j = 1 n b j , δ 3 = j = 1 n k j , δ 4 = j = 1 n m j , δ 5 = j = 1 n a j η j r 2 , δ 6 = j = 1 n b j η j p 2 , δ 7 = j = 1 n k j η j r 2 1 , δ 8 = j = 1 n m j η j p 2 1 , ρ 1 = μ 3 σ 1 ( σ 3 + σ 4 [ r 2 ] q ) ( δ 2 δ 7 σ 3 + μ 4 σ 1 σ 3 ) [ r 2 ] q , ρ 2 = δ 1 σ 1 ( σ 3 + σ 4 [ r 2 ] q ) μ 1 δ 7 σ 3 [ r 2 ] q + δ 5 σ 1 σ 3 , ρ 3 = ( μ 1 μ 3 δ 1 δ 2 ) ( σ 3 + σ 4 [ r 2 ] q ) + μ 1 μ 4 σ 3 [ r 2 ] q + δ 2 δ 5 σ 3 , ρ 4 = ( μ 1 μ 3 δ 7 δ 1 δ 2 δ 7 μ 4 δ 1 σ 1 ) [ r 2 ] q μ 3 δ 5 σ 1 , ρ 5 = μ 3 ( σ 1 + σ 2 [ p 2 ] q ) ( σ 3 + σ 4 [ r 2 ] q ) + μ 4 σ 3 [ r 2 ] q ( σ 1 + σ 2 [ p 2 ] q ) μ 3 δ 7 δ 8 [ p 2 ] q [ r 2 ] q + δ 6 δ 7 σ 3 [ r 2 ] q , ρ 6 = δ 1 ( σ 1 + σ 2 [ p 2 ] q ) ( σ 3 + σ 4 [ r 2 ] q ) δ 5 σ 3 ( σ 1 + σ 2 [ p 2 ] q ) ( δ 1 δ 7 δ 8 + μ 2 δ 7 σ 3 ) [ p 2 ] q [ r 2 ] q , ρ 7 = ( δ 1 δ 6 + μ 2 μ 3 [ p 2 ] q ) ( σ 3 + σ 4 [ r 2 ] q ) + ( μ 4 δ 1 δ 8 + μ 2 μ 4 σ 3 ) [ p 2 ] q [ r 2 ] q + μ 3 δ 5 δ 8 [ p 2 ] q δ 5 δ 6 σ 3 , ρ 8 = ( μ 3 δ 5 + μ 4 δ 1 [ r 2 ] q ) ( σ 1 + σ 2 [ p 2 ] q ) + μ 2 μ 3 δ 7 [ p 2 ] q [ r 2 ] q + δ 1 δ 6 δ 7 [ r 2 ] q , ρ 9 = δ 2 σ 3 ( σ 1 + σ 2 [ p 2 ] q ) μ 3 δ 8 σ 1 [ p 2 ] q + δ 6 σ 1 σ 3 , ρ 10 = μ 1 σ 3 ( σ 1 + σ 2 [ p 2 ] q ) ( μ 2 σ 1 σ 3 + δ 1 δ 8 σ 1 ) [ p 2 ] q , ρ 11 = ( μ 1 μ 3 δ 8 δ 1 δ 2 δ 8 μ 2 δ 2 σ 3 ) [ p 2 ] q μ 1 δ 6 σ 3 , ρ 12 = ( μ 1 μ 3 δ 1 δ 2 ) ( σ 1 + σ 2 [ p 2 ] q ) + μ 2 μ 3 σ 1 [ p 2 ] q + δ 1 δ 6 σ 1 , ρ 13 = δ 2 ( σ 1 + σ 2 [ p 2 ] q ) ( σ 3 + σ 4 [ r 2 ] q ) δ 6 σ 1 ( σ 3 + σ 4 [ r 2 ] q ) ( δ 2 δ 7 δ 8 + μ 4 δ 8 σ 1 ) [ p 2 ] q [ r 2 ] q , ρ 14 = μ 1 ( σ 1 + σ 2 [ p 2 ] q ) ( σ 3 + σ 4 [ r 2 ] q ) + μ 2 σ 1 [ p 2 ] q ( σ 3 + σ 4 [ r 2 ] q ) μ 1 δ 7 δ 8 [ p 2 ] q [ r 2 ] q + δ 5 δ 8 σ 1 [ p 2 ] q , ρ 15 = ( μ 1 δ 6 + μ 2 δ 2 [ p 2 ] q ) ( σ 3 + σ 4 [ r 2 ] q ) + μ 1 μ 4 δ 8 [ p 2 ] q [ r 2 ] q + δ 2 δ 5 δ 8 [ p 2 ] q , ρ 16 = ( δ 2 δ 5 + μ 1 μ 4 [ r 2 ] q ) ( σ 1 + σ 2 [ p 2 ] q ) + ( μ 2 δ 2 δ 7 + μ 2 μ 4 σ 1 ) [ p 2 ] q [ r 2 ] q + μ 1 δ 6 δ 7 [ r 2 ] q δ 5 δ 6 σ 1 .
Proof. 
Applying the q-integral operators I q p 1 and I q r 1 , respectively, on the first and second equations of (4), we obtain
( c D q p 2 + λ 1 ) x ( t ) = I q p 1 h 1 ( t ) c 0 , ( c D q r 2 + λ 2 ) y ( t ) = I q r 1 h 2 ( t ) d 0 ,
where c 0 and d 0 are arbitrary real constants. Now, applying the q-integral operators I q p 2 and I q r 2 , respectively, to both sides of the above equations, we obtain
x ( t ) = 0 t ( t q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) h 1 ( u ) d q u λ 1 0 t ( t q u ) ( p 2 1 ) Γ q ( p 2 ) x ( u ) d q u c 0 t p 2 Γ q ( p 2 + 1 ) c 1 ,
y ( t ) = 0 t ( t q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) h 2 ( u ) d q u λ 2 0 t ( t q u ) ( r 2 1 ) Γ q ( r 2 ) y ( u ) d q u d 0 t r 2 Γ q ( r 2 + 1 ) d 1 ,
where c 1 , d 1 R are arbitrary constants. By using the conditions (2), we obtain a system of equations in the unknown constants c 0 , c 1 , d 0 and d 1 given by
μ 2 [ p 2 ] q Γ q ( p 2 + 1 ) c 0 μ 1 c 1 + δ 5 Γ q ( r 2 + 1 ) d 0 + δ 1 d 1 = F 1 , δ 6 Γ q ( p 2 + 1 ) c 0 + δ 2 c 1 + μ 4 [ r 2 ] q Γ q ( r 2 + 1 ) d 0 μ 3 d 1 = F 2 , ( σ 1 + σ 2 [ p 2 ] q ) Γ q ( p 2 + 1 ) c 0 σ 1 c 1 + δ 7 [ r 2 ] q Γ q ( r 2 + 1 ) d 0 = F 3 , δ 8 [ p 2 ] q Γ q ( p 2 + 1 ) c 0 ( σ 3 + σ 4 [ r 2 ] q ) Γ q ( r 2 + 1 ) d 0 σ 3 d 1 = F 4 ,
where δ 1 , δ 2 , δ 5 , δ 6 , δ 7 , δ 8 are given in (8), and
F 1 = δ 1 0 η j ( η j q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) h 2 ( u ) d q u λ 2 0 η j ( η j q u ) ( r 2 1 ) Γ q ( r 2 ) y ( u ) d q u , F 2 = δ 2 0 η j ( η j q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) h 1 ( u ) d q u λ 1 0 η j ( η j q u ) ( p 2 1 ) Γ q ( p 2 ) x ( u ) d q u , F 3 = δ 3 0 η j ( η j q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) h 2 ( u ) d q u λ 2 0 η j ( η j q u ) ( r 2 2 ) Γ q ( r 2 1 ) y ( u ) d q u σ 1 0 1 ( 1 q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) h 1 ( u ) d q u λ 1 0 1 ( 1 q u ) ( p 2 1 ) Γ q ( p 2 ) x ( u ) d q u σ 2 0 1 ( 1 q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) h 1 ( u ) d q u λ 1 0 1 ( 1 q u ) ( p 2 2 ) Γ q ( p 2 1 ) x ( u ) d q u , F 4 = δ 4 0 η j ( η j q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) h 1 ( u ) d q u λ 1 0 η j ( η j q u ) ( p 2 2 ) Γ q ( p 2 1 ) x ( u ) d q u σ 3 0 1 ( 1 q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) h 2 ( u ) d q u λ 2 0 1 ( 1 q u ) ( r 2 1 ) Γ q ( r 2 ) y ( u ) d q u σ 4 0 1 ( 1 q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) h 2 ( u ) d q u λ 2 0 1 ( 1 q u ) ( r 2 2 ) Γ q ( r 2 1 ) y ( u ) d q u .
Solving the system (11) for c 0 , c 1 , d 0 and d 1 , we find that
c 0 = Γ q ( p 2 + 1 ) Λ ρ 1 F 1 + ρ 2 F 2 + ρ 3 F 3 + ρ 4 F 4 , c 1 = 1 Λ ρ 5 F 1 + ρ 6 F 2 + ρ 7 F 3 + ρ 8 F 4 , d 0 = Γ q ( r 2 + 1 ) Λ ρ 9 F 1 + ρ 10 F 2 + ρ 11 F 3 + ρ 12 F 4 , d 1 = 1 Λ ρ 13 F 1 + ρ 14 F 2 + ρ 15 F 3 + ρ 16 F 4 ,
where Λ is given by (7). Substituting the values of c 0 , c 1 , d 0 and d 1 in (9) and (10) yields the solution (5) and (6). By direct computation, one can obtain the converse of the lemma. This completes the proof.  □
Let C = { x | x C ( [ 0 , 1 ] , R ) } be the space equipped with the norm x = sup t [ 0 , 1 ] | x ( t ) | . Obviously, ( C , . ) is a Banach space. Then, the product space ( C × C , . ) is also a Banach space with the norm ( x , y ) = x + y for ( x , y ) C × C .
In view of Lemma 5, we define an operator G : C × C C × C by
G ( x , y ) ( t ) = G 1 ( x , y ) ( t ) G 2 ( x , y ) ( t ) ,
where
G 1 ( x , y ) ( t ) = α 1 0 t ( t q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) f 1 ( u , x ( u ) , y ( u ) ) d q u + β 1 0 t ( t q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ ) g 1 ( u , x ( u ) , y ( u ) ) d q u λ 1 0 t ( t q u ) ( p 2 1 ) Γ q ( p 2 ) x ( u ) d q u δ 1 ρ 1 t p 2 + ρ 5 Λ ( α 2 0 η j ( η j q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) f 2 ( u , x ( u ) , y ( u ) ) d q u + β 2 0 η j ( η j q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) g 2 ( u , x ( u ) , y ( u ) ) d q u λ 2 0 η j ( η j q u ) ( r 2 1 ) Γ q ( r 2 ) y ( u ) d q u ) δ 2 ρ 2 t p 2 + ρ 6 Λ ( α 1 0 η j ( η j q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) f 1 ( u , x ( u ) , y ( u ) ) d q u + β 1 0 η j ( η j q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) g 1 ( u , x ( u ) , y ( u ) ) d q u λ 1 0 η j ( η j q u ) ( p 2 1 ) Γ q ( p 2 ) x ( u ) d q u ) δ 3 ρ 3 t p 2 + ρ 7 Λ ( α 2 0 η j ( η j q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) f 2 ( u , x ( u ) , y ( u ) ) d q u + β 2 0 η j ( η j q u ) ( r 1 + r 2 + ξ 2 2 ) Γ q ( r 1 + r 2 + ξ 2 1 ) g 2 ( u , x ( u ) , y ( u ) ) d q u λ 2 0 η j ( η j q u ) ( r 2 2 ) Γ q ( r 2 1 ) y ( u ) d q u ) + σ 1 ρ 3 t p 2 + ρ 7 Λ ( α 1 0 1 ( 1 q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) f 1 ( u , x ( u ) , y ( u ) ) d q u + β 1 0 1 ( 1 q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) g 1 ( u , x ( u ) , y ( u ) ) d q u λ 1 0 1 ( 1 q u ) ( p 2 1 ) Γ q ( p 2 ) x ( u ) d q u ) + σ 2 ρ 3 t p 2 + ρ 7 Λ ( α 1 0 1 ( 1 q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) f 1 ( u , x ( u ) , y ( u ) ) d q u + β 1 0 1 ( 1 q u ) ( p 1 + p 2 + ξ 1 2 ) Γ q ( p 1 + p 2 + ξ 1 1 ) g 1 ( u , x ( u ) , y ( u ) ) d q u λ 1 0 1 ( 1 q u ) ( p 2 2 ) Γ q ( p 2 1 ) x ( u ) d q u ) δ 4 ρ 4 t p 2 + ρ 8 Λ ( α 1 0 η j ( η j q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) f 1 ( u , x ( u ) , y ( u ) ) d q u + β 1 0 η j ( η j q u ) ( p 1 + p 2 + ξ 1 2 ) Γ q ( p 1 + p 2 + ξ 1 1 ) g 1 ( u , x ( u ) , y ( u ) ) d q u λ 1 0 η j ( η j q u ) ( p 2 2 ) Γ q ( p 2 1 ) x ( u ) d q u ) + σ 3 ρ 4 t p 2 + ρ 8 Λ ( α 2 0 1 ( 1 q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) f 2 ( u , x ( u ) , y ( u ) ) d q u + β 2 0 1 ( 1 q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) g 2 ( u , x ( u ) , y ( u ) ) d q u λ 2 0 1 ( 1 q u ) ( r 2 1 ) Γ q ( r 2 ) y ( u ) d q u ) + σ 4 ρ 4 t p 2 + ρ 8 Λ ( α 2 0 1 ( 1 q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) f 2 ( u , x ( u ) , y ( u ) ) d q u + β 2 0 1 ( 1 q u ) ( r 1 + r 2 + ξ 2 2 ) Γ q ( r 1 + r 2 + ξ 2 1 ) g 2 ( u , x ( u ) , y ( u ) ) d q u λ 2 0 1 ( 1 q u ) ( r 2 2 ) Γ q ( r 2 1 ) y ( u ) d q u ) ,
G 2 ( x , y ) ( t ) = α 2 0 t ( t q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) f 2 ( u , x ( u ) , y ( u ) ) d q u + β 2 0 t ( t q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) g 2 ( u , x ( u ) , y ( u ) ) d q u λ 2 0 t ( t q u ) ( r 2 1 ) Γ q ( r 2 ) y ( u ) d q u δ 1 ρ 9 t r 2 + ρ 13 Λ ( α 2 0 η j ( η j q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) f 2 ( u , x ( u ) , y ( u ) ) d q u + β 2 0 η j ( η j q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) g 2 ( u , x ( u ) , y ( u ) ) d q u λ 2 0 η j ( η j q u ) ( r 2 1 ) Γ q ( r 2 ) y ( u ) d q u ) δ 2 ρ 10 t r 2 + ρ 14 Λ ( α 1 0 η j ( η j q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) f 1 ( u , x ( u ) , y ( u ) ) d q u + β 1 0 η j ( η j q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) g 1 ( u , x ( u ) , y ( u ) ) d q u λ 1 0 η j ( η j q u ) ( p 2 1 ) Γ q ( p 2 ) x ( u ) d q u ) δ 3 ρ 11 t r 2 + ρ 15 Λ ( α 2 0 η j ( η j q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) f 2 ( u , x ( u ) , y ( u ) ) d q u + β 2 0 η j ( η j q u ) ( r 1 + r 2 + ξ 2 2 ) Γ q ( r 1 + r 2 + ξ 2 1 ) g 2 ( u , x ( u ) , y ( u ) ) d q u λ 2 0 η j ( η j q u ) ( r 2 2 ) Γ q ( r 2 1 ) y ( u ) d q u ) + σ 1 ρ 11 t r 2 + ρ 15 Λ ( α 1 0 1 ( 1 q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) f 1 ( u , x ( u ) , y ( u ) ) d q u + β 1 0 1 ( 1 q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) g 1 ( u , x ( u ) , y ( u ) ) d q u λ 1 0 1 ( 1 q u ) ( p 2 1 ) Γ q ( p 2 ) x ( u ) d q u ) + σ 2 ρ 11 t r 2 + ρ 15 Λ ( α 1 0 1 ( 1 q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) f 1 ( u , x ( u ) , y ( u ) ) d q u + β 1 0 1 ( 1 q u ) ( p 1 + p 2 + ξ 1 2 ) Γ q ( p 1 + p 2 + ξ 1 1 ) g 1 ( u , x ( u ) , y ( u ) ) d q u λ 1 0 1 ( 1 q u ) ( p 2 2 ) Γ q ( p 2 1 ) x ( u ) d q u ) δ 4 ρ 12 t r 2 + ρ 16 Λ ( α 1 0 η j ( η j q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) f 1 ( u , x ( u ) , y ( u ) ) d q u + β 1 0 η j ( η j q u ) ( p 1 + p 2 + ξ 1 2 ) Γ q ( p 1 + p 2 + ξ 1 1 ) g 1 ( u , x ( u ) , y ( u ) ) d q u λ 1 0 η j ( η j q u ) ( p 2 2 ) Γ q ( p 2 1 ) x ( u ) d q u ) + σ 3 ρ 12 t r 2 + ρ 16 Λ ( α 2 0 1 ( 1 q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) f 2 ( u , x ( u ) , y ( u ) ) d q u + β 2 0 1 ( 1 q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) g 2 ( u , x ( u ) , y ( u ) ) d q u λ 2 0 1 ( 1 q u ) ( r 2 1 ) Γ q ( r 2 ) y ( u ) d q u ) + σ 4 ρ 12 t r 2 + ρ 16 Λ ( α 2 0 1 ( 1 q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) f 2 ( u , x ( u ) , y ( u ) ) d q u + β 2 0 1 ( 1 q u ) ( r 1 + r 2 + ξ 2 2 ) Γ q ( r 1 + r 2 + ξ 2 1 ) g 2 ( u , x ( u ) , y ( u ) ) d q u λ 2 0 1 ( 1 q u ) ( r 2 2 ) Γ q ( r 2 1 ) y ( u ) d q u ) .

3. Existence and Uniqueness Results

In the sequel, we set the notation
Ψ 1 = | α 1 | Γ q ( p 1 + p 2 + 1 ) + | α 1 | ( γ 1 + γ 2 ) | Λ | , Ψ 2 = | α 2 | ( γ 3 + γ 4 ) | Λ | , Ψ 3 = | α 1 | ( γ 13 + γ 14 ) | Λ | , Ψ 4 = | α 2 | Γ q ( r 1 + r 2 + 1 ) + | α 2 | ( γ 15 + γ 16 ) | Λ | , Φ 1 = | β 1 | Γ q ( p 1 + p 2 + ξ 1 + 1 ) + | β 1 | ( γ 5 + γ 6 ) | Λ | , Φ 2 = | β 2 | ( γ 7 + γ 8 ) | Λ | , Φ 3 = | β 1 | ( γ 17 + γ 18 ) | Λ | , Φ 4 = | β 2 | Γ q ( r 1 + r 2 + ξ 2 + 1 ) + | β 2 | ( γ 19 + γ 20 ) | Λ | , Θ 1 = | λ 1 | Γ q ( p 2 + 1 ) + | λ 1 | ( γ 9 + γ 10 ) | Λ | + | λ 2 | ( γ 11 + γ 12 ) | Λ | , Θ 2 = | λ 1 | ( γ 21 + γ 22 ) | Λ | + | λ 2 | Γ q ( r 2 + 1 ) + | λ 2 | ( γ 23 + γ 24 ) | Λ | ,
γ 1 = | δ 2 | | ρ 2 + ρ 6 | η j p 1 + p 2 + | σ 1 | | ρ 3 + ρ 7 | Γ q ( p 1 + p 2 + 1 ) , γ 2 = | δ 4 | | ρ 4 + ρ 8 | η j p 1 + p 2 1 + | σ 2 | | ρ 3 + ρ 7 | Γ q ( p 1 + p 2 ) , γ 3 = | δ 1 | | ρ 1 + ρ 5 | η j r 1 + r 2 + | σ 3 | | ρ 4 + ρ 8 | Γ q ( r 1 + r 2 + 1 ) , γ 4 = | δ 3 | | ρ 3 + ρ 7 | η j r 1 + r 2 1 + | σ 4 | | ρ 4 + ρ 8 | Γ q ( r 1 + r 2 ) , γ 5 = | δ 2 | | ρ 2 + ρ 6 | η j p 1 + p 2 + ξ 1 + | σ 1 | | ρ 3 + ρ 7 | Γ q ( p 1 + p 2 + ξ 1 + 1 ) , γ 6 = | δ 4 | | ρ 4 + ρ 8 | η j p 1 + p 2 + ξ 1 1 + | σ 2 | | ρ 3 + ρ 7 | Γ q ( p 1 + p 2 + ξ 1 ) , γ 7 = | δ 1 | | ρ 1 + ρ 5 | η j r 1 + r 2 + ξ 2 + | σ 3 | | ρ 4 + ρ 8 | Γ q ( r 1 + r 2 + ξ 2 + 1 ) , γ 8 = | δ 3 | | ρ 3 + ρ 7 | η j r 1 + r 2 + ξ 2 1 + | σ 4 | | ρ 4 + ρ 8 | Γ q ( r 1 + r 2 + ξ 2 ) , γ 9 = | δ 2 | | ρ 2 + ρ 6 | η j p 2 + | σ 1 | | ρ 3 + ρ 7 | Γ q ( p 2 + 1 ) , γ 10 = | δ 4 | | ρ 4 + ρ 8 | η j p 2 1 + | σ 2 | | ρ 3 + ρ 7 | Γ q ( p 2 ) , γ 11 = | δ 1 | | ρ 1 + ρ 5 | η j r 2 + | σ 3 | | ρ 4 + ρ 8 | Γ q ( r 2 + 1 ) , γ 12 = | δ 3 | | ρ 3 + ρ 7 | η j r 2 1 + | σ 4 | | ρ 4 + ρ 8 | Γ q ( r 2 ) , γ 13 = | δ 2 | | ρ 10 + ρ 14 | η j p 1 + p 2 + | σ 1 | | ρ 11 + ρ 15 | Γ q ( p 1 + p 2 + 1 ) , γ 14 = | δ 4 | | ρ 12 + ρ 16 | η j p 1 + p 2 1 + | σ 2 | | ρ 11 + ρ 15 | Γ q ( p 1 + p 2 ) , γ 15 = | δ 1 | | ρ 9 + ρ 13 | η j r 1 + r 2 + | σ 3 | | ρ 12 + ρ 16 | Γ q ( r 1 + r 2 + 1 ) , γ 16 = | δ 3 | | ρ 11 + ρ 15 | η j r 1 + r 2 1 + | σ 4 | | ρ 12 + ρ 16 | Γ q ( r 1 + r 2 ) , γ 17 = | δ 2 | | ρ 10 + ρ 14 | η j p 1 + p 2 + ξ 1 + | σ 1 | | ρ 11 + ρ 15 | Γ q ( p 1 + p 2 + ξ 1 + 1 ) , γ 18 = | δ 4 | | ρ 12 + ρ 16 | η j p 1 + p 2 + ξ 1 1 + | σ 2 | | ρ 11 + ρ 15 | Γ q ( p 1 + p 2 + ξ 1 ) , γ 19 = | δ 1 | | ρ 9 + ρ 13 | η j r 1 + r 2 + ξ 2 + | σ 3 | | ρ 12 + ρ 16 | Γ q ( r 1 + r 2 + ξ 2 + 1 ) , γ 20 = | δ 3 | | ρ 11 + ρ 15 | η j r 1 + r 2 + ξ 2 1 + | σ 4 | | ρ 12 + ρ 16 | Γ q ( r 1 + r 2 + ξ 2 ) , γ 21 = | δ 2 | | ρ 10 + ρ 14 | η j p 2 + | σ 1 | | ρ 11 + ρ 15 | Γ q ( p 2 + 1 ) , γ 22 = | δ 4 | | ρ 12 + ρ 16 | η j p 2 1 + | σ 2 | | ρ 11 + ρ 15 | Γ q ( p 2 ) , γ 23 = | δ 1 | | ρ 9 + ρ 13 | η j r 2 + | σ 3 | | ρ 12 + ρ 16 | Γ q ( r 2 + 1 ) , γ 24 = | δ 3 | | ρ 11 + ρ 15 | η j r 2 1 + | σ 4 | | ρ 12 + ρ 16 | Γ q ( r 2 ) .
In the following theorem, we prove the existence of a unique solution to the system (1) and (2) by applying the Banach contraction mapping principle [47].
Theorem 1.
Let f 1 , f 2 : [ 0 , 1 ] × R × R R , g 1 , g 2 : [ 0 , 1 ] × R × R R be continuous functions satisfying the following conditions:
(A1)
There exist positive constants ι 1 , ι 2 such that for each t [ 0 , 1 ] and x i , y i R , i = 1 , 2 ,
| f 1 ( t , x 1 , y 1 ) f 1 ( t , x 2 , y 2 ) | ι 1 ( | x 1 x 2 | + | y 1 y 2 | ) ,
| f 2 ( t , x 1 , y 1 ) f 2 ( t , x 2 , y 2 ) | ι 2 ( | x 1 x 2 | + | y 1 y 2 | ) .
(A2)
There exist positive constants κ 1 , κ 2 such that for each t [ 0 , 1 ] and x i , y i R , i = 1 , 2 ,
| g 1 ( t , x 1 , y 1 ) g 1 ( t , x 2 , y 2 ) | κ 1 ( | x 1 x 2 | + | y 1 y 2 | ) ,
| g 2 ( t , x 1 , y 1 ) g 2 ( t , x 2 , y 2 ) | κ 2 ( | x 1 x 2 | + | y 1 y 2 | ) .
Then the system (1) and (2) has a unique solution on [ 0 , 1 ] , provided that
Y = ( Ψ 1 + Ψ 3 ) ι 1 + ( Ψ 2 + Ψ 4 ) ι 2 + ( Φ 1 + Φ 3 ) κ 1 + ( Φ 2 + Φ 4 ) κ 2 + Θ 1 + Θ 2 < 1 .
where Ψ 1 , Ψ 2 , Ψ 3 , Ψ 4 , Φ 1 , Φ 2 , Φ 3 , Φ 4 , Θ 1 , Θ 2 are given in (13).
Proof. 
Let N 1 , N 2 , M 1 , M 2 be finite numbers such that
N 1 = sup t [ 0 , 1 ] | f 1 ( t , 0 , 0 ) | , N 2 = sup t [ 0 , 1 ] | f 2 ( t , 0 , 0 ) | , M 1 = sup t [ 0 , 1 ] | g 1 ( t , 0 , 0 ) | , M 2 = sup t [ 0 , 1 ] | g 2 ( t , 0 , 0 ) | .
Now we show that G B ϱ B ϱ , where B ϱ = { ( x , y ) G × G : ( x , y ) ϱ } with
ϱ ( Ψ 1 + Ψ 3 ) N 1 + ( Ψ 2 + Ψ 4 ) N 2 + ( Φ 1 + Φ 3 ) M 1 + ( Φ 2 + Φ 4 ) M 2 1 Y ,
where Y is given in (15). For any ( x , y ) B ϱ , t [ 0 , 1 ] , using ( A 1 ) , we have
| f 1 ( t , x ( t ) , y ( t ) ) | | f 1 ( t , x ( t ) , y ( t ) ) f 1 ( t , 0 , 0 ) | + | f 1 ( t , 0 , 0 ) | ι 1 ( | x ( t ) | + | y ( t ) | ) + | f 1 ( t , 0 , 0 ) | ι 1 ( x + y ) + N 1 ι 1 ϱ + N 1 .
Similarly, we can find that
| f 2 ( t , x ( t ) , y ( t ) ) | ι 2 ϱ + N 2 , | g 1 ( t , x ( t ) , y ( t ) ) | κ 1 ϱ + M 1 , | g 2 ( t , x ( t ) , y ( t ) ) | κ 2 ϱ + M 2 .
Then we have
G 1 ( x , y ) sup t [ 0 , 1 ] { | α 1 | 0 t ( t q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) | f 1 ( u , x ( u ) , y ( u ) ) | d q u + | β 1 | 0 t ( t q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ ) | g 1 ( u , x ( u ) , y ( u ) ) | d q u + | λ 1 | 0 t ( t q u ) ( p 2 1 ) Γ q ( p 2 ) | x ( u ) | d q u + | δ 1 | | ρ 1 t p 2 + ρ 5 | | Λ | ( | α 2 | 0 η j ( η j q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) | f 2 ( u , x ( u ) , y ( u ) ) | d q u + | β 2 | 0 η j ( η j q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) | g 2 ( u , x ( u ) , y ( u ) ) | d q u + | λ 2 | 0 η j ( η j q u ) ( r 2 1 ) Γ q ( r 2 ) | y ( u ) | d q u ) + | δ 2 | | ρ 2 t p 2 + ρ 6 | | Λ | ( | α 1 | 0 η j ( η j q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) | f 1 ( u , x ( u ) , y ( u ) ) | d q u + | β 1 | 0 η j ( η j q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) | g 1 ( u , x ( u ) , y ( u ) ) | d q u + | λ 1 | 0 η j ( η j q u ) ( p 2 1 ) Γ q ( p 2 ) | x ( u ) | d q u ) + | δ 3 | | ρ 3 t p 2 + ρ 7 | | Λ | ( | α 2 | 0 η j ( η j q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) | f 2 ( u , x ( u ) , y ( u ) ) | d q u + | β 2 | 0 η j ( η j q u ) ( r 1 + r 2 + ξ 2 2 ) Γ q ( r 1 + r 2 + ξ 2 1 ) | g 2 ( u , x ( u ) , y ( u ) ) | d q u + | λ 2 | 0 η j ( η j q u ) ( r 2 2 ) Γ q ( r 2 1 ) | y ( u ) | d q u ) + | σ 1 | | ρ 3 t p 2 + ρ 7 | | Λ | ( | α 1 | 0 1 ( 1 q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) | f 1 ( u , x ( u ) , y ( u ) ) | d q u + | β 1 | 0 1 ( 1 q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) | g 1 ( u , x ( u ) , y ( u ) ) | d q u + | λ 1 | 0 1 ( 1 q u ) ( p 2 1 ) Γ q ( p 2 ) | x ( u ) | d q u ) + | σ 2 | | ρ 3 t p 2 + ρ 7 | | Λ | ( | α 1 | 0 1 ( 1 q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) | f 1 ( u , x ( u ) , y ( u ) ) | d q u + | β 1 | 0 1 ( 1 q u ) ( p 1 + p 2 + ξ 1 2 ) Γ q ( p 1 + p 2 + ξ 1 1 ) | g 1 ( u , x ( u ) , y ( u ) ) | d q u + | λ 1 | 0 1 ( 1 q u ) ( p 2 2 ) Γ q ( p 2 1 ) | x ( u ) | d q u ) + | δ 4 | | ρ 4 t p 2 + ρ 8 | | Λ | ( | α 1 | 0 η j ( η j q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) | f 1 ( u , x ( u ) , y ( u ) ) | d q u + | β 1 | 0 η j ( η j q u ) ( p 1 + p 2 + ξ 1 2 ) Γ q ( p 1 + p 2 + ξ 1 1 ) | g 1 ( u , x ( u ) , y ( u ) ) | d q u + | λ 1 | 0 η j ( η j q u ) ( p 2 2 ) Γ q ( p 2 1 ) | x ( u ) | d q u ) + | σ 3 | | ρ 4 t p 2 + ρ 8 | | Λ | ( | α 2 | 0 1 ( 1 q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) | f 2 ( u , x ( u ) , y ( u ) ) | d q u + | β 2 | 0 1 ( 1 q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) | g 2 ( u , x ( u ) , y ( u ) ) | d q u + | λ 2 | 0 1 ( 1 q u ) ( r 2 1 ) Γ q ( r 2 ) | y ( u ) | d q u ) + | σ 4 | | ρ 4 t p 2 + ρ 8 | | Λ | ( | α 2 | 0 1 ( 1 q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) | f 2 ( u , x ( u ) , y ( u ) ) | d q u + | β 2 | 0 1 ( 1 q u ) ( r 1 + r 2 + ξ 2 2 ) Γ q ( r 1 + r 2 + ξ 2 1 ) | g 2 ( u , x ( u ) , y ( u ) ) | d q u + | λ 2 | 0 1 ( 1 q u ) ( r 2 2 ) Γ q ( r 2 1 ) | y ( u ) | d q u ) } ( ι 1 r + N 1 ) sup t [ 0 , 1 ] { | α 1 | 0 t ( t q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) d q u + | α 1 | | δ 2 | | ρ 2 t p 2 + ρ 6 | | Λ | × 0 η j ( η j q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) d q u + | α 1 | | σ 1 | | ρ 3 t p 2 + ρ 7 | | Λ | 0 1 ( 1 q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) d q u + | α 1 | | σ 2 | | ρ 3 t p 2 + ρ 7 | | Λ | 0 1 ( 1 q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) d q u + | α 1 | | δ 4 | | ρ 4 t p 2 + ρ 8 | | Λ | 0 η j ( η j q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) d q u } + ( κ 1 r + M 1 ) sup t [ 0 , 1 ] { | β 1 | 0 t ( t q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) d q u + | β 1 | | δ 2 | | ρ 2 t p 2 + ρ 6 | | Λ | × 0 η j ( η j q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) d q u + | β 1 | | σ 1 | | ρ 3 t p 2 + ρ 7 | | Λ | 0 1 ( 1 q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) d q u + | β 1 | | σ 2 | | ρ 3 t p 2 + ρ 7 | | Λ | 0 1 ( 1 q u ) ( p 1 + p 2 + ξ 1 2 ) Γ q ( p 1 + p 2 + ξ 1 1 ) d q u + | β 1 | | δ 4 | | ρ 4 t p 2 + ρ 8 | | Λ | × 0 η j ( η j q u ) ( p 1 + p 2 + ξ 1 2 ) Γ q ( p 1 + p 2 + ξ 1 1 ) d q u } + ( ι 2 r + N 2 ) sup t [ 0 , 1 ] { | α 2 | | δ 1 | | ρ 1 t p 2 + ρ 5 | | Λ | × 0 η j ( η j q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) d q u + | α 2 | | δ 3 | | ρ 3 t p 2 + ρ 7 | | Λ | 0 η j ( η j q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) d q u + | α 2 | | σ 3 | | ρ 4 t p 2 + ρ 8 | | Λ | 0 1 ( 1 q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) d q u + | α 2 | | σ 4 | | ρ 4 t p 2 + ρ 8 | | Λ | 0 1 ( 1 q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) d q u } + ( κ 2 r + M 2 ) sup t [ 0 , 1 ] { | β 2 | | δ 1 | | ρ 1 t p 2 + ρ 5 | | Λ | 0 η j ( η j q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) d q u + | β 2 | | δ 3 | | ρ 3 t p 2 + ρ 7 | | Λ | × 0 η j ( η j q u ) ( r 1 + r 2 + ξ 2 2 ) Γ q ( r 1 + r 2 + ξ 2 1 ) d q u + | β 2 | | σ 3 | | ρ 4 t p 2 + ρ 8 | | Λ | 0 1 ( 1 q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) d q u + | β 2 | | σ 4 | | ρ 4 t p 2 + ρ 8 | | Λ | 0 1 ( 1 q u ) ( r 1 + r 2 + ξ 2 2 ) Γ q ( r 1 + r 2 + ξ 2 1 ) d q u } + ϱ sup t [ 0 , 1 ] { | λ 1 | 0 t ( t q u ) ( p 2 1 ) Γ q ( p 2 ) d q u + | λ 2 | | δ 1 | | ρ 1 t p 2 + ρ 5 | | Λ | 0 η j ( η j q u ) ( r 2 1 ) Γ q ( r 2 ) d q u + | λ 1 | | δ 2 | | ρ 2 t p 2 + ρ 6 | | Λ | 0 η j ( η j q u ) ( p 2 1 ) Γ q ( p 2 ) d q u + | λ 2 | | δ 3 | | ρ 3 t p 2 + ρ 7 | | Λ | 0 η j ( η j q u ) ( r 2 2 ) Γ q ( r 2 1 ) d q u + | λ 1 | | σ 1 | | ρ 3 t p 2 + ρ 7 | | Λ | 0 1 ( 1 q u ) ( p 2 1 ) Γ q ( p 2 ) d q u + | λ 1 | | σ 2 | | ρ 3 t p 2 + ρ 7 | | Λ | 0 1 ( 1 q u ) ( p 2 2 ) Γ q ( p 2 1 ) d q u + | λ 1 | | δ 4 | | ρ 4 t p 2 + ρ 8 | | Λ | 0 η j ( η j q u ) ( p 2 2 ) Γ q ( p 2 1 ) d q u + | λ 2 | | σ 3 | | ρ 4 t p 2 + ρ 8 | | Λ | 0 1 ( 1 q u ) ( r 2 1 ) Γ q ( r 2 ) d q u + | λ 2 | | σ 4 | | ρ 4 t p 2 + ρ 8 | | Λ | 0 1 ( 1 q u ) ( r 2 2 ) Γ q ( r 2 1 ) d q u } ( ι 1 ϱ + N 1 ) Ψ 1 + ( ι 2 ϱ + N 2 ) Ψ 2 + ( κ 1 ϱ + M 1 ) Φ 1 + ( κ 2 ϱ + M 2 ) Φ 2 + ϱ Θ 1 ,
where Ψ 1 , Ψ 2 , Φ 1 , Φ 2 , Θ 1 are given in (13).
Furthermore, we obtain
G 2 ( x , y ) sup t [ 0 , 1 ] { | α 2 | 0 t ( t q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) | f 2 ( u , x ( u ) , y ( u ) ) | d q u + | β 2 | 0 t ( t q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) | g 2 ( u , x ( u ) , y ( u ) ) | d q u + | λ 2 | 0 t ( t q u ) ( r 2 1 ) Γ q ( r 2 ) | y ( u ) | d q u + | δ 1 | | ρ 9 t r 2 + ρ 13 | | Λ | ( | α 2 | 0 η j ( η j q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) | f 2 ( u , x ( u ) , y ( u ) ) | d q u + | β 2 | 0 η j ( η j q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) | g 2 ( u , x ( u ) , y ( u ) ) | d q u + | λ 2 | 0 η j ( η j q u ) ( r 2 1 ) Γ q ( r 2 ) | y ( u ) | d q u ) + | δ 2 | | ρ 10 t r 2 + ρ 14 | | Λ | ( | α 1 | 0 η j ( η j q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) | f 1 ( u , x ( u ) , y ( u ) ) | d q u + | β 1 | 0 η j ( η j q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) | g 1 ( u , x ( u ) , y ( u ) ) | d q u + | λ 1 | 0 η j ( η j q u ) ( p 2 1 ) Γ q ( p 2 ) | x ( u ) | d q u ) + | δ 3 | | ρ 11 t r 2 + ρ 15 | | Λ | ( | α 2 | 0 η j ( η j q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) | f 2 ( u , x ( u ) , y ( u ) ) | d q u + | β 2 | 0 η j ( η j q u ) ( r 1 + r 2 + ξ 2 2 ) Γ q ( r 1 + r 2 + ξ 2 1 ) | g 2 ( u , x ( u ) , y ( u ) ) | d q u + | λ 2 | 0 η j ( η j q u ) ( r 2 2 ) Γ q ( r 2 1 ) | y ( u ) | d q u ) + | σ 1 | | ρ 11 t r 2 + ρ 15 | | Λ | ( | α 1 | 0 1 ( 1 q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) | f 1 ( u , x ( u ) , y ( u ) ) | d q u + | β 1 | 0 1 ( 1 q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) | g 1 ( u , x ( u ) , y ( u ) ) | d q u + | λ 1 | 0 1 ( 1 q u ) ( p 2 1 ) Γ q ( p 2 ) | x ( u ) | d q u ) + | σ 2 | | ρ 11 t r 2 + ρ 15 | | Λ | ( | α 1 | 0 1 ( 1 q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) | f 1 ( u , x ( u ) , y ( u ) ) | d q u + | β 1 | 0 1 ( 1 q u ) ( p 1 + p 2 + ξ 1 2 ) Γ q ( p 1 + p 2 + ξ 1 1 ) | g 1 ( u , x ( u ) , y ( u ) ) | d q u + | λ 1 | 0 1 ( 1 q u ) ( p 2 2 ) Γ q ( p 2 1 ) | x ( u ) | d q u ) + | δ 4 | | ρ 12 t r 2 + ρ 16 | | Λ | ( | α 1 | 0 η j ( η j q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) | f 1 ( u , x ( u ) , y ( u ) ) | d q u + | β 1 | 0 η j ( η j q u ) ( p 1 + p 2 + ξ 1 2 ) Γ q ( p 1 + p 2 + ξ 1 1 ) | g 1 ( u , x ( u ) , y ( u ) ) | d q u + | λ 1 | 0 η j ( η j q u ) ( p 2 2 ) Γ q ( p 2 1 ) | x ( u ) | d q u ) + | σ 3 | | ρ 12 t r 2 + ρ 16 | | Λ | ( | α 2 | 0 1 ( 1 q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) | f 2 ( u , x ( u ) , y ( u ) ) | d q u + | β 2 | 0 1 ( 1 q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) | g 2 ( u , x ( u ) , y ( u ) ) | d q u + | λ 2 | 0 1 ( 1 q u ) ( r 2 1 ) Γ q ( r 2 ) | y ( u ) | d q u ) + | σ 4 | | ρ 12 t r 2 + ρ 16 | | Λ | ( | α 2 | 0 1 ( 1 q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) | f 2 ( u , x ( u ) , y ( u ) ) | d q u + | β 2 | 0 1 ( 1 q u ) ( r 1 + r 2 + ξ 2 2 ) Γ q ( r 1 + r 2 + ξ 2 1 ) | g 2 ( u , x ( u ) , y ( u ) ) | d q u + | λ 2 | 0 1 ( 1 q u ) ( r 2 2 ) Γ q ( r 2 1 ) | y ( u ) | d q u ) } ( ι 1 r + N 1 ) sup t [ 0 , 1 ] { | α 1 | | δ 2 | | ρ 10 t r 2 + ρ 14 | | Λ | 0 η j ( η j q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) d q u + | α 1 | | σ 1 | | ρ 11 t r 2 + ρ 15 | | Λ | 0 1 ( 1 q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) d q u + | α 1 | | σ 2 | | ρ 11 t r 2 + ρ 15 | | Λ | 0 1 ( 1 q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) d q u + | α 1 | | δ 4 | | ρ 12 t r 2 + ρ 16 | | Λ | 0 η j ( η j q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) d q u } + ( κ 1 r + M 1 ) sup t [ 0 , 1 ] { | β 1 | | δ 2 | | ρ 10 t r 2 + ρ 14 | | Λ | × 0 η j ( η j q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) d q u + | β 1 | | σ 1 | | ρ 11 t r 2 + ρ 15 | | Λ | 0 1 ( 1 q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) d q u + | β 1 | | σ 2 | | ρ 11 t r 2 + ρ 15 | | Λ | 0 1 ( 1 q u ) ( p 1 + p 2 + ξ 1 2 ) Γ q ( p 1 + p 2 + ξ 1 1 ) d q u + | β 1 | | δ 4 | | ρ 12 t r 2 + ρ 16 | | Λ | × 0 η j ( η j q u ) ( p 1 + p 2 + ξ 1 2 ) Γ q ( p 1 + p 2 + ξ 1 1 ) d q u } + ( ι 2 r + N 2 ) sup t [ 0 , 1 ] { | α 2 | 0 t ( t q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) d q u + | α 2 | | δ 1 | | ρ 9 t r 2 + ρ 13 | | Λ | 0 η j ( η j q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) d q u + | α 2 | | δ 3 | | ρ 11 t r 2 + ρ 15 | | Λ | 0 η j ( η j q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) d q u + | α 2 | | σ 3 | | ρ 12 t r 2 + ρ 16 | | Λ | 0 1 ( 1 q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) d q u + | α 2 | | σ 4 | | ρ 12 t r 2 + ρ 16 | | Λ | 0 1 ( 1 q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) d q u } + ( κ 2 r + M 2 ) sup t [ 0 , 1 ] { | β 2 | 0 t ( t q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) d q u + | β 2 | | δ 1 | | ρ 9 t r 2 + ρ 13 | | Λ | × 0 η j ( η j q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) d q u + | β 2 | | δ 3 | | ρ 11 t r 2 + ρ 15 | | Λ | 0 η j ( η j q u ) ( r 1 + r 2 + ξ 2 2 ) Γ q ( r 1 + r 2 + ξ 2 1 ) d q u + | β 2 | | σ 3 | | ρ 12 t r 2 + ρ 16 | | Λ | 0 1 ( 1 q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) d q u + | β 2 | | σ 4 | | ρ 12 t r 2 + ρ 16 | | Λ | × 0 1 ( 1 q u ) ( r 1 + r 2 + ξ 2 2 ) Γ q ( r 1 + r 2 + ξ 2 1 ) d q u } + ϱ sup t [ 0 , 1 ] { | λ 2 | 0 t ( t q u ) ( r 2 1 ) Γ q ( r 2 ) d q u + | λ 2 | | δ 1 | | ρ 9 t r 2 + ρ 13 | | Λ | 0 η j ( η j q u ) ( r 2 1 ) Γ q ( r 2 ) d q u + | λ 1 | | δ 2 | | ρ 10 t r 2 + ρ 14 | | Λ | 0 η j ( η j q u ) ( p 2 1 ) Γ q ( p 2 ) d q u + | λ 2 | | δ 3 | | ρ 11 t r 2 + ρ 15 | | Λ | 0 η j ( η j q u ) ( r 2 2 ) Γ q ( r 2 1 ) d q u + | λ 1 | | σ 1 | | ρ 11 t r 2 + ρ 15 | | Λ | 0 1 ( 1 q u ) ( p 2 1 ) Γ q ( p 2 ) d q u + | λ 1 | | σ 2 | | ρ 11 t r 2 + ρ 15 | | Λ | 0 1 ( 1 q u ) ( p 2 2 ) Γ q ( p 2 1 ) d q u + | λ 1 | | δ 4 | | ρ 12 t r 2 + ρ 16 | | Λ | 0 η j ( η j q u ) ( p 2 2 ) Γ q ( p 2 1 ) d q u + | λ 2 | | σ 3 | | ρ 12 t r 2 + ρ 16 | | Λ | 0 1 ( 1 q u ) ( r 2 1 ) Γ q ( r 2 ) d q u + | λ 2 | | σ 4 | | ρ 12 t r 2 + ρ 16 | | Λ | 0 1 ( 1 q u ) ( r 2 2 ) Γ q ( r 2 1 ) d q u } ( ι 1 ϱ + N 1 ) Ψ 3 + ( ι 2 ϱ + N 2 ) Ψ 4 + ( κ 1 ϱ + M 1 ) Φ 3 + ( κ 2 ϱ + M 2 ) Φ 4 + ϱ Θ 2 ,
where Ψ 3 , Ψ 4 , Φ 3 , Φ 4 , Θ 2 are given in (13).
From the foregoing inequalities, it follows that
G ( x , y ) Y ϱ + ( Ψ 1 + Ψ 3 ) N 1 + ( Ψ 2 + Ψ 4 ) N 2 + ( Φ 1 + Φ 3 ) M 1 + ( Φ 2 + Φ 4 ) M 2 ,
which implies that G B ϱ B ϱ . Next we show that the operator G is a contraction. Using conditions ( A 1 ) and ( A 2 ) , for any ( x 1 , y 1 ) , ( x 2 , y 2 ) C × C , t [ 0 , 1 ] , we obtain
G 1 ( x 1 , y 1 ) G 1 ( x 2 , y 2 ) sup t [ 0 , 1 ] { | α 1 | 0 t ( t q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) | f 1 ( u , x 1 ( u ) , y 1 ( u ) ) f 1 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | β 1 | 0 t ( t q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) | g 1 ( u , x 1 ( u ) , y 1 ( u ) ) g 1 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | λ 1 | 0 t ( t q u ) ( p 2 1 ) Γ q ( p 2 ) | x 1 ( u ) x 2 ( u ) | d q u + | δ 1 | | ρ 1 t p 2 + ρ 5 | | Λ | ( | α 2 | 0 η j ( η j q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) × | f 2 ( u , x 1 ( u ) , y 1 ( u ) ) f 2 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | β 2 | 0 η j ( η j q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) × | g 2 ( u , x 1 ( u ) , y 1 ( u ) ) g 2 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | λ 2 | 0 η j ( η j q u ) ( r 2 1 ) Γ q ( r 2 ) | y 1 ( u ) y 2 ( u ) | d q u ) + | δ 2 | | ρ 2 t p 2 + ρ 6 | | Λ | ( | α 1 | 0 η j ( η j q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) | f 1 ( u , x 1 ( u ) , y 1 ( u ) ) f 1 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | β 1 | 0 η j ( η j q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) | g 1 ( u , x 1 ( u ) , y 1 ( u ) ) g 1 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | λ 1 | 0 η j ( η j q u ) ( p 2 1 ) Γ q ( p 2 ) | x 1 ( u ) x 2 ( u ) | d q u ) + | δ 3 | | ρ 3 t p 2 + ρ 7 | | Λ | ( | α 2 | 0 η j ( η j q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) × | f 2 ( u , x 1 ( u ) , y 1 ( u ) ) f 2 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | β 2 | 0 η j ( η j q u ) ( r 1 + r 2 + ξ 2 2 ) Γ q ( r 1 + r 2 + ξ 2 1 ) × | g 2 ( u , x 1 ( u ) , y 1 ( u ) ) g 2 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | λ 2 | 0 η j ( η j q u ) ( r 2 2 ) Γ q ( r 2 1 ) | y 1 ( u ) y 2 ( u ) | d q u ) + | σ 1 | | ρ 3 t p 2 + ρ 7 | | Λ | ( | α 1 | 0 1 ( 1 q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) | f 1 ( u , x 1 ( u ) , y 1 ( u ) ) f 1 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | β 1 | 0 1 ( 1 q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) | g 1 ( u , x 1 ( u ) , y 1 ( u ) ) g 1 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | λ 1 | 0 1 ( 1 q u ) ( p 2 1 ) Γ q ( p 2 ) | x 1 ( u ) x 2 ( u ) | d q u ) + | σ 2 | | ρ 3 t p 2 + ρ 7 | | Λ | ( | α 1 | 0 1 ( 1 q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) × | f 1 ( u , x 1 ( u ) , y 1 ( u ) ) f 1 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | β 1 | 0 1 ( 1 q u ) ( p 1 + p 2 + ξ 1 2 ) Γ q ( p 1 + p 2 + ξ 1 1 ) × | g 1 ( u , x 1 ( u ) , y 1 ( u ) ) g 1 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | λ 1 | 0 1 ( 1 q u ) ( p 2 2 ) Γ q ( p 2 1 ) | x 1 ( u ) x 2 ( u ) | d q u ) + | δ 4 | | ρ 4 t p 2 + ρ 8 | | Λ | ( | α 1 | 0 η j ( η j q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) | f 1 ( u , x 1 ( u ) , y 1 ( u ) ) f 1 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | β 1 | 0 η j ( η j q u ) ( p 1 + p 2 + ξ 1 2 ) Γ q ( p 1 + p 2 + ξ 1 1 ) | g 1 ( u , x 1 ( u ) , y 1 ( u ) ) g 1 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | λ 1 | 0 η j ( η j q u ) ( p 2 2 ) Γ q ( p 2 1 ) | x 1 ( u ) x 2 ( u ) | d q u ) + | σ 3 | | ρ 4 t p 2 + ρ 8 | | Λ | ( | α 2 | 0 1 ( 1 q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) × | f 2 ( u , x 1 ( u ) , y 1 ( u ) ) f 2 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | β 2 | 0 1 ( 1 q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) × | g 2 ( u , x 1 ( u ) , y 1 ( u ) ) g 2 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | λ 2 | 0 1 ( 1 q u ) ( r 2 1 ) Γ q ( r 2 ) | y 1 ( u ) y 2 ( u ) | d q u ) + | σ 4 | | ρ 4 t p 2 + ρ 8 | | Λ | ( | α 2 | 0 1 ( 1 q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) | f 2 ( u , x 1 ( u ) , y 1 ( u ) ) f 2 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | β 2 | 0 1 ( 1 q u ) ( r 1 + r 2 + ξ 2 2 ) Γ q ( r 1 + r 2 + ξ 2 1 ) | g 2 ( u , x 1 ( u ) , y 1 ( u ) ) g 2 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | λ 2 | 0 1 ( 1 q u ) ( r 2 2 ) Γ q ( r 2 1 ) | y 1 ( u ) y 2 ( u ) | d q u ) } ι 1 ( x 1 x 2 + y 1 y 2 ) sup t [ 0 , 1 ] { | α 1 | 0 t ( t q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) d q u + | α 1 | | δ 2 | | ρ 2 t p 2 + ρ 6 | | Λ | × 0 η j ( η j q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) d q u + | α 1 | | σ 1 | | ρ 3 t p 2 + ρ 7 | | Λ | 0 1 ( 1 q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) d q u + | α 1 | | σ 2 | | ρ 3 t p 2 + ρ 7 | | Λ | 0 1 ( 1 q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) d q u + | α 1 | | δ 4 | | ρ 4 t p 2 + ρ 8 | | Λ | 0 η j ( η j q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) d q u } + κ 1 ( x 1 x 2 + y 1 y 2 ) sup t [ 0 , 1 ] { | β 1 | 0 t ( t q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) d q u + | β 1 | | δ 2 | | ρ 2 t p 2 + ρ 6 | | Λ | × 0 η j ( η j q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) d q u + | β 1 | | σ 1 | | ρ 3 t p 2 + ρ 7 | | Λ | 0 1 ( 1 q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) d q u + | β 1 | | σ 2 | | ρ 3 t p 2 + ρ 7 | | Λ | 0 1 ( 1 q u ) ( p 1 + p 2 + ξ 1 2 ) Γ q ( p 1 + p 2 + ξ 1 1 ) d q u + | β 1 | | δ 4 | | ρ 4 t p 2 + ρ 8 | | Λ | 0 η j ( η j q u ) ( p 1 + p 2 + ξ 1 2 ) Γ q ( p 1 + p 2 + ξ 1 1 ) d q u } + ι 2 ( x 1 x 2 + y 1 y 2 ) sup t [ 0 , 1 ] { | α 2 | | δ 1 | | ρ 1 t p 2 + ρ 5 | | Λ | 0 η j ( η j q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) d q u + | α 2 | | δ 3 | | ρ 3 t p 2 + ρ 7 | | Λ | 0 η j ( η j q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) d q u + | α 2 | | σ 3 | | ρ 4 t p 2 + ρ 8 | | Λ | 0 1 ( 1 q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) d q u + | α 2 | | σ 4 | | ρ 4 t p 2 + ρ 8 | | Λ | 0 1 ( 1 q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) d q u } + κ 2 ( x 1 x 2 + y 1 y 2 ) × sup t [ 0 , 1 ] { | β 2 | | δ 1 | | ρ 1 t p 2 + ρ 5 | | Λ | 0 η j ( η j q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) d q u + | β 2 | | δ 3 | | ρ 3 t p 2 + ρ 7 | | Λ | × 0 η j ( η j q u ) ( r 1 + r 2 + ξ 2 2 ) Γ q ( r 1 + r 2 + ξ 2 1 ) d q u + | β 2 | | σ 3 | | ρ 4 t p 2 + ρ 8 | | Λ | 0 1 ( 1 q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) d q u + | β 2 | | σ 4 | | ρ 4 t p 2 + ρ 8 | | Λ | 0 1 ( 1 q u ) ( r 1 + r 2 + ξ 2 2 ) Γ q ( r 1 + r 2 + ξ 2 1 ) d q u } + ( x 1 x 2 + y 1 y 2 ) × sup t [ 0 , 1 ] { | λ 1 | 0 t ( t q u ) ( p 2 1 ) Γ q ( p 2 ) d q u + | λ 2 | | δ 1 | | ρ 1 t p 2 + ρ 5 | | Λ | 0 η j ( η j q u ) ( r 2 1 ) Γ q ( r 2 ) d q u + | λ 1 | | δ 2 | | ρ 2 t p 2 + ρ 6 | | Λ | 0 η j ( η j q u ) ( p 2 1 ) Γ q ( p 2 ) d q u + | λ 2 | | δ 3 | | ρ 3 t p 2 + ρ 7 | | Λ | 0 η j ( η j q u ) ( r 2 2 ) Γ q ( r 2 1 ) d q u + | λ 1 | | σ 1 | | ρ 3 t p 2 + ρ 7 | | Λ | 0 1 ( 1 q u ) ( p 2 1 ) Γ q ( p 2 ) d q u + | λ 1 | | σ 2 | | ρ 3 t p 2 + ρ 7 | | Λ | 0 1 ( 1 q u ) ( p 2 2 ) Γ q ( p 2 1 ) d q u + | λ 1 | | δ 4 | | ρ 4 t p 2 + ρ 8 | | Λ | 0 η j ( η j q u ) ( p 2 2 ) Γ q ( p 2 1 ) d q u + | λ 2 | | σ 3 | | ρ 4 t p 2 + ρ 8 | | Λ | 0 1 ( 1 q u ) ( r 2 1 ) Γ q ( r 2 ) d q u + | λ 2 | | σ 4 | | ρ 4 t p 2 + ρ 8 | | Λ | 0 1 ( 1 q u ) ( r 2 2 ) Γ q ( r 2 1 ) d q u } ( ι 1 Ψ 1 + ι 2 Ψ 2 + κ 1 Φ 1 + κ 2 Φ 2 + Θ 1 ) x 1 x 2 + y 1 y 2 ,
where Ψ 1 , Ψ 2 , Φ 1 , Φ 2 , Θ 1 are given in (13).
Similarly, one can obtain
G 2 ( x 1 , y 1 ) G 2 ( x 2 , y 2 ) sup t [ 0 , 1 ] { | α 2 | 0 t ( t q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) | f 2 ( u , x 1 ( u ) , y 1 ( u ) ) f 2 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | β 2 | 0 t ( t q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) | g 2 ( u , x 1 ( u ) , y 1 ( u ) ) g 2 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | λ 2 | 0 t ( t q u ) ( r 2 1 ) Γ q ( r 2 ) | y 1 ( u ) y 2 ( u ) | d q u + | δ 1 | | ρ 9 t r 2 + ρ 13 | | Λ | ( | α 2 | 0 η j ( η j q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) × | f 2 ( u , x 1 ( u ) , y 1 ( u ) ) f 2 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | β 2 | 0 η j ( η j q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) × | g 2 ( u , x 1 ( u ) , y 1 ( u ) ) g 2 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | λ 2 | 0 η j ( η j q u ) ( r 2 1 ) Γ q ( r 2 ) | y 1 ( u ) y 2 ( u ) | d q u ) + | δ 2 | | ρ 10 t r 2 + ρ 14 | | Λ | ( | α 1 | 0 η j ( η j q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) | f 1 ( u , x 1 ( u ) , y 1 ( u ) ) f 1 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | β 1 | 0 η j ( η j q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) | g 1 ( u , x 1 ( u ) , y 1 ( u ) ) g 1 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | λ 1 | 0 η j ( η j q u ) ( p 2 1 ) Γ q ( p 2 ) | x 1 ( u ) x 2 ( u ) | d q u ) + | δ 3 | | ρ 11 t r 2 + ρ 15 | | Λ | ( | α 2 | 0 η j ( η j q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) × | f 2 ( u , x 1 ( u ) , y 1 ( u ) ) f 2 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | β 2 | 0 η j ( η j q u ) ( r 1 + r 2 + ξ 2 2 ) Γ q ( r 1 + r 2 + ξ 2 1 ) × | g 2 ( u , x 1 ( u ) , y 1 ( u ) ) g 2 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | λ 2 | 0 η j ( η j q u ) ( r 2 2 ) Γ q ( r 2 1 ) | y 1 ( u ) y 2 ( u ) | d q u ) + | σ 1 | | ρ 11 t r 2 + ρ 15 | | Λ | ( | α 1 | 0 1 ( 1 q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) | f 1 ( u , x 1 ( u ) , y 1 ( u ) ) f 1 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | β 1 | 0 1 ( 1 q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) | g 1 ( u , x 1 ( u ) , y 1 ( u ) ) g 1 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | λ 1 | 0 1 ( 1 q u ) ( p 2 1 ) Γ q ( p 2 ) | x 1 ( u ) x 2 ( u ) | d q u ) + | σ 2 | | ρ 11 t r 2 + ρ 15 | | Λ | ( | α 1 | 0 1 ( 1 q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) × | f 1 ( u , x 1 ( u ) , y 1 ( u ) ) f 1 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | β 1 | 0 1 ( 1 q u ) ( p 1 + p 2 + ξ 1 2 ) Γ q ( p 1 + p 2 + ξ 1 1 ) × | g 1 ( u , x 1 ( u ) , y 1 ( u ) ) g 1 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | λ 1 | 0 1 ( 1 q u ) ( p 2 2 ) Γ q ( p 2 1 ) | x 1 ( u ) x 2 ( u ) | d q u ) + | δ 4 | | ρ 12 t r 2 + ρ 16 | | Λ | ( | α 1 | 0 η j ( η j q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) | f 1 ( u , x 1 ( u ) , y 1 ( u ) ) f 1 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | β 1 | 0 η j ( η j q u ) ( p 1 + p 2 + ξ 1 2 ) Γ q ( p 1 + p 2 + ξ 1 1 ) | g 1 ( u , x 1 ( u ) , y 1 ( u ) ) g 1 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | λ 1 | 0 η j ( η j q u ) ( p 2 2 ) Γ q ( p 2 1 ) | x 1 ( u ) x 2 ( u ) | d q u ) + | σ 3 | | ρ 12 t r 2 + ρ 16 | | Λ | ( | α 2 | 0 1 ( 1 q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) × | f 2 ( u , x 1 ( u ) , y 1 ( u ) ) f 2 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | β 2 | 0 1 ( 1 q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) × | g 2 ( u , x 1 ( u ) , y 1 ( u ) ) g 2 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | λ 2 | 0 1 ( 1 q u ) ( r 2 1 ) Γ q ( r 2 ) | y 1 ( u ) y 2 ( u ) | d q u ) + | σ 4 | | ρ 12 t r 2 + ρ 16 | | Λ | ( | α 2 | 0 1 ( 1 q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) | f 2 ( u , x 1 ( u ) , y 1 ( u ) ) f 2 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | β 2 | 0 1 ( 1 q u ) ( r 1 + r 2 + ξ 2 2 ) Γ q ( r 1 + r 2 + ξ 2 1 ) | g 2 ( u , x 1 ( u ) , y 1 ( u ) ) g 2 ( u , x 2 ( u ) , y 2 ( u ) ) | d q u + | λ 2 | 0 1 ( 1 q u ) ( r 2 2 ) Γ q ( r 2 1 ) | y 1 ( u ) y 2 ( u ) | d q u ) } ι 1 ( x 1 x 2 + y 1 y 2 ) sup t [ 0 , 1 ] { | α 1 | | δ 2 | | ρ 10 t r 2 + ρ 14 | | Λ | 0 η j ( η j q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) d q u + | α 1 | | σ 1 | | ρ 11 t r 2 + ρ 15 | | Λ | 0 1 ( 1 q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) d q u + | α 1 | | σ 2 | | ρ 11 t r 2 + ρ 15 | | Λ | 0 1 ( 1 q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) d q u + | α 1 | | δ 4 | | ρ 12 t r 2 + ρ 16 | | Λ | 0 η j ( η j q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) d q u } + κ 1 ( x 1 x 2 + y 1 y 2 ) × sup t [ 0 , 1 ] { | β 1 | | δ 2 | | ρ 10 t r 2 + ρ 14 | | Λ | 0 η j ( η j q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) d q u + | β 1 | | σ 1 | | ρ 11 t r 2 + ρ 15 | | Λ | × 0 1 ( 1 q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) d q u + | β 1 | | σ 2 | | ρ 11 t r 2 + ρ 15 | | Λ | 0 1 ( 1 q u ) ( p 1 + p 2 + ξ 1 2 ) Γ q ( p 1 + p 2 + ξ 1 1 ) d q u + | β 1 | | δ 4 | | ρ 12 t r 2 + ρ 16 | | Λ | 0 η j ( η j q u ) ( p 1 + p 2 + ξ 1 2 ) Γ q ( p 1 + p 2 + ξ 1 1 ) d q u } + ι 2 ( x 1 x 2 + y 1 y 2 ) × sup t [ 0 , 1 ] { | α 2 | 0 t ( t q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) d q u + | α 2 | | δ 1 | | ρ 9 t r 2 + ρ 13 | | Λ | 0 η j ( η j q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) d q u + | α 2 | | δ 3 | | ρ 11 t r 2 + ρ 15 | | Λ | 0 η j ( η j q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) d q u + | α 2 | | σ 3 | | ρ 12 t r 2 + ρ 16 | | Λ | 0 1 ( 1 q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) d q u + | α 2 | | σ 4 | | ρ 12 t r 2 + ρ 16 | | Λ | 0 1 ( 1 q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) d q u } + κ 2 ( x 1 x 2 + y 1 y 2 ) × sup t [ 0 , 1 ] { | β 2 | 0 t ( t q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) d q u + | β 2 | | δ 1 | | ρ 9 t r 2 + ρ 13 | | Λ | 0 η j ( η j q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) d q u + | β 2 | | δ 3 | | ρ 11 t r 2 + ρ 15 | | Λ | 0 η j ( η j q u ) ( r 1 + r 2 + ξ 2 2 ) Γ q ( r 1 + r 2 + ξ 2 1 ) d q u + | β 2 | | σ 3 | | ρ 12 t r 2 + ρ 16 | | Λ | × 0 1 ( 1 q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) d q u + | β 2 | | σ 4 | | ρ 12 t r 2 + ρ 16 | | Λ | 0 1 ( 1 q u ) ( r 1 + r 2 + ξ 2 2 ) Γ q ( r 1 + r 2 + ξ 2 1 ) d q u } + ( x 1 x 2 + y 1 y 2 ) sup t [ 0 , 1 ] { | λ 2 | 0 t ( t q u ) ( r 2 1 ) Γ q ( r 2 ) d q u + | λ 2 | | δ 1 | | ρ 9 t r 2 + ρ 13 | | Λ | 0 η j ( η j q u ) ( r 2 1 ) Γ q ( r 2 ) d q u + | λ 1 | | δ 2 | | ρ 10 t r 2 + ρ 14 | | Λ | 0 η j ( η j q u ) ( p 2 1 ) Γ q ( p 2 ) d q u + | λ 2 | | δ 3 | | ρ 11 t r 2 + ρ 15 | | Λ | 0 η j ( η j q u ) ( r 2 2 ) Γ q ( r 2 1 ) d q u + | λ 1 | | σ 1 | | ρ 11 t r 2 + ρ 15 | | Λ | 0 1 ( 1 q u ) ( p 2 1 ) Γ q ( p 2 ) d q u + | λ 1 | | σ 2 | | ρ 11 t r 2 + ρ 15 | | Λ | 0 1 ( 1 q u ) ( p 2 2 ) Γ q ( p 2 1 ) d q u + | λ 1 | | δ 4 | | ρ 12 t r 2 + ρ 16 | | Λ | 0 η j ( η j q u ) ( p 2 2 ) Γ q ( p 2 1 ) d q u + | λ 2 | | σ 3 | | ρ 12 t r 2 + ρ 16 | | Λ | 0 1 ( 1 q u ) ( r 2 1 ) Γ q ( r 2 ) d q u + | λ 2 | | σ 4 | | ρ 12 t r 2 + ρ 16 | | Λ | 0 1 ( 1 q u ) ( r 2 2 ) Γ q ( r 2 1 ) d q u } ( ι 1 Ψ 3 + ι 2 Ψ 4 + κ 1 Φ 3 + κ 2 Φ 4 + Θ 2 ) x 1 x 2 + y 1 y 2 ,
where Ψ 3 , Ψ 4 , Φ 3 , Φ 4 , Θ 2 are given in (13). Consequently, we obtain
G ( x 1 , y 1 ) G ( x 2 , y 2 ) Y x 1 x 2 + y 1 y 2 .
As Y < 1 by (15), therefore G is a contraction. Hence, we deduce by the conclusion of the Banach contraction mapping principle that the operator G has a unique fixed point, which is indeed the unique solution of the problem (1) and (2). The proof is completed.  □
Next, we present an existence result for the problem (1) and (2) which is proved by means of the Leray–Schauder nonlinear alternative [48].
Theorem 2.
Assume that
( A 3 )
f 1 , f 2 , g 1 , g 2 : [ 0 , 1 ] × R × R R are continuous functions and that there exist real constants τ i , τ ˜ i , ϵ i , ϵ ˜ i 0 , ( i = 1 , 2 ) and τ 0 , τ ˜ 0 , ϵ 0 , ϵ ˜ 0 > 0 such that, x , y R ,
| f 1 ( t , x , y ) | τ 0 + τ 1 | x | + τ 2 | y | , | f 2 ( t , x , y ) | τ ˜ 0 + τ ˜ 1 | x | + τ ˜ 2 | y | ,
| g 1 ( t , x , y ) | ϵ 0 + ϵ 1 | x | + ϵ 2 | y | , | g 2 ( t , x , y ) | ϵ ˜ 0 + ϵ ˜ 1 | x | + ϵ ˜ 2 | y | ,
Then the system (1) and (2) has at least one solution on [ 0 , 1 ] provided that
( Ψ 1 + Ψ 3 ) τ 1 + ( Ψ 2 + Ψ 4 ) τ ˜ 1 + ( Φ 1 + Φ 3 ) ϵ 1 + ( Φ 2 + Φ 4 ) ϵ ˜ 1 + υ 1 < 1 , ( Ψ 1 + Ψ 3 ) τ 2 + ( Ψ 2 + Ψ 4 ) τ ˜ 2 + ( Φ 1 + Φ 3 ) ϵ 2 + ( Φ 2 + Φ 4 ) ϵ ˜ 2 + υ 2 < 1 ,
where Ψ i , Φ i , i = 1 , 2 , 3 , 4 are given by (13) and
υ 1 = | λ 1 | 1 Γ q ( p 2 + 1 ) + | γ 9 + γ 10 | | Λ | + | γ 21 + γ 22 | | Λ | , υ 2 = | λ 2 | 1 Γ q ( r 2 + 1 ) + | γ 11 + γ 12 | | Λ | + | γ 23 + γ 24 | | Λ | .
Proof. 
In the first step, it will be shown that the operator G : C × C C × C is completely continuous. Notice that the operator G is continuous in view of the continuity of the functions f 1 , f 2 , g 1 , g 2 . Let Y C × C be bounded. Then, for all ( x , y ) Y , there exist constants 1 , 2 , ϖ 1 , ϖ 2 such that | f 1 ( t , x ( t ) , y ( t ) ) | 1 , | f 2 ( t , x ( t ) , y ( t ) ) | 2 , | g 1 ( t , x ( t ) , y ( t ) ) | ϖ 1 , | g 2 ( t , x ( t ) , y ( t ) ) | ϖ 2 . Let ( x , y ) Y . Then there exists φ such that ( x , y ) = x + y φ , and for any ( x , y ) Y , we have
G 1 ( x , y ) sup t [ 0 , 1 ] { | α 1 | 0 t ( t q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) | f 1 ( u , x ( u ) , y ( u ) ) | d q u + | β 1 | 0 t ( t q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ ) | g 1 ( u , x ( u ) , y ( u ) ) | d q u + | λ 1 | 0 t ( t q u ) ( p 2 1 ) Γ q ( p 2 ) | x ( u ) | d q u + | δ 1 | | ρ 1 t p 2 + ρ 5 | | Λ | ( | α 2 | 0 η j ( η j q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) | f 2 ( u , x ( u ) , y ( u ) ) | d q u + | β 2 | 0 η j ( η j q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) | g 2 ( u , x ( u ) , y ( u ) ) | d q u + | λ 2 | 0 η j ( η j q u ) ( r 2 1 ) Γ q ( r 2 ) | y ( u ) | d q u ) + | δ 2 | | ρ 2 t p 2 + ρ 6 | | Λ | ( | α 1 | 0 η j ( η j q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) | f 1 ( u , x ( u ) , y ( u ) ) | d q u + | β 1 | 0 η j ( η j q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) | g 1 ( u , x ( u ) , y ( u ) ) | d q u + | λ 1 | 0 η j ( η j q u ) ( p 2 1 ) Γ q ( p 2 ) | x ( u ) | d q u ) + | δ 3 | | ρ 3 t p 2 + ρ 7 | | Λ | ( | α 2 | 0 η j ( η j q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) | f 2 ( u , x ( u ) , y ( u ) ) | d q u + | β 2 | 0 η j ( η j q u ) ( r 1 + r 2 + ξ 2 2 ) Γ q ( r 1 + r 2 + ξ 2 1 ) | g 2 ( u , x ( u ) , y ( u ) ) | d q u + | λ 2 | 0 η j ( η j q u ) ( r 2 2 ) Γ q ( r 2 1 ) | y ( u ) | d q u ) + | σ 1 | | ρ 3 t p 2 + ρ 7 | | Λ | ( | α 1 | 0 1 ( 1 q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) | f 1 ( u , x ( u ) , y ( u ) ) | d q u + | β 1 | 0 1 ( 1 q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) | g 1 ( u , x ( u ) , y ( u ) ) | d q u + | λ 1 | 0 1 ( 1 q u ) ( p 2 1 ) Γ q ( p 2 ) | x ( u ) | d q u ) + | σ 2 | | ρ 3 t p 2 + ρ 7 | | Λ | ( | α 1 | 0 1 ( 1 q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) | f 1 ( u , x ( u ) , y ( u ) ) | d q u + | β 1 | 0 1 ( 1 q u ) ( p 1 + p 2 + ξ 1 2 ) Γ q ( p 1 + p 2 + ξ 1 1 ) | g 1 ( u , x ( u ) , y ( u ) ) | d q u + | λ 1 | 0 1 ( 1 q u ) ( p 2 2 ) Γ q ( p 2 1 ) | x ( u ) | d q u ) + | δ 4 | | ρ 4 t p 2 + ρ 8 | | Λ | ( | α 1 | 0 η j ( η j q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) | f 1 ( u , x ( u ) , y ( u ) ) | d q u + | β 1 | 0 η j ( η j q u ) ( p 1 + p 2 + ξ 1 2 ) Γ q ( p 1 + p 2 + ξ 1 1 ) | g 1 ( u , x ( u ) , y ( u ) ) | d q u + | λ 1 | 0 η j ( η j q u ) ( p 2 2 ) Γ q ( p 2 1 ) | x ( u ) | d q u ) + | σ 3 | | ρ 4 t p 2 + ρ 8 | | Λ | ( | α 2 | 0 1 ( 1 q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) | f 2 ( u , x ( u ) , y ( u ) ) | d q u + | β 2 | 0 1 ( 1 q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) | g 2 ( u , x ( u ) , y ( u ) ) | d q u + | λ 2 | 0 1 ( 1 q u ) ( r 2 1 ) Γ q ( r 2 ) | y ( u ) | d q u ) + | σ 4 | | ρ 4 t p 2 + ρ 8 | | Λ | ( | α 2 | 0 1 ( 1 q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) | f 2 ( u , x ( u ) , y ( u ) ) | d q u + | β 2 | 0 1 ( 1 q u ) ( r 1 + r 2 + ξ 2 2 ) Γ q ( r 1 + r 2 + ξ 2 1 ) | g 2 ( u , x ( u ) , y ( u ) ) | d q u + | λ 2 | 0 1 ( 1 q u ) ( r 2 2 ) Γ q ( r 2 1 ) | y ( u ) | d q u ) } 1 Ψ 1 + 2 Ψ 2 + ϖ 1 Φ 1 + ϖ 2 Φ 2 + φ Θ 1
where Ψ 1 , Ψ 2 , Φ 1 , Φ 2 , Θ 1 are given in (13). Similarly, we can find that
G 2 ( x , y ) sup t [ 0 , 1 ] { | α 2 | 0 t ( t q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) | f 2 ( u , x ( u ) , y ( u ) ) | d q u + | β 2 | 0 t ( t q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) | g 2 ( u , x ( u ) , y ( u ) ) | d q u + | λ 2 | 0 t ( t q u ) ( r 2 1 ) Γ q ( r 2 ) | y ( u ) | d q u + | δ 1 | | ρ 9 t r 2 + ρ 13 | | Λ | ( | α 2 | 0 η j ( η j q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) | f 2 ( u , x ( u ) , y ( u ) ) | d q u + | β 2 | 0 η j ( η j q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) | g 2 ( u , x ( u ) , y ( u ) ) | d q u + | λ 2 | 0 η j ( η j q u ) ( r 2 1 ) Γ q ( r 2 ) | y ( u ) | d q u ) + | δ 2 | | ρ 10 t r 2 + ρ 14 | | Λ | ( | α 1 | 0 η j ( η j q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) | f 1 ( u , x ( u ) , y ( u ) ) | d q u + | β 1 | 0 η j ( η j q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) | g 1 ( u , x ( u ) , y ( u ) ) | d q u + | λ 1 | 0 η j ( η j q u ) ( p 2 1 ) Γ q ( p 2 ) | x ( u ) | d q u ) + | δ 3 | | ρ 11 t r 2 + ρ 15 | | Λ | ( | α 2 | 0 η j ( η j q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) | f 2 ( u , x ( u ) , y ( u ) ) | d q u + | β 2 | 0 η j ( η j q u ) ( r 1 + r 2 + ξ 2 2 ) Γ q ( r 1 + r 2 + ξ 2 1 ) | g 2 ( u , x ( u ) , y ( u ) ) | d q u + | λ 2 | 0 η j ( η j q u ) ( r 2 2 ) Γ q ( r 2 1 ) | y ( u ) | d q u ) + | σ 1 | | ρ 11 t r 2 + ρ 15 | | Λ | ( | α 1 | 0 1 ( 1 q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) | f 1 ( u , x ( u ) , y ( u ) ) | d q u + | β 1 | 0 1 ( 1 q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) | g 1 ( u , x ( u ) , y ( u ) ) | d q u + | λ 1 | 0 1 ( 1 q u ) ( p 2 1 ) Γ q ( p 2 ) | x ( u ) | d q u ) + | σ 2 | | ρ 11 t r 2 + ρ 15 | | Λ | ( | α 1 | 0 1 ( 1 q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) | f 1 ( u , x ( u ) , y ( u ) ) | d q u + | β 1 | 0 1 ( 1 q u ) ( p 1 + p 2 + ξ 1 2 ) Γ q ( p 1 + p 2 + ξ 1 1 ) | g 1 ( u , x ( u ) , y ( u ) ) | d q u + | λ 1 | 0 1 ( 1 q u ) ( p 2 2 ) Γ q ( p 2 1 ) | x ( u ) | d q u ) + | δ 4 | | ρ 12 t r 2 + ρ 16 | | Λ | ( | α 1 | 0 η j ( η j q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) | f 1 ( u , x ( u ) , y ( u ) ) | d q u + | β 1 | 0 η j ( η j q u ) ( p 1 + p 2 + ξ 1 2 ) Γ q ( p 1 + p 2 + ξ 1 1 ) | g 1 ( u , x ( u ) , y ( u ) ) | d q u + | λ 1 | 0 η j ( η j q u ) ( p 2 2 ) Γ q ( p 2 1 ) | x ( u ) | d q u ) + | σ 3 | | ρ 12 t r 2 + ρ 16 | | Λ | ( | α 2 | 0 1 ( 1 q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) | f 2 ( u , x ( u ) , y ( u ) ) | d q u + | β 2 | 0 1 ( 1 q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) | g 2 ( u , x ( u ) , y ( u ) ) | d q u + | λ 2 | 0 1 ( 1 q u ) ( r 2 1 ) Γ q ( r 2 ) | y ( u ) | d q u ) + | σ 4 | | ρ 12 t r 2 + ρ 16 | | Λ | ( | α 2 | 0 1 ( 1 q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) | f 2 ( u , x ( u ) , y ( u ) ) | d q u + | β 2 | 0 1 ( 1 q u ) ( r 1 + r 2 + ξ 2 2 ) Γ q ( r 1 + r 2 + ξ 2 1 ) | g 2 ( u , x ( u ) , y ( u ) ) | d q u + | λ 2 | 0 1 ( 1 q u ) ( r 2 2 ) Γ q ( r 2 1 ) | y ( u ) | d q u ) } 1 Ψ 3 + 2 Ψ 4 + ϖ 1 Φ 3 + ϖ 2 Φ 4 + φ Θ 2 ,
where Ψ 3 , Ψ 4 , Φ 3 , Φ 4 , Θ 2 are given in (13).
Consequently, we obtain
G ( x , y ) ( Ψ 1 + Ψ 3 ) 1 + ( Ψ 2 + Ψ 4 ) 2 + ( Φ 1 + Φ 3 ) ϖ 1 + ( Φ 2 + Φ 4 ) ϖ 2 + ( Θ 1 + Θ 2 ) φ .
Therefore, the operator G is uniformly bounded. Next, we show that the operator G is equicontinuous. Let t 1 , t 2 [ 0 , 1 ] with t 1 < t 2 . Then we have
| G 1 ( x ( t 2 ) , y ( t 2 ) ) G 1 ( x ( t 1 ) , y ( t 1 ) ) | | α 1 | 1 Γ q ( p 1 + p 2 ) | 0 t 1 [ ( t 2 q u ) ( p 1 + p 2 1 ) ( t 1 q u ) ( p 1 + p 2 1 ) ] d q u + t 1 t 2 ( t 2 q u ) ( p 1 + p 2 1 ) d q u | + | β 1 | ϖ 1 Γ q ( p 1 + p 2 + ξ 1 ) | 0 t 1 [ ( t 2 q u ) ( p 1 + p 2 + ξ 1 1 ) ( t 1 q u ) ( p 1 + p 2 + ξ 1 1 ) ] d q u + t 1 t 2 ( t 2 q u ) ( p 1 + p 2 + ξ 1 1 ) d q u | + | λ 1 | φ Γ q ( p 2 ) | 0 t 1 [ ( t 2 q u ) ( p 2 1 ) ( t 1 q u ) ( p 2 1 ) ] d q u + t 1 t 2 ( t 2 q u ) ( p 2 1 ) d q u | + | t 2 p 2 t 1 p 2 | | Λ | [ | δ 1 | | ρ 1 | ( | α 2 | η j r 1 + r 2 2 Γ q ( r 1 + r 2 + 1 ) + | β 2 | η j r 1 + r 2 + ξ 2 ϖ 2 Γ q ( r 1 + r 2 + ξ 2 + 1 ) + | λ 2 | η j r 2 φ Γ q ( r 2 + 1 ) ) + | δ 2 | | ρ 2 | | α 1 | η j p 1 + p 2 1 Γ q ( p 1 + p 2 + 1 ) + | β 1 | η j p 1 + p 2 + ξ 1 ϖ 1 Γ q ( p 1 + p 2 + ξ 1 + 1 ) + | λ 1 | η j p 2 φ Γ q ( p 2 + 1 ) + | δ 3 | | ρ 3 | | α 2 | η j r 1 + r 2 1 2 Γ q ( r 1 + r 2 ) + | β 2 | η j r 1 + r 2 + ξ 2 1 ϖ 2 Γ q ( r 1 + r 2 + ξ 2 ) + | λ 2 | η j r 2 1 φ Γ q ( r 2 ) + | σ 1 | | ρ 3 | ( | α 1 | 1 Γ q ( p 1 + p 2 + 1 ) + | β 1 | ϖ 1 Γ q ( p 1 + p 2 + ξ 1 + 1 ) + | λ 1 | φ Γ q ( p 2 + 1 ) ) + | σ 2 | | ρ 3 | | α 1 | 1 Γ q ( p 1 + p 2 ) + | β 1 | ϖ 1 Γ q ( p 1 + p 2 + ξ 1 ) + | λ 1 | φ Γ q ( p 2 ) + | δ 4 | | ρ 4 | | α 1 | η j p 1 + p 2 1 1 Γ q ( p 1 + p 2 ) + | β 1 | η j p 1 + p 2 + ξ 1 1 ϖ 1 Γ q ( p 1 + p 2 + ξ 1 ) + | λ 1 | η j p 2 1 φ Γ q ( p 2 ) + | σ 3 | | ρ 4 | ( | α 2 | 2 Γ q ( r 1 + r 2 + 1 ) + | β 2 | ϖ 2 Γ q ( r 1 + r 2 + ξ 2 + 1 ) + | λ 2 | φ Γ q ( r 2 + 1 ) ) + | σ 4 | | ρ 4 | | α 2 | 2 Γ q ( r 1 + r 2 ) + | β 2 | ϖ 2 Γ q ( r 1 + r 2 + ξ 2 ) + | λ 2 | φ Γ q ( r 2 ) | α 1 | 1 Γ q ( p 1 + p 2 + 1 ) 2 ( t 2 t 1 ) p 1 + p 2 + | t 2 p 1 + p 2 t 1 p 1 + p 2 | + | β 1 | ϖ 1 Γ q ( p 1 + p 2 + ξ 1 + 1 ) × 2 ( t 2 t 1 ) p 1 + p 2 + ξ 1 + | t 2 p 1 + p 2 + ξ 1 t 1 p 1 + p 2 + ξ 1 | + | λ 1 | φ Γ q ( p 2 + 1 ) 2 ( t 2 t 1 ) p 2 + | t 2 p 2 t 1 p 2 | + | t 2 p 2 t 1 p 2 | | Λ | [ | α 1 | 1 | δ 2 | | ρ 2 | η j p 1 + p 2 + | σ 1 | | ρ 3 | Γ q ( p 1 + p 2 + 1 ) + | δ 4 | | ρ 4 | η j p 1 + p 2 1 + | σ 2 | | ρ 3 | Γ q ( p 1 + p 2 ) + | α 2 | 2 | δ 1 | | ρ 1 | η j r 1 + r 2 + | σ 3 | | ρ 4 | Γ q ( r 1 + r 2 + 1 ) + | δ 3 | | ρ 3 | η j r 1 + r 2 1 + | σ 4 | | ρ 4 | Γ q ( r 1 + r 2 ) + | β 1 | ϖ 1 | δ 2 | | ρ 2 | η j p 1 + p 2 + ξ 1 + | σ 1 | | ρ 3 | Γ q ( p 1 + p 2 + ξ 1 + 1 ) + | δ 4 | | ρ 4 | η j p 1 + p 2 + ξ 1 1 + | σ 2 | | ρ 3 | Γ q ( p 1 + p 2 + ξ 1 ) + | β 2 | ϖ 2 | δ 1 | | ρ 1 | η j r 1 + r 2 + ξ 2 + | σ 3 | | ρ 4 | Γ q ( r 1 + r 2 + ξ 2 + 1 ) + | δ 3 | | ρ 3 | η j r 1 + r 2 + ξ 2 1 + | σ 4 | | ρ 4 | Γ q ( r 1 + r 2 + ξ 2 ) + φ ( | λ 1 | | δ 2 | | ρ 2 | η j p 2 + | σ 1 | | ρ 3 | Γ q ( p 2 + 1 ) + | δ 4 | | ρ 4 | η j p 2 1 + | σ 2 | | ρ 3 | Γ q ( p 2 ) + | λ 2 | ( | δ 1 | | ρ 1 | η j r 2 + | σ 3 | | ρ 4 | Γ q ( r 2 + 1 ) + | δ 3 | | ρ 3 | η j r 2 1 + | σ 4 | | ρ 4 | Γ q ( r 2 ) ) ) ] ,
which tends to zero as t 2 t 1 0 independent of ( x , y ) . Analogously, we can obtain
| G 2 ( x ( t 2 ) , y ( t 2 ) ) G 2 ( x ( t 1 ) , y ( t 1 ) ) | | α 2 | 2 Γ q ( r 1 + r 2 + 1 ) 2 ( t 2 t 1 ) r 1 + r 2 + | t 2 r 1 + r 2 t 1 r 1 + r 2 | + | β 2 | ϖ 2 Γ q ( r 1 + r 2 + ξ 2 + 1 ) × 2 ( t 2 t 1 ) r 1 + r 2 + ξ 2 + | t 2 r 1 + r 2 + ξ 2 t 1 r 1 + r 2 + ξ 2 | + | λ 2 | φ Γ q ( r 2 + 1 ) 2 ( t 2 t 1 ) r 2 + | t 2 r 2 t 1 r 2 | + | t 2 r 2 t 1 r 2 | | Λ | [ | α 1 | 1 | δ 2 | | ρ 10 | η j p 1 + p 2 + | σ 1 | | ρ 11 | Γ q ( p 1 + p 2 + 1 ) + | δ 4 | | ρ 12 | η j p 1 + p 2 1 + | σ 2 | | ρ 11 | Γ q ( p 1 + p 2 ) + | α 2 | 2 | δ 1 | | ρ 9 | η j r 1 + r 2 + | σ 3 | | ρ 12 | Γ q ( r 1 + r 2 + 1 ) + | δ 3 | | ρ 11 | η j r 1 + r 2 1 + | σ 4 | | ρ 12 | Γ q ( r 1 + r 2 ) + | β 1 | ϖ 1 | δ 2 | | ρ 10 | η j p 1 + p 2 + ξ 1 + | σ 1 | | ρ 11 | Γ q ( p 1 + p 2 + ξ 1 + 1 ) + | δ 4 | | ρ 12 | η j p 1 + p 2 + ξ 1 1 + | σ 2 | | ρ 11 | Γ q ( p 1 + p 2 + ξ 1 ) + | β 2 | ϖ 2 | δ 1 | | ρ 9 | η j r 1 + r 2 + ξ 2 + | σ 3 | | ρ 12 | Γ q ( r 1 + r 2 + ξ 2 + 1 ) + | δ 3 | | ρ 11 | η j r 1 + r 2 + ξ 2 1 + | σ 4 | | ρ 12 | Γ q ( r 1 + r 2 + ξ 2 ) + φ ( | λ 1 | ( | δ 2 | | ρ 10 | η j p 2 + | σ 1 | | ρ 11 | Γ q ( p 2 + 1 ) + | δ 4 | | ρ 12 | η j p 2 1 + | σ 2 | | ρ 11 | Γ q ( p 2 ) ) + | λ 2 | ( | δ 1 | | ρ 9 | η j r 2 + | σ 3 | | ρ 12 | Γ q ( r 2 + 1 ) + | δ 3 | | ρ 11 | η j r 2 1 + | σ 4 | | ρ 12 | Γ q ( r 2 ) ) ) ] .
Note that the right-hand side of the above inequality tends to zero as t 2 t 1 0 independent of ( x , y ) . Thus the operator G ( x , y ) is equicontinuous. In view of the foregoing arguments, we deduce that the operator G ( x , y ) is completely continuous.
Finally, we show that Ω = { ( x , y ) C × C | ( x , y ) = ζ G ( x , y ) , 0 < ζ < 1 } is bounded. Let ( x , y ) Ω , with ( x , y ) = ζ G ( x , y ) ( t ) and for any t [ 0 , 1 ] , we have
x ( t ) = ζ G 1 ( x , y ) ( t ) , y ( t ) = ζ G 2 ( x , y ) ( t ) .
In view of condition ( A 3 ) , we can find that
| x ( t ) | ( τ 0 + τ 1 | x | + τ 2 | y | ) [ | α 1 | 0 t ( t q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) d q u + | α 1 | | δ 2 | | ρ 2 t p 2 + ρ 6 | | Λ | 0 η j ( η j q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) d q u + | α 1 | | σ 1 | | ρ 3 t p 2 + ρ 7 | | Λ | 0 1 ( 1 q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) d q u + | α 1 | | σ 2 | | ρ 3 t p 2 + ρ 7 | | Λ | 0 1 ( 1 q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) d q u + | α 1 | | δ 4 | | ρ 4 t p 2 + ρ 8 | | Λ | 0 η j ( η j q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) d q u ] + ( τ ˜ 0 + τ ˜ 1 | x | + τ ˜ 2 | y | ) [ | α 2 | | δ 1 | | ρ 1 t p 2 + ρ 5 | | Λ | 0 η j ( η j q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) d q u + | α 2 | | δ 3 | | ρ 3 t p 2 + ρ 7 | | Λ | × 0 η j ( η j q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) d q u + | α 2 | | σ 3 | | ρ 4 t p 2 + ρ 8 | | Λ | 0 1 ( 1 q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) d q u + | α 2 | | σ 4 | | ρ 4 t p 2 + ρ 8 | | Λ | × 0 1 ( 1 q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) d q u ] + ( ϵ 0 + ϵ 1 | x | + ϵ 2 | y | ) [ | β 1 | 0 t ( t q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) d q u + | β 1 | | δ 2 | | ρ 2 t p 2 + ρ 6 | | Λ | 0 η j ( η j q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) d q u + | β 1 | | σ 1 | | ρ 3 t p 2 + ρ 7 | | Λ | 0 1 ( 1 q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) d q u + | β 1 | | σ 2 | | ρ 3 t p 2 + ρ 7 | | Λ | 0 1 ( 1 q u ) ( p 1 + p 2 + ξ 1 2 ) Γ q ( p 1 + p 2 + ξ 1 1 ) d q u + | β 1 | | δ 4 | | ρ 4 t p 2 + ρ 8 | | Λ | 0 η j ( η j q u ) ( p 1 + p 2 + ξ 1 2 ) Γ q ( p 1 + p 2 + ξ 1 1 ) d q u ] + ( ϵ ˜ 0 + ϵ ˜ 1 | x | + ϵ ˜ 2 | y | ) [ | β 2 | | δ 1 | | ρ 1 t p 2 + ρ 5 | | Λ | 0 η j ( η j q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) d q u + | β 2 | | δ 3 | | ρ 3 t p 2 + ρ 7 | | Λ | × 0 η j ( η j q u ) ( r 1 + r 2 + ξ 2 2 ) Γ q ( r 1 + r 2 + ξ 2 1 ) d q u + | β 2 | | σ 3 | | ρ 4 t p 2 + ρ 8 | | Λ | 0 1 ( 1 q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) d q u + | β 2 | | σ 4 | | ρ 4 t p 2 + ρ 8 | | Λ | 0 1 ( 1 q u ) ( r 1 + r 2 + ξ 2 2 ) Γ q ( r 1 + r 2 + ξ 2 1 ) d q u ] + | λ 1 | [ 0 t ( t q u ) ( p 2 1 ) Γ q ( p 2 ) d q u + | δ 2 | | ρ 2 t p 2 + ρ 6 | | Λ | 0 η j ( η j q u ) ( p 2 1 ) Γ q ( p 2 ) d q u + | σ 1 | | ρ 3 t p 2 + ρ 7 | | Λ | 0 1 ( 1 q u ) ( p 2 1 ) Γ q ( p 2 ) d q u + | σ 2 | | ρ 3 t p 2 + ρ 7 | | Λ | 0 1 ( 1 q u ) ( p 2 2 ) Γ q ( p 2 1 ) d q u + | δ 4 | | ρ 4 t p 2 + ρ 8 | | Λ | 0 η j ( η j q u ) ( p 2 2 ) Γ q ( p 2 1 ) d q u ] | x | + | λ 2 | [ | δ 1 | | ρ 1 t p 2 + ρ 5 | | Λ | 0 η j ( η j q u ) ( r 2 1 ) Γ q ( r 2 ) d q u + | δ 3 | | ρ 3 t p 2 + ρ 7 | | Λ | 0 η j ( η j q u ) ( r 2 2 ) Γ q ( r 2 1 ) d q u + | σ 3 | | ρ 4 t p 2 + ρ 8 | | Λ | 0 1 ( 1 q u ) ( r 2 1 ) Γ q ( r 2 ) d q u + | σ 4 | | ρ 4 t p 2 + ρ 8 | | Λ | 0 1 ( 1 q u ) ( r 2 2 ) Γ q ( r 2 1 ) d q u ] | y | ,
and
| y ( t ) | ( τ 0 + τ 1 | x | + τ 2 | y | ) [ | α 1 | | δ 2 | | ρ 10 t r 2 + ρ 14 | | Λ | 0 η j ( η j q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) d q u + | α 1 | | σ 1 | | ρ 11 t r 2 + ρ 15 | | Λ | 0 1 ( 1 q u ) ( p 1 + p 2 1 ) Γ q ( p 1 + p 2 ) d q u + | α 1 | | σ 2 | | ρ 11 t r 2 + ρ 15 | | Λ | 0 1 ( 1 q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) d q u + | α 1 | | δ 4 | | ρ 12 t r 2 + ρ 16 | | Λ | 0 η j ( η j q u ) ( p 1 + p 2 2 ) Γ q ( p 1 + p 2 1 ) d q u ] + ( τ ˜ 0 + τ ˜ 1 | x | + τ ˜ 2 | y | ) [ | α 2 | 0 t ( t q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) d q u + | α 2 | | δ 1 | | ρ 9 t r 2 + ρ 13 | | Λ | 0 η j ( η j q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) d q u + | α 2 | | δ 3 | | ρ 11 t r 2 + ρ 15 | | Λ | 0 η j ( η j q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) d q u + | α 2 | | σ 3 | | ρ 12 t r 2 + ρ 16 | | Λ | 0 1 ( 1 q u ) ( r 1 + r 2 1 ) Γ q ( r 1 + r 2 ) d q u + | α 2 | | σ 4 | | ρ 12 t r 2 + ρ 16 | | Λ | 0 1 ( 1 q u ) ( r 1 + r 2 2 ) Γ q ( r 1 + r 2 1 ) d q u ] + ( ϵ 0 + ϵ 1 | x | + ϵ 2 | y | ) [ | β 1 | | δ 2 | | ρ 10 t r 2 + ρ 14 | | Λ | 0 η j ( η j q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) d q u + | β 1 | | σ 1 | | ρ 11 t r 2 + ρ 15 | | Λ | 0 1 ( 1 q u ) ( p 1 + p 2 + ξ 1 1 ) Γ q ( p 1 + p 2 + ξ 1 ) d q u + | β 1 | | σ 2 | | ρ 11 t r 2 + ρ 15 | | Λ | × 0 1 ( 1 q u ) ( p 1 + p 2 + ξ 1 2 ) Γ q ( p 1 + p 2 + ξ 1 1 ) d q u + | β 1 | | δ 4 | | ρ 12 t r 2 + ρ 16 | | Λ | 0 η j ( η j q u ) ( p 1 + p 2 + ξ 1 2 ) Γ q ( p 1 + p 2 + ξ 1 1 ) d q u ] + ( ϵ ˜ 0 + ϵ ˜ 1 | x | + ϵ ˜ 2 | y | ) [ | β 2 | 0 t ( t q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) d q u + | β 2 | | δ 1 | | ρ 9 t r 2 + ρ 13 | | Λ | × 0 η j ( η j q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) d q u + | β 2 | | δ 3 | | ρ 11 t r 2 + ρ 15 | | Λ | 0 η j ( η j q u ) ( r 1 + r 2 + ξ 2 2 ) Γ q ( r 1 + r 2 + ξ 2 1 ) d q u + | β 2 | | σ 3 | | ρ 12 t r 2 + ρ 16 | | Λ | 0 1 ( 1 q u ) ( r 1 + r 2 + ξ 2 1 ) Γ q ( r 1 + r 2 + ξ 2 ) d q u + | β 2 | | σ 4 | | ρ 12 t r 2 + ρ 16 | | Λ | × 0 1 ( 1 q u ) ( r 1 + r 2 + ξ 2 2 ) Γ q ( r 1 + r 2 + ξ 2 1 ) d q u ] + | λ 1 | [ | δ 2 | | ρ 10 t r 2 + ρ 14 | | Λ | 0 η j ( η j q u ) ( p 2 1 ) Γ q ( p 2 ) d q u + | σ 1 | | ρ 11 t r 2 + ρ 15 | | Λ | 0 1 ( 1 q u ) ( p 2 1 ) Γ q ( p 2 ) d q u + | σ 2 | | ρ 11 t r 2 + ρ 15 | | Λ | 0 1 ( 1 q u ) ( p 2 2 ) Γ q ( p 2 1 ) d q u + | δ 4 | | ρ 12 t r 2 + ρ 16 | | Λ | 0 η j ( η j q u ) ( p 2 2 ) Γ q ( p 2 1 ) d q u ] | x | + | λ 2 | [ 0 t ( t q u ) ( r 2 1 ) Γ q ( r 2 ) d q u + | δ 1 | | ρ 9 t r 2 + ρ 13 | | Λ | 0 η j ( η j q u ) ( r 2 1 ) Γ q ( r 2 ) d q u + | δ 3 | | ρ 11 t r 2 + ρ 15 | | Λ | 0 η j ( η j q u ) ( r 2 2 ) Γ q ( r 2 1 ) d q u + | σ 3 | | ρ 12 t r 2 + ρ 16 | | Λ | 0 1 ( 1 q u ) ( r 2 1 ) Γ q ( r 2 ) d q u + | σ 4 | | ρ 12 t r 2 + ρ 16 | | Λ | 0 1 ( 1 q u ) ( r 2 2 ) Γ q ( r 2 1 ) d q u ] | y | .
In consequence, we obtain
x ( τ 0 + τ 1 x + τ 2 y ) Ψ 1 + ( τ ˜ 0 + τ ˜ 1 x + τ ˜ 2 y ) Ψ 2 + ( ϵ 0 + ϵ 1 x + ϵ 2 y ) Φ 1 + ( ϵ ˜ 0 + ϵ ˜ 1 x + ϵ ˜ 2 y ) Φ 2 + | λ 1 | 1 Γ q ( p 2 + 1 ) + ( γ 9 + γ 10 ) | Λ | x + | λ 2 | ( γ 11 + γ 12 ) | Λ | y = τ 0 Ψ 1 + τ ˜ 0 Ψ 2 + ϵ 0 Φ 1 + ϵ ˜ 0 Φ 2 + ( τ 1 Ψ 1 + τ ˜ 1 Ψ 2 + ϵ 1 Φ 1 + ϵ ˜ 1 Φ 2 ) x + ( τ 2 Ψ 1 + τ ˜ 2 Ψ 2 + ϵ 2 Φ 1 + ϵ ˜ 2 Φ 2 ) y + | λ 1 | 1 Γ q ( p 2 + 1 ) + ( γ 9 + γ 10 ) | Λ | x + | λ 2 | ( γ 11 + γ 12 ) | Λ | y ,
and
y ( τ 0 + τ 1 x + τ 2 y ) Ψ 3 + ( τ ˜ 0 + τ ˜ 1 x + τ ˜ 2 y ) Ψ 4 + ( ϵ 0 + ϵ 1 x + ϵ 2 y ) Φ 3 + ( ϵ ˜ 0 + ϵ ˜ 1 x + ϵ ˜ 2 y ) Φ 4 + | λ 1 | ( γ 21 + γ 22 ) | Λ | x + | λ 2 | 1 Γ q ( r 2 + 1 ) + ( γ 23 + γ 24 ) | Λ | y = τ 0 Ψ 3 + τ ˜ 0 Ψ 4 + ϵ 0 Φ 3 + ϵ ˜ 0 Φ 4 + ( τ 1 Ψ 3 + τ ˜ 1 Ψ 4 + ϵ 1 Φ 3 + ϵ ˜ 1 Φ 4 ) x + ( τ 2 Ψ 3 + τ ˜ 2 Ψ 4 + ϵ 2 Φ 3 + ϵ ˜ 2 Φ 4 ) y + | λ 1 | ( γ 21 + γ 22 ) | Λ | x + | λ 2 | 1 Γ q ( r 2 + 1 ) + ( γ 23 + γ 24 ) | Λ | y ,
which imply that
x + y ( Ψ 1 + Ψ 3 ) τ 0 + ( Ψ 2 + Ψ 4 ) τ ˜ 0 + ( Φ 1 + Φ 3 ) ϵ 0 + ( Φ 2 + Φ 4 ) ϵ ˜ 0 + ( Ψ 1 + Ψ 3 ) τ 1 + ( Ψ 2 + Ψ 4 ) τ ˜ 1 + ( Φ 1 + Φ 3 ) ϵ 1 + ( Φ 2 + Φ 4 ) ϵ ˜ 1 + υ 1 x + ( Ψ 1 + Ψ 3 ) τ 2 + ( Ψ 2 + Ψ 4 ) τ ˜ 2 + ( Φ 1 + Φ 3 ) ϵ 2 + ( Φ 2 + Φ 4 ) ϵ ˜ 2 + υ 2 y .
Thus we have
( x , y ) ( Ψ 1 + Ψ 3 ) τ 0 + ( Ψ 2 + Ψ 4 ) τ ˜ 0 + ( Φ 1 + Φ 3 ) ϵ 0 + ( Φ 2 + Φ 4 ) ϵ ˜ 0 H 0 ,
where
H 0 = min { 1 [ ( Ψ 1 + Ψ 3 ) τ 1 + ( Ψ 2 + Ψ 4 ) τ ˜ 1 + ( Φ 1 + Φ 3 ) ϵ 1 + ( Φ 2 + Φ 4 ) ϵ ˜ 1 + υ 1 ] , 1 [ ( Ψ 1 + Ψ 3 ) τ 2 + ( Ψ 2 + Ψ 4 ) τ ˜ 2 + ( Φ 1 + Φ 3 ) ϵ 2 + ( Φ 2 + Φ 4 ) ϵ ˜ 2 + υ 2 ] } ,
which establishes that the set Ω is bounded. Thus, by Leray–Schauder nonlinear alternative [48], there exists a solution of the system (1)–(2) on [ 0 , 1 ] . The proof is complete.  □

4. Examples

I.
Illustration of Theorem 1
Example 1.Let us consider a nonlinear system of coupled fractional q-integro-difference equations:
c D 0.5 0.05 ( c D 0.5 0.05 + 0.02 ) x ( t ) = 0.09 f 1 ( t , x ( t ) , y ( t ) ) + 0.03 I 0.5 0.25 g 1 ( t , x ( t ) , y ( t ) ) , 0 t 1 , c D 0.5 0.35 ( c D 0.5 0.35 + 0.06 ) y ( t ) = 0.08 f 2 ( t , x ( t ) , y ( t ) ) + 0.07 I 0.5 0.25 g 2 ( t , x ( t ) , y ( t ) ) , 0 t 1 ,
supplemented with four-point coupled boundary conditions
0.4 x ( 0 ) 0.2 t ( 1 0.05 ) D q x ( t ) | t = 0 = j = 1 2 a j y ( η j ) , 0.4 y ( 0 ) 0.2 t ( 1 0.35 ) D q y ( t ) | t = 0 = j = 1 2 b j x ( η j ) , 0.1 x ( 1 ) + 0.2 D q x ( 1 ) = j = 1 2 k j D q y ( η j ) , 0.1 y ( 1 ) + 0.2 D q y ( 1 ) = j = 1 2 m j D q x ( η j ) ,
where p 1 = p 2 = 0.05 , q = 0.5 , r 1 = r 2 = 0.35 , α 1 = 0.09 , α 2 = 0.08 , β 1 = 0.03 , β 2 = 0.07 , ξ 1 = ξ 2 = 0.25 , λ 1 = 0.02 , λ 2 = 0.06 , μ 1 = μ 3 = 0.4 , μ 2 = μ 4 = 0.2 , σ 1 = σ 3 = 0.1 , σ 2 = σ 4 = 0.2 , a 1 = 0.35 , a 2 = 0.3 , b 1 = 0.2 , b 2 = 0.25 , k 1 = 0.7 , k 2 = 0.1 , m 1 = 0.6 , m 2 = 0.8 , η 1 = 0.45 , η 2 = 0.65 , t [ 0 , 1 ] and
f 1 ( t , x ( t ) , y ( t ) ) = 1 196 | x ( t ) | 1 + | x ( t ) | + arctan y ( t ) ( t 2 + 14 ) 2 10 t , f 2 ( t , x ( t ) , y ( t ) ) = 1 225 + 105 + t 3 ( x ( t ) + cos y ( t ) ) , g 1 ( t , x ( t ) , y ( t ) ) = 1 16 t 6 + 81 ( sin x ( t ) + arctan y ( t ) cos 2 t ) , g 2 ( t , x ( t ) , y ( t ) ) = 1 20 t + 49 ( sin x ( t ) + | y ( t ) | 1 + | y ( t ) | ) + 16 e t .
Then ι 1 = 1 / 196 , ι 2 = 1 / 120 , κ 1 = 1 / 144 , κ 2 = 1 / 140 as
| f 1 ( t , x 1 ( t ) , y 1 ( t ) ) f 1 ( t , x 2 ( t ) , y 2 ( t ) ) | = 1 196 ( | x 1 x 2 | + | y 1 y 2 | ) ,
| f 2 ( t , x 1 ( t ) , y 1 ( t ) ) f 2 ( t , x 2 ( t ) , y 2 ( t ) ) | = 1 120 ( | x 1 x 2 | + | y 1 y 2 | ) ,
| g 1 ( t , x 1 ( t ) , y 1 ( t ) ) g 1 ( t , x 2 ( t ) , y 2 ( t ) ) | = 1 144 ( | x 1 x 2 | + | y 1 y 2 | ) ,
| g 2 ( t , x 1 ( t ) , y 1 ( t ) ) g 2 ( t , x 2 ( t ) , y 2 ( t ) ) | = 1 140 ( | x 1 x 2 | + | y 1 y 2 | ) .
Using the given data, it is found that Ψ 1 = 0.393067 , Ψ 2 = 0.476841 , Ψ 3 = 0.356139 , Ψ 4 = 0.451896 , Φ 1 = 0.248188 , Φ 2 = 0.414528 , Φ 3 = 0.271996 , Φ 4 = 0.383275 , Θ 1 = 0.359396 , Θ 2 = 0.363914 , and Y 0.744182 < 1 . Clearly the hypothesis of Theorem 1 holds true. So, by the conclusion of Theorem 1, the system (17) and (18) has a unique solution on [ 0 , 1 ] .
II.
Illustration of Theorem 2
Example 2.Let us consider the system (17) and (18) with nonlinearities:
f 1 ( t , x ( t ) , y ( t ) ) = 1 ( 60 + t ) + 1 263 x ( t ) sin ( t ) + 1 170 arctan y ( t ) , f 2 ( t , x ( t ) , y ( t ) ) = 1 5 1600 t + 1 2 ( t 3 + 9 ) cos x ( t ) + 1 2 ( 11 + t 5 ) 2 y ( t ) , g 1 ( t , x ( t ) , y ( t ) ) = 1 122 t + 2 139 x ( t ) + 1 12 256 + t cos y ( t ) , g 2 ( t , x ( t ) , y ( t ) ) = 5 sin t ( t 3 + 126 ) + 1 280 x ( t ) + 2 153 y ( t ) .
Notice that the condition ( A 3 ) holds true as
| f 1 ( t , x ( t ) , y ( t ) ) | 1 60 + 1 263 | x ( t ) | + 1 170 | y ( t ) | , | f 2 ( t , x ( t ) , y ( t ) ) | 1 20 + 1 162 | x ( t ) | + 1 242 | y ( t ) | , | g 1 ( t , x ( t ) , y ( t ) ) | 1 122 + 2 139 | x ( t ) | + 1 192 | y ( t ) | , | g 2 ( t , x ( t ) , y ( t ) ) | 5 126 + 1 280 | x ( t ) | + 2 153 | y ( t ) | ,
with τ 0 = 1 / 60 , τ 1 = 1 / 263 , τ 2 = 1 / 170 , τ ˜ 0 = 1 / 200 , τ ˜ 1 = 1 / 162 , τ ˜ 2 = 1 / 242 , ϵ 0 = 1 / 122 , ϵ 1 = 2 / 139 , ϵ 2 = 1 / 192 , ϵ ˜ 0 = 5 / 126 , ϵ ˜ 1 = 1 / 280 , ϵ ˜ 2 = 2 / 153 . Moreover,
( Ψ 1 + Ψ 3 ) τ 1 + ( Ψ 2 + Ψ 4 ) τ ˜ 1 + ( Φ 1 + Φ 3 ) ϵ 1 + ( Φ 2 + Φ 4 ) ϵ ˜ 1 + υ 1 0.138309 < 1 ,
( Ψ 1 + Ψ 3 ) τ 2 + ( Ψ 2 + Ψ 4 ) τ ˜ 2 + ( Φ 1 + Φ 3 ) ϵ 2 + ( Φ 2 + Φ 4 ) ϵ ˜ 2 + υ 2 0.625299 < 1 .
Thus, all the assumptions of Theorem 2 are satisfied. Therefore, the conclusion of Theorem 2 applies and hence the system (17) and (18) with the nonlinearities (20) has at least one solution on [ 0 , 1 ] .

5. Conclusions

We have studied a new class of nonlocal multipoint boundary value problems of Langevin-type nonlinear coupled q-fractional integro-difference equations. First of all, the given problem was converted into an equivalent fixed-point problem. Then, we proved an existence and uniqueness result for the problem at hand by applying the Banach contraction mapping principle. In our second result, we presented the criteria ensuring the existence of a solution for the given problem. We also demonstrated the application of the obtained results by solving some particular problems. We emphasize that our results are new and contribute significantly to the literature on nonlocal multipoint boundary value problems of nonlinear coupled q-fractional integro-difference equations. It is imperative to note that our results correspond to the non-coupled separated boundary conditions for all a j = 0 , b j = 0 , k j = 0 , m j = 0 , j = 1 , , n , which are indeed new in the given configuration.

Author Contributions

Conceptualization, R.P.A. and B.A.; formal analysis, R.P.A., H.A.-H. and B.A.; methodology, R.P.A., H.A.-H. and B.A. All authors have read and agreed to the published version of the manuscript.

Funding

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. (RG-43-130-41).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. (RG-43-130-41). The authors, therefore, acknowledge with thanks DSR technical and financial support. The authors also thank the reviewers for their constructive remarks on our work.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Kobelev, V.; Romanov, E. Fractional Langevin equation to describe anomalous diffusion. Prog. Theor. Phys. Suppl. 2000, 139, 470–476. [Google Scholar] [CrossRef] [Green Version]
  2. Mazo, R.M. Brownian Motion: Fluctuations, Dynamics, and Applications; Oxford University Press on Demand: Oxford, UK, 2002. [Google Scholar]
  3. Zwanzig, R. Nonequilibrium Statistical Mechanics; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
  4. Eule, S.; Friedrich, R.; Jenko, F.; Kleinhans, D. Langevin approach to fractional diffusion equations including inertial effects. J. Phys. Chem. B 2007, 111, 11474–11477. [Google Scholar] [CrossRef] [Green Version]
  5. West, B.J.; Latka, M. Fractional Langevin model of gait variability. J. Neuroeng. Rehabil. 2005, 2, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  6. Lizana, L.; Ambjörnsson, T.; Taloni, A.; Barkai, E.; Lomholt, M.A. Foundation of fractional Langevin equation: Harmonization of a many-body problem. Phys. Rev. E 2010, 81, 051118. [Google Scholar] [CrossRef] [Green Version]
  7. Picozzi, S.; West, B.J. Fractional Langevin model of memory in financial markets. Phys. Rev. E. 2002, 66, 46–118. [Google Scholar] [CrossRef]
  8. Lim, S.C.; Teo, L.P. The fractional oscillator process with two indices. J. Phys. A Math. Theor. 2009, 42, 065208. [Google Scholar] [CrossRef] [Green Version]
  9. Uranagase, M.; Munakata, T. Generalized Langevin equation revisited: Mechanical random force and self-consistent structure. J. Phys. A Math. Theor. 2010, 43, 455003. [Google Scholar] [CrossRef]
  10. Denisov, S.I.; Kantz, H.; Hänggi, P. Langevin equation with super-heavy-tailed noise. J. Phys. A Math. Theor. 2010, 43, 285004. [Google Scholar] [CrossRef] [Green Version]
  11. Lozinski, A.; Owens, R.G.; Phillips, T.N. The Langevin and Fokker-Planck Equations in Polymer Rheology. In Handbook of Numerical Analysis; Elsevier: Amsterdam, The Netherlands, 2011; Volume 16, pp. 211–303. [Google Scholar]
  12. Ahmad, B.; Nieto, J.J.; Alsaedi, A.; El-Shahed, M. A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Anal. Real World Appl. 2012, 13, 599–606. [Google Scholar] [CrossRef]
  13. Bangerezako, G. q-difference linear control systems. J. Differ. Equ. Appl. 2011, 17, 1229–1249. [Google Scholar] [CrossRef]
  14. Bangerezako, G. Variational q-calculus. J. Math. Anal. Appl. 2004, 289, 650–665. [Google Scholar] [CrossRef] [Green Version]
  15. Agrawal, O.P. Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 2002, 272, 368–379. [Google Scholar] [CrossRef] [Green Version]
  16. Agrawal, O.P. A formulation and numerical scheme for fractional optimal control problems. J. Vib. Control 2008, 14, 12911299. [Google Scholar] [CrossRef]
  17. Frederico, G.S.F.; Torres, D.F.M. Fractional conservation laws in optimal control theory. Nonlinear Dynam. 2008, 53, 215–222. [Google Scholar] [CrossRef] [Green Version]
  18. Jelicic, Z.D.; Petrovacki, N. Optimality conditions and a solution scheme for fractional optimal control problems. Struct. Multidiscip. Optim. 2009, 38, 571–581. [Google Scholar] [CrossRef]
  19. Li, C.; Wang, J. Robust stability and stabilization of fractional order interval systems with coupling relationships: The 0 < a < 1 case. J. Frankl. Inst. 2012, 349, 2406–2419. [Google Scholar]
  20. Biswas, R.K.; Sen, S. Free final time fractional optimal control problems. J. Frankl. Inst. 2014, 351, 941–951. [Google Scholar] [CrossRef]
  21. Gong, Z.; Liu, C.; Teo, K.L.; Wang, S.; Wu, Y. Numerical solution of free final time fractional optimal control problems. Appl. Math. Comput. 2021, 405, 126270. [Google Scholar] [CrossRef]
  22. Annaby, M.H.; Mansour, Z.S. q-Fractional Calculus and Equations; Lecture Notes in Mathematics 2056; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
  23. Ahmad, B.; Ntouyas, S.K.; Tariboon, J. Quantum Calculus. New Concepts, Impulsive IVPs and BVPs, Inequalities; Trends in Abstract and Applied Analysis; World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, USA, 2016. [Google Scholar]
  24. Ma, J.; Yang, J. Existence of solutions for multi-point boundary value problem of fractional q-difference equation. Electron. J. Qual. Theory Differ. Equ. 2011, 92, 10. [Google Scholar] [CrossRef]
  25. Ferreira, R.A.C. Positive solutions for a class of boundary value problems with fractional q-differences. Comput. Math. Appl. 2011, 61, 367–373. [Google Scholar] [CrossRef]
  26. Graef, J.R.; Kong, L. Positive solutions for a class of higher order boundary value problems with fractional q-derivatives. Appl. Math. Comput. 2012, 218, 9682–9689. [Google Scholar] [CrossRef]
  27. Ahmad, B.; Ntouyas, S.K.; Alsaedi, A. Existence results for nonlocal boundary value problems of nonlinear fractional q-difference equations. Adv. Differ. Equ. 2012, 2012, 140. [Google Scholar] [CrossRef] [Green Version]
  28. Liang, S.; Zhang, J. Existence and uniqueness of positive solutions for three-point boundary value problem with fractional q-differences. J. Appl. Math. Comput. 2012, 40, 277–288. [Google Scholar] [CrossRef]
  29. Zhao, Y.; Chen, H.; Zhang, Q. Existence results for fractional q-difference equations with nonlocal q-integral boundary conditions. Adv. Differ. Equ. 2013, 2013, 48. [Google Scholar] [CrossRef] [Green Version]
  30. Zhou, W.X.; Liu, H.Z. Existence solutions for boundary value problem of nonlinear fractional q-difference equations. Adv. Differ. Equ. 2013, 2013, 113. [Google Scholar] [CrossRef] [Green Version]
  31. Ahmad, B.; Nieto, J.J.; Alsaedi, A.; Al-Hutami, H. Boundary value problems of nonlinear fractional q-difference (integral) equations with two fractional orders and four-point nonlocal integral boundary conditions. Filomat 2014, 28, 1719–1736. [Google Scholar] [CrossRef] [Green Version]
  32. Agarwal, R.P.; Alsaedi, A.; Ahmad, B.; Al-Hutami, H. Sequential fractional Q-difference equations with nonlocal sub-strip boundary conditions. Dyn. Contin. Discret. Impuls. Syst. Ser. A Math. Anal. 2015, 22, 1–12. [Google Scholar]
  33. Etemad, S.; Ettefagh, M.; Rezapour, S. On the existence of solutions for nonlinear fractional q-difference equations with q-integral boundary conditions. J. Adv. Math. Stud. 2015, 8, 265–285. [Google Scholar]
  34. Ahmad, B.; Etemad, S.; Ettefagh, M.; Rezapour, S. On the existence of solutions for fractional q-difference inclusions with q-anti-periodic boundary conditions. Bull. Math. Soc. Sci. Math. Roum. 2016, 59, 119–134. [Google Scholar]
  35. Patanarapeelert, N.; Sriphanomwan, U.; Sitthiwirattham, T. On a class of sequential fractional q-integrodifference boundary value problems involving different numbers of q in derivatives and integrals. Adv. Differ. Equ. 2016, 2016, 148. [Google Scholar] [CrossRef] [Green Version]
  36. Sitthiwirattham, T. On a fractional q-integral boundary value problems for fractional q-difference equations and fractional q-integro-difference equations involving different numbers of order q. Bound. Value Probl. 2016, 2016, 12. [Google Scholar] [CrossRef] [Green Version]
  37. Zhai, C.B.; Ren, J. Positive and negative solutions of a boundary value problem for a fractional q-difference equation. Adv. Differ. Equ. 2017, 2017, 82. [Google Scholar] [CrossRef] [Green Version]
  38. Etemad, S.; Ntouyas, S.K.; Ahmad, B. Existence theory for a fractional q-integro-difference equation with q-integral boundary conditions of different orders. Mathematics 2019, 7, 659. [Google Scholar] [CrossRef] [Green Version]
  39. Suantai, S.; Ntouyas, S.K.; Asawasamrit, S.; Tariboon, J. A coupled system of fractional q-integro-difference equations with nonlocal fractional q-integral boundary conditions. Adv. Differ. Equ. 2015, 124, 21. [Google Scholar] [CrossRef] [Green Version]
  40. Alsaedi, A.; Al-Hutami, H.; Ahmad, B.; Agarwal, R.P. Existence results for a coupled system of nonlinear fractional q-integro-difference equations with q-integral coupled boundary conditions. Fractals 2022, 30, 2240042. [Google Scholar] [CrossRef]
  41. Il’in, V.A. Optimization of the boundary control by a displacement or by an elastic force on one end of a string under a model nonlocal boundary condition. Tr. Mat. Inst. Steklova 2010, 268, 124–136. [Google Scholar] [CrossRef]
  42. Moiseev, E.I.; Kholomeeva, A.A. Optimal boundary displacement control of string vibrations with a nonlocal oddness condition of the first kind. Differ. Equ. 2010, 46, 1624–1630. [Google Scholar] [CrossRef]
  43. Kholomeeva, A.A. Optimal boundary control of string vibrations with a model nonlocal boundary condition of one of two types. Dokl. Math. 2011, 83, 171–174. [Google Scholar] [CrossRef]
  44. Devadze, D.; Dumbadze, M. An optimal control problem for a nonlocal boundary value problem. Bull. Georgian Natl. Acad. Sci. 2013, 7, 71–74. [Google Scholar]
  45. Rajkovic, P.M.; Marinkovic, S.D.; Stankovic, M.S. On q-analogues of Caputo derivative and Mittag-Leffler function. Fract. Calc. Appl. Anal. 2007, 10, 359–373. [Google Scholar]
  46. Rajkovic, P.M.; Marinkovic, S.D.; Stankovic, M.S. Fractional integrals and derivatives in q-calculus. Appl. Anal. Discret. Math. 2007, 1, 311–323. [Google Scholar]
  47. Deimling, K. Nonlinear Functional Analysis; Springer: New York, NY, USA, 1985. [Google Scholar]
  48. Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Agarwal, R.P.; Al-Hutami, H.; Ahmad, B. A Langevin-Type q-Variant System of Nonlinear Fractional Integro-Difference Equations with Nonlocal Boundary Conditions. Fractal Fract. 2022, 6, 45. https://doi.org/10.3390/fractalfract6010045

AMA Style

Agarwal RP, Al-Hutami H, Ahmad B. A Langevin-Type q-Variant System of Nonlinear Fractional Integro-Difference Equations with Nonlocal Boundary Conditions. Fractal and Fractional. 2022; 6(1):45. https://doi.org/10.3390/fractalfract6010045

Chicago/Turabian Style

Agarwal, Ravi P., Hana Al-Hutami, and Bashir Ahmad. 2022. "A Langevin-Type q-Variant System of Nonlinear Fractional Integro-Difference Equations with Nonlocal Boundary Conditions" Fractal and Fractional 6, no. 1: 45. https://doi.org/10.3390/fractalfract6010045

APA Style

Agarwal, R. P., Al-Hutami, H., & Ahmad, B. (2022). A Langevin-Type q-Variant System of Nonlinear Fractional Integro-Difference Equations with Nonlocal Boundary Conditions. Fractal and Fractional, 6(1), 45. https://doi.org/10.3390/fractalfract6010045

Article Metrics

Back to TopTop