Sets of Fractional Operators and Numerical Estimation of the Order of Convergence of a Family of Fractional Fixed-Point Methods
Abstract
:1. Introduction
2. Fixed-Point Method
3. Riemann–Liouville Fractional Operators
4. Fractional Fixed-Point Method
5. Approximation to the Critical Points of a Function
Examples
- (i)
- The initial condition does not necessarily have to be close to the sought values due to the non-local nature of fractional operators [5].
- (ii)
- When working in a space of N dimensions, in the case that it is necessary to change the initial condition, unlike the classical iterative methods, where in the worst case, it is necessary to vary the N components of the initial condition until a suitable value is obtained; in the fractional fixed-point methods, it is enough to vary the parameter of the fractional operators until an adequate value is found that allows generating a sequence that converges to a sought value [16].
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments: Nota del Autor
- Agradecimientos: La teoría presentada en este documento es el resultado de la investigación actual de mi tesis doctoral, la cual fue realizada durante los primeros dos años de mis estudios de Doctorado en la Universidad Nacional Autónoma de México gracias al apoyo del Consejo Nacional de Ciencia y Tecnología. Los resultados expuestos no habrían sido desarrollados sin el apoyo incondicional de mi familia cercana, en especial de mi abuela Alicia y mi hermana Wendy, así como de mi tía Roxana y mis primos Barbara, Humberto y Yoel.Debo mencionar que mis estudios de Doctorado no habrían sido posibles sin aquellas personas que me ayudaron, de forma directa o indirecta, en la etapa final de mis estudios en la Licenciatura en Física de la Facultad de Ciencias de la UNAM, entre las cuales puedo mencionar al Dr. Miguel Bastarrachea, la M. en A. Reyna Caballero, la Dra. Mirna Villavicencioy el Dr. Alberto Güijosa. Así como de las personas que me ayudaron, de forma directa o indirecta, al inicio de misestudios en la Maestría en Ciencias Matemáticas de la UNAM, entre las cuales puedo mencionar al Dr. Fernando Brambila, la Mat. Beatriz Brito, la Dra. Silvia Ruíz-Velasco y la Dra. Úrsula Iturrarán. Por último, pero no menos importante, agradezco a todas aquellas personas que me brindaron su apoyo en algúna ocasión desde el inicio de mis estudios en la Licenciatura en Física hasta el momento actual de mis estudios de Doctorado en Matemáticas
- Significados:
- 1.
- Fractional Fixed-Point Method: = Método de Punto Fijo Fraccional (affectionately dubbed “zeros-hunter” method).
- 2.
- Fractional Newton-Raphson Method: = Método de Newton-Raphson Fraccional (the seed of the fractional calculus of sets).
- 3.
- Fractional Quasi-Newton Method: = Método Quasi-Newton Fraccional
- 4.
- Fractional Pseudo-Newton Method: = Método Pseudo-Newton Fraccional.
- 5.
- Fractional Calculus of Sets: = Cálculo Fraccional de Conjuntos
Conflicts of Interest
References
- Safdari-Vaighani, A.; Heryudono, A.; Larsson, E. A radial basis function partition of unity collocation method for convection–diffusion equations arising in financial applications. J. Sci. Comput. 2015, 64, 341–367. [Google Scholar] [CrossRef] [Green Version]
- Torres-Hernandez, A.; Brambila-Paz, F.; Torres-Martínez, C. Numerical solution using radial basis functions for multidimensional fractional partial differential equations of type Black–Scholes. Comput. Appl. Math. 2021, 40, 245. [Google Scholar] [CrossRef]
- Traore, A.; Sene, N. Model of economic growth in the context of fractional derivative. Alex. Eng. J. 2020, 59, 4843–4850. [Google Scholar] [CrossRef]
- Guariglia, E. Fractional calculus, zeta functions and Shannon entropy. Open Math. 2021, 19, 87–100. [Google Scholar] [CrossRef]
- Torres-Henandez, A.; Brambila-Paz, F. An Approximation to Zeros of the Riemann Zeta Function Using Fractional Calculus. Math. Stat. 2021, 9, 309–318. [Google Scholar] [CrossRef]
- De-la Vega, E.; Torres-Hernandez, A.; Rodrigo, P.M.; Brambila-Paz, F. Fractional derivative-based performance analysis of hybrid thermoelectric generator-concentrator photovoltaic system. Appl. Therm. Eng. 2021, 193, 116984. [Google Scholar] [CrossRef]
- Torres-Hernandez, A.; Brambila-Paz, F.; Montufar-Chaveznava, R. Acceleration of the order of convergence of a family of fractional fixed point methods and its implementation in the solution of a nonlinear algebraic system related to hybrid solar receivers. arXiv 2021, arXiv:2109.03152. [Google Scholar]
- Wang, X.; Jin, Y.; Zhao, Y. Derivative-Free Iterative Methods with Some Kurchatov-Type Accelerating Parameters for Solving Nonlinear Systems. Symmetry 2021, 13, 943. [Google Scholar] [CrossRef]
- Erfanifar, R.; Sayevand, K.; Esmaeili, H. On modified two-step iterative method in the fractional sense: Some applications in real world phenomena. Int. J. Comput. Math. 2020, 97, 2109–2141. [Google Scholar] [CrossRef]
- Cordero, A.; Girona, I.; Torregrosa, J.R. A variant of chebyshev’s method with 3αth-order of convergence by using fractional derivatives. Symmetry 2019, 11, 1017. [Google Scholar] [CrossRef] [Green Version]
- Gdawiec, K.; Kotarski, W.; Lisowska, A. Newton’s method with fractional derivatives and various iteration processes via visual analysis. Numer. Algorithms 2021, 86, 953–1010. [Google Scholar] [CrossRef]
- Gdawiec, K.; Kotarski, W.; Lisowska, A. Visual analysis of the Newton’s method with fractional order derivatives. Symmetry 2019, 11, 1143. [Google Scholar] [CrossRef] [Green Version]
- Akgül, A.; Cordero, A.; Torregrosa, J.R. A fractional Newton method with 2αth-order of convergence and its stability. Appl. Math. Lett. 2019, 98, 344–351. [Google Scholar] [CrossRef]
- Candelario, G.; Cordero, A.; Torregrosa, J.R. Multipoint Fractional Iterative Methods with (2α+ 1) th-Order of Convergence for Solving Nonlinear Problems. Mathematics 2020, 8, 452. [Google Scholar] [CrossRef] [Green Version]
- Candelario, G.; Cordero, A.; Torregrosa, J.R.; Vassileva, M.P. An optimal and low computational cost fractional Newton-type method for solving nonlinear equations. Appl. Math. Lett. 2022, 124, 107650. [Google Scholar] [CrossRef]
- Torres-Hernandez, A.; Brambila-Paz, F. Fractional Newton-Raphson Method. Appl. Math. Sci. Int. J. (MathSJ) 2021, 8, 1–13. [Google Scholar] [CrossRef]
- Torres-Hernandez, A.; Brambila-Paz, F.; De-la-Vega, E. Fractional Newton-Raphson Method and Some Variants for the Solution of Nonlinear Systems. Appl. Math. Sci. Int. J. (MathSJ) 2020, 7, 13–27. [Google Scholar] [CrossRef]
- Torres-Hernandez, A.; Brambila-Paz, F.; Iturrarán-Viveros, U.; Caballero-Cruz, R. Fractional Newton-Raphson Method Accelerated with Aitken’s Method. Axioms 2021, 10, 47. [Google Scholar] [CrossRef]
- Plato, R. Concise Numerical Mathematics; Number 57; American Mathematical Soc.: Providence, RI, USA, 2003. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000; pp. 3–73. [Google Scholar]
- Oldham, K.; Spanier, J. The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order; Elsevier: Amsterdam, The Netherlands, 1974; Volume 111, pp. 25–121. [Google Scholar]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; pp. 69–132. [Google Scholar]
- Torres-Hernandez, A. Code of a multidimensional fractional quasi-Newton method with an order of convergence at least quadratic using recursive programming. ResearchGate 2021. [Google Scholar] [CrossRef]
- Torres-Hernandez, A. Code of multidimensional fractional pseudo-Newton method using recursive programming. ResearchGate 2021. [Google Scholar] [CrossRef]
- Teodoro, G.S.; Machado, J.T.; De Oliveira, E.C. A review of definitions of fractional derivatives and other operators. J. Comput. Phys. 2019, 388, 195–208. [Google Scholar] [CrossRef]
- Yavuz, M.; Özdemir, N. Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel. Discret. Contin. Dyn. Syst.-S 2020, 13, 995. [Google Scholar] [CrossRef] [Green Version]
- Abu-Shady, M.; Kaabar, M.K. A Generalized Definition of the Fractional Derivative with Applications. Math. Probl. Eng. 2021, 2021, 9444803. [Google Scholar] [CrossRef]
- Saad, K.M. New fractional derivative with non-singular kernel for deriving Legendre spectral collocation method. Alex. Eng. J. 2020, 59, 1909–1917. [Google Scholar] [CrossRef]
- Liu, J.G.; Yang, X.J.; Feng, Y.Y.; Cui, P. New fractional derivative with sigmoid function as the kernel and its models. Chin. J. Phys. 2020, 68, 533–541. [Google Scholar] [CrossRef]
k | |||||||||
---|---|---|---|---|---|---|---|---|---|
1 | −0.530515 | 6.6771554 − 0.02130862i | −0.014023 + 1.72836829i | 1.41E-08 | 9.24E-05 | 0.9812 | −1 | 2 | 167 |
2 | −0.516037 | 0.01499973 − 1.73190718i | 6.6757499 − 0.04157569i | 1.41E-08 | 9.86E-05 | 1.0260 | −1 | −2 | 165 |
3 | −0.472867 | 0.01499966 + 1.73190711i | 6.67574974 + 0.04157578i | 2.45E-08 | 9.54E-05 | 1.0000 | −1 | −2 | 180 |
4 | −0.440017 | 6.67715551 + 0.02130861i | −0.014023 − 1.72836833i | 1.41E-08 | 9.47E-05 | 1.0113 | −1 | 2 | 180 |
5 | −0.372536 | −1.12922862 + 1.02480512i | 3.7817693 + 0.02894647i | 3.22E-07 | 8.23E-05 | 0.9960 | 1 | −2 | 92 |
6 | −0.359168 | −1.12922793 − 1.02480539i | 3.78176969 − 0.02894643i | 1.36E-06 | 7.78E-05 | 1.0255 | 1 | −2 | 92 |
7 | −0.317767 | 3.68514423 − 0.05398726i | −1.20114465 + 1.03004598i | 4.35E-07 | 7.98E-05 | 1.0095 | 1 | −2 | 89 |
8 | −0.175657 | 6.66385192 + 0.00958153i | −3.05535188 + 0.51526774i | 1.66E-07 | 9.98E-05 | 1.0145 | 1 | 2 | 129 |
9 | −0.174937 | 9.69844564 − 0.00485976i | − 1.49692201 + 1.85490018i | 1.41E-08 | 8.99E-05 | 0.9812 | 1 | −2 | 180 |
10 | −0.167409 | 9.69844566 + 0.00485981i | −1.49692201 − 1.85490019i | 1.00E-08 | 8.76E-05 | 1.0000 | 1 | −2 | 178 |
11 | −0.165538 | 3.68514454 + 0.0539876i | −1.20114479 − 1.0300467i | 8.66E-07 | 8.57E-05 | 1.0144 | 1 | −2 | 117 |
12 | −0.162111 | −1.47430587 + 1.85378122i | 9.71215809 + 0.012692i | 1.41E-08 | 8.26E-05 | 1.0313 | 1 | −2 | 178 |
13 | −0.148486 | 12.78190313 − 0.00664448i | −3.36083258 − 1.47015693i | 1.00E-08 | 8.71E-05 | 1.0192 | 1 | 2 | 195 |
14 | −0.141354 | −1.47430585 − 1.85378123i | 9.71215813 − 0.01269197i | 3.00E-08 | 5.73E-05 | 0.9966 | 1 | −2 | 179 |
15 | −0.140788 | −3.01831349 + 0.5058919i | 6.69924174 + 0.01613682i | 3.16E-08 | 9.57E-05 | 1.0285 | 1 | 2 | 146 |
16 | −0.125015 | 19.0075656 | −7.54961078 | 1.41E-08 | 8.38E-05 | 1.0000 | 1 | 2 | 197 |
17 | −0.119655 | −4.59285859 | 9.73129666 | 3.61E-08 | 4.16E-05 | 1.0195 | 1 | −2 | 111 |
18 | −0.092015 | 6.66385199 − 0.00958166i | −3.05535203 − 0.51526774i | 2.45E-08 | 8.85E-05 | 1.0044 | 1 | 2 | 85 |
19 | −0.081244 | 12.81002482 | −7.10966547 | 1.41E-08 | 8.10E-05 | 1.0399 | 1 | 2 | 190 |
20 | −0.075076 | 9.71878342 | −4.62771758 | 2.24E-08 | 9.26E-05 | 1.0000 | 1 | −2 | 97 |
21 | −0.073120 | −3.01831348 − 0.50589194i | 6.69924174 − 0.01613673i | 4.58E-08 | 7.95E-05 | 1.0187 | 1 | 2 | 82 |
22 | −0.056190 | 18.99311678 | −9.30049381 | 1.41E-08 | 9.76E-05 | 0.9812 | −1 | 0 | 145 |
23 | −0.052492 | −6.39937485 | 9.68519629 | 2.24E-08 | 9.90E-05 | 0.9563 | −1 | 0 | 161 |
24 | −0.052490 | −7.09665187 | 12.81542466 | 2.24E-08 | 7.76E-05 | 1.0377 | 1 | 2 | 113 |
25 | −0.037197 | −5.68870793 − 0.65962195i | 15.8889979 − 0.00516137i | 1.41E-08 | 2.87E-05 | 0.9812 | 1 | −2 | 183 |
26 | −0.030387 | −9.30202535 | 18.99474019 | 1.41E-08 | 7.22E-05 | 0.9812 | −1 | 0 | 162 |
k | |||||||||
---|---|---|---|---|---|---|---|---|---|
1 | −0.991504 | 3.98115471 | 3.92170125 | 1.00E-08 | 1.50E-06 | 2.1162 | 1 | 2 | 55 |
2 | −0.985320 | −0.20172521 | −2.13862013 | 1.00E-08 | 3.55E-08 | 2.0096 | −1 | 0 | 184 |
3 | −0.977534 | 4.76944744 | 0.24682585 | 5.21E-06 | 4.75E-07 | 2.0536 | −1 | 2 | 115 |
4 | −0.957378 | −0.14249533 | 7.84459109 | 2.32E-06 | 1.71E-06 | 2.1574 | −1 | 0 | 44 |
5 | −0.931674 | 1.52183063 + 0.04852431i | −1.07285283 + 0.62177498i | 1.64E-05 | 6.40E-08 | 1.9728 | −1 | 0 | 147 |
6 | −0.910766 | −0.1411895 | 4.75629836 | 5.06E-07 | 4.42E-07 | 2.0939 | −1 | −2 | 99 |
7 | −0.902424 | −1.66983169 | −1.47843397 | 3.51E-05 | 6.06E-08 | 2.0210 | 1 | −2 | 141 |
8 | −0.796926 | 7.84012182 | 0.11780088 | 5.96E-05 | 2.18E-06 | 2.2020 | −1 | 0 | 32 |
9 | −0.747172 | −1.47430586 − 1.85378123i | 9.71215811 − 0.01269197i | 5.21E-06 | 1.45E-05 | 2.0987 | 1 | −2 | 193 |
10 | −0.739854 | 9.69844563 − 0.0048598i | −1.496922 + 1.85490017i | 4.57E-06 | 1.59E-05 | 2.1076 | 1 | −2 | 190 |
11 | −0.734400 | 9.69844563 + 0.0048598i | −1.496922 − 1.85490017i | 4.77E-06 | 1.59E-05 | 2.1051 | 1 | −2 | 194 |
12 | −0.718024 | −1.47430586 + 1.85378123i | 9.71215811 + 0.01269197i | 5.09E-06 | 1.45E-05 | 2.1055 | 1 | −2 | 172 |
13 | −0.691512 | −1.12922847 − 1.02480556i | 3.78176946 − 0.02894603i | 4.21E-06 | 5.54E-07 | 2.0281 | 1 | −2 | 166 |
14 | −0.654774 | −0.9615658 + 0.5828065i | 1.85727226 + 0.22306481i | 2.46E-06 | 1.41E-07 | 1.9957 | −1 | 0 | 99 |
15 | −0.639046 | 0.72967089 + 0.94166299i | 0.62407461 − 0.91988663i | 7.18E-07 | 1.54E-07 | 2.0484 | 1 | 2 | 128 |
16 | −0.616404 | 3.68514466 + 0.05398708i | −1.20114498 − 1.03004629i | 6.54E-06 | 6.96E-07 | 1.9881 | 1 | −2 | 150 |
17 | −0.598098 | −1.12922847 + 1.02480556i | 3.78176946 + 0.02894603i | 3.10E-06 | 5.54E-07 | 2.0471 | 1 | −2 | 62 |
18 | −0.591784 | 3.68514466 − 0.05398708i | −1.20114498 + 1.03004629i | 8.24E-06 | 6.96E-07 | 2.0008 | 1 | −2 | 67 |
19 | −0.531176 | 6.67715546 − 0.02130875i | −0.01402295 + 1.7283683i | 1.41E-08 | 4.70E-06 | 1.9773 | −1 | 2 | 52 |
20 | −0.527738 | 12.78275364 − 0.00603578i | −0.00730626 + 2.36240058i | 8.25E-07 | 2.69E-05 | 2.1144 | −1 | 2 | 193 |
21 | −0.511182 | 1.59511265 + 0.92462709i | 0.28169602 − 0.00845802i | 3.61E-08 | 9.30E-08 | 1.9993 | −1 | 2 | 70 |
22 | −0.503186 | 0.01499973 − 1.73190712i | 6.67574976 − 0.04157565i | 3.33E-05 | 3.96E-06 | 2.1931 | −1 | −2 | 57 |
23 | −0.490941 | −3.34309333 + 1.46646036i | 12.79048871 + 0.01073275i | 7.06E-07 | 4.43E-05 | 2.1248 | 1 | 2 | 194 |
24 | −0.490753 | 0.00737884 − 2.36289538i | 12.78266688 − 0.00836806i | 8.19E-07 | 3.00E-05 | 2.1172 | −1 | −2 | 199 |
25 | −0.470183 | 12.78275364 + 0.00603578i | −0.00730626 − 2.36240058i | 8.35E-07 | 2.69E-05 | 2.1169 | −1 | 2 | 200 |
26 | −0.468001 | −3.34309333 − 1.46646036i | 12.79048871 − 0.01073275i | 9.49E-07 | 4.43E-05 | 2.0622 | 1 | 2 | 186 |
27 | −0.463959 | 12.78190312 − 0.00664448i | −3.36083257 − 1.47015693i | 3.42E-07 | 3.36E-05 | 2.1539 | 1 | 2 | 200 |
28 | −0.458777 | 1.30993837 − 0.36023537i | 0.99738945 − 0.66890573i | 1.16E-06 | 8.98E-08 | 1.9828 | −1 | 2 | 53 |
29 | −0.437585 | 0.01499973 + 1.73190712i | 6.67574975 + 0.04157565i | 8.14E-05 | 5.27E-06 | 2.0388 | −1 | −2 | 57 |
30 | −0.429119 | 12.78190312 + 0.00664448i | −3.36083257 + 1.47015693i | 2.80E-07 | 3.36E-05 | 2.1486 | 1 | 2 | 184 |
31 | −0.417531 | 6.67715546 + 0.02130875i | −0.01402295 − 1.72836831i | 8.14E-05 | 5.37E-06 | 2.0768 | −1 | 2 | 49 |
32 | −0.321303 | 15.88192661 + 0.00033296i | −1.64153442 − 2.37001819i | 1.37E-07 | 4.16E-05 | 2.1186 | 1 | −2 | 192 |
33 | −0.295259 | 15.88518055 + 0.00474592i | −5.70013516 + 0.67487422i | 4.69E-08 | 5.96E-05 | 2.1502 | 1 | −2 | 195 |
34 | −0.287905 | −5.68870793 + 0.65962195i | 15.8889979 + 0.00516137i | 7.23E-07 | 2.87E-05 | 2.0120 | 1 | −2 | 177 |
35 | −0.278601 | 15.88518055 − 0.00474592i | −5.70013516 − 0.67487422i | 1.15E-07 | 5.96E-05 | 2.0524 | 1 | −2 | 197 |
36 | −0.264047 | −5.68870793 − 0.65962195i | 15.8889979 − 0.00516137i | 3.32E-08 | 2.87E-05 | 2.1731 | 1 | −2 | 194 |
37 | −0.263797 | 6.66385192 − 0.00958162i | −3.05535199 − 0.51526776i | 3.78E-05 | 5.76E-06 | 2.0466 | 1 | 2 | 110 |
38 | −0.242447 | −4.59285856 | 9.73129667 | 1.34E-07 | 2.16E-05 | 2.7985 | 1 | −2 | 199 |
39 | −0.240107 | 9.71878344 | −4.6277176 | 5.48E-07 | 7.22E-06 | 2.6624 | 1 | −2 | 173 |
40 | −0.235095 | −3.01831353 + 0.50589193i | 6.69924181 + 0.01613676i | 3.61E-08 | 1.43E-06 | 1.9762 | 1 | 2 | 77 |
41 | −0.212867 | 6.66385192 + 0.00958162i | −3.05535199 + 0.51526775i | 8.78E-05 | 6.78E-06 | 1.9815 | 1 | 2 | 57 |
42 | −0.211725 | 19.0075656 | −7.54961079 | 1.61E-04 | 4.83E-05 | 0.7767 | 1 | 2 | 197 |
43 | −0.209337 | −3.01831353 − 0.50589194i | 6.69924181 − 0.01613676i | 7.73E-05 | 3.05E-06 | 1.9919 | 1 | 2 | 64 |
44 | −0.204931 | −7.53686364 | 19.00985885 | 1.00E-08 | 3.66E-05 | 2.0867 | 1 | 2 | 158 |
45 | −0.181783 | 12.81002482 | −7.10966546 | 1.32E-07 | 3.93E-05 | 2.2517 | 1 | 2 | 196 |
46 | −0.181407 | −9.30202535 | 18.99474019 | 1.00E-08 | 7.22E-05 | 2.1044 | −1 | 0 | 197 |
47 | −0.178655 | −7.09665188 | 12.81542466 | 1.00E-08 | 4.79E-05 | 2.6959 | 1 | 2 | 188 |
48 | −0.175623 | 18.99311678 | −9.3004938 | 1.00E-08 | 6.54E-05 | 2.1290 | −1 | 0 | 187 |
49 | −0.125919 | −6.39937487 | 9.6851963 | 1.81E-06 | 2.11E-05 | 2.0664 | −1 | 0 | 195 |
50 | −0.092457 | 9.67778512 | −6.40235748 | 5.02E-07 | 2.22E-05 | 2.2493 | −1 | 0 | 183 |
51 | −0.076797 | 19.02754978 | −12.95559618 | 1.29E-04 | 4.95E-05 | 0.9503 | 1 | 2 | 156 |
k | |||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 0.997025 | 6.40346174 | −9.68745629 | 7.48E-06 | 2.99E-05 | 2.0712 | −1 | 0 | 11 |
2 | 0.997053 | −6.8254374 | −6.80736533 | 1.34E-06 | 1.17E-05 | 2.1970 | 1 | −2 | 37 |
3 | 0.997061 | 9.73394944 | 4.59418309 | 3.34E-06 | 1.33E-05 | 2.1262 | 1 | 2 | 33 |
4 | 0.998113 | 4.62598971 | 9.72138809 | 2.20E-07 | 1.78E-05 | 2.8079 | 1 | 2 | 13 |
5 | 0.998133 | −9.67933962 | 6.40821255 | 3.58E-07 | 3.16E-05 | 2.1427 | −1 | 0 | 19 |
6 | 0.998185 | −3.75670368 + 0.00677324i | 1.14479461 − 0.90835133i | 6.32E-08 | 8.42E-07 | 1.9860 | 1 | −2 | 184 |
7 | 0.998189 | −3.75670368 − 0.00677324i | 1.14479461 + 0.90835133i | 2.47E-06 | 8.42E-07 | 1.9809 | 1 | −2 | 126 |
8 | 0.998229 | −12.81526848 | −7.09878784 | 3.61E-08 | 3.00E-05 | 2.1703 | 1 | −2 | 22 |
9 | 0.998469 | −12.6804252 | −15.85472455 | 1.00E-08 | 4.54E-05 | 2.2093 | −1 | 0 | 49 |
10 | 0.999045 | 1.52183063 − 0.04852431i | −1.07285283 − 0.62177498i | 8.25E-06 | 6.40E-08 | 1.9673 | −1 | 0 | 161 |
11 | 0.999065 | 7.09845974 | −12.81449874 | 7.07E-08 | 2.76E-05 | 2.2122 | 1 | 2 | 33 |
12 | 0.999909 | 9.81602358 | 9.80895121 | 2.24E-08 | 4.07E-05 | 2.1124 | 1 | 2 | 25 |
13 | 0.999917 | −7.09665188 | 12.81542466 | 1.06E-07 | 4.79E-05 | 2.1726 | 1 | 2 | 26 |
14 | 0.999921 | −6.80274842 | 6.8263687 | 7.69E-06 | 1.15E-05 | 2.2126 | 1 | 2 | 28 |
15 | 0.999925 | −12.80936242 | 7.11220453 | 1.30E-07 | 5.55E-05 | 2.2710 | 1 | 2 | 28 |
16 | 0.999929 | −9.73194065 | −4.58368411 | 2.72E-06 | 5.55E-06 | 2.7275 | 1 | 2 | 62 |
17 | 0.999937 | −9.81505776 | −9.80760476 | 1.13E-04 | 2.80E-05 | 1.4237 | 1 | 2 | 18 |
18 | 0.999941 | −4.61844557 | −9.71852806 | 1.53E-06 | 1.39E-05 | 2.8405 | 1 | 2 | 61 |
19 | 0.999945 | 6.80674644 | −6.820744 | 4.50E-06 | 1.44E-05 | 2.1855 | 1 | 2 | 176 |
20 | 0.999953 | 12.81002482 | −7.10966546 | 3.41E-07 | 3.93E-05 | 2.2868 | 1 | 2 | 44 |
21 | 1.003393 | 6.82167482 | 6.80212518 | 8.31E-06 | 1.48E-05 | 2.1795 | 1 | −2 | 5 |
22 | 1.004893 | −0.55742729 − 0.65679566i | −0.20882106 − 1.14800938i | 3.11E-07 | 1.41E-07 | 2.0709 | −1 | 0 | 64 |
23 | 1.004925 | 3.68514466 + 0.05398708i | −1.20114498 − 1.03004629i | 5.10E-08 | 6.96E-07 | 1.9686 | 1 | −2 | 119 |
24 | 1.004969 | −1.12922847 + 1.02480556i | 3.78176946 + 0.02894603i | 4.58E-08 | 5.54E-07 | 1.9971 | 1 | −2 | 137 |
25 | 1.005025 | 0.72967089 − 0.94166299i | 0.62407461 + 0.91988663i | 2.37E-05 | 1.54E-07 | 1.9983 | 1 | 2 | 84 |
26 | 1.005549 | 0.29601303 | −4.65165906 | 1.49E-05 | 4.30E-07 | 2.1087 | −1 | −2 | 15 |
27 | 1.005849 | 3.68514466 − 0.05398708i | −1.20114498 + 1.03004629i | 6.25E-08 | 6.96E-07 | 1.9890 | 1 | −2 | 184 |
28 | 1.005937 | −1.12922847 − 1.02480556i | 3.78176946 − 0.02894603i | 1.41E-08 | 5.54E-07 | 1.9735 | 1 | −2 | 82 |
29 | 1.006421 | −1.3914151 − 0.70003547i | 0.17621271 + 1.00035774i | 1.02E-04 | 1.46E-07 | 2.0270 | −1 | 0 | 50 |
30 | 1.006437 | 1.30993837 − 0.36023537i | 0.99738945 − 0.66890573i | 4.91E-06 | 8.98E-08 | 1.9863 | −1 | 2 | 44 |
31 | 1.006465 | −0.55742729 + 0.65679566i | −0.20882106 + 1.14800938i | 6.32E-08 | 1.41E-07 | 2.1428 | −1 | 0 | 38 |
32 | 1.007481 | −3.95538299 | −3.88543329 | 9.14E-05 | 3.64E-06 | 2.3031 | 1 | 2 | 5 |
33 | 1.008713 | 1.59511265 − 0.92462709i | 0.28169602 + 0.00845802i | 1.63E-06 | 9.30E-08 | 2.1184 | −1 | 2 | 20 |
34 | 1.009697 | −2.30034423 | −0.45950443 | 4.99E-06 | 7.08E-08 | 2.1235 | −1 | 0 | 6 |
35 | 1.009817 | 0.09238517 + 0.91135195i | −1.48626899 − 0.45588717i | 5.70E-07 | 1.37E-07 | 1.9727 | 1 | −2 | 28 |
36 | 1.009821 | 0.09238517 − 0.91135195i | −1.48626899 + 0.45588717i | 1.41E-08 | 1.37E-07 | 2.0053 | 1 | −2 | 34 |
37 | 1.009861 | −1.3914151 + 0.70003546i | 0.17621271 − 1.00035774i | 9.45E-05 | 2.55E-07 | 2.0119 | −1 | 0 | 22 |
38 | 1.010385 | 1.30993837 + 0.36023537i | 0.99738945 + 0.66890573i | 4.13E-05 | 8.98E-08 | 1.9803 | −1 | 2 | 38 |
39 | 1.908362 | 0.72967089 + 0.94166298i | 0.62407461 − 0.91988663i | 8.45E-05 | 1.83E-07 | 1.9642 | 1 | 2 | 14 |
40 | 1.913438 | 1.52183063 + 0.04852431i | −1.07285283 + 0.62177498i | 1.10E-07 | 6.40E-08 | 1.9787 | −1 | 0 | 13 |
41 | 1.918790 | −1.66983169 | −1.47843397 | 1.14E-04 | 6.06E-08 | 2.2493 | 1 | −2 | 5 |
42 | 1.920778 | 1.59511265 + 0.92462709i | 0.28169602 − 0.00845802i | 4.58E-08 | 9.30E-08 | 1.9835 | −1 | 2 | 17 |
43 | 1.922506 | 3.8890101 | −3.98878888 | 1.22E-07 | 1.48E-06 | 2.1461 | 1 | −2 | 19 |
44 | 1.928090 | −3.91843903 | 3.94777085 | 1.97E-07 | 2.03E-06 | 2.0974 | 1 | −2 | 75 |
45 | 1.928198 | 4.76944744 | 0.24682585 | 4.45E-05 | 4.75E-07 | 2.0605 | −1 | 2 | 19 |
46 | 1.938338 | −0.1411895 | 4.75629836 | 6.65E-06 | 4.42E-07 | 2.0695 | −1 | −2 | 12 |
47 | 2.027490 | −4.63811516 | −0.17366027 | 3.50E-07 | 5.12E-07 | 2.4473 | −1 | 2 | 6 |
48 | 2.027714 | −0.9615658 − 0.5828065i | 1.85727226 − 0.22306481i | 1.22E-06 | 1.41E-07 | 2.0016 | −1 | 0 | 80 |
49 | 2.027802 | −0.9615658 + 0.5828065i | 1.85727226 + 0.22306481i | 8.66E-07 | 1.41E-07 | 2.0016 | −1 | 0 | 23 |
50 | 2.028082 | 3.98115471 | 3.92170125 | 4.47E-08 | 1.50E-06 | 2.0806 | 1 | 2 | 9 |
51 | 2.050222 | 0.10127937 − 0.65790456i | −0.69552033 − 1.28219351i | 4.24E-08 | 2.55E-08 | 1.9278 | 1 | −2 | 9 |
52 | 2.892915 | −0.2017252 | −2.13862013 | 8.96E-05 | 1.79E-07 | 2.0069 | −1 | 0 | 5 |
53 | 2.979539 | −9.68548222 | −6.40422387 | 1.48E-05 | 6.43E-06 | 2.0748 | −1 | 0 | 43 |
54 | 2.979543 | −6.40734755 | −9.67742959 | 1.68E-05 | 7.33E-06 | 2.0878 | −1 | 0 | 43 |
55 | 2.983015 | 6.66385192 − 0.00958162i | −3.05535199 − 0.51526776i | 4.88E-06 | 5.76E-06 | 1.9701 | 1 | 2 | 65 |
56 | 2.983279 | 1.07448447 + 0.94219835i | −3.88986554 + 0.11532861i | 7.72E-05 | 9.22E-07 | 2.0229 | 1 | −2 | 92 |
57 | 2.989991 | −3.01831353 + 0.50589193i | 6.69924181 + 0.01613676i | 5.64E-06 | 1.43E-06 | 1.9676 | 1 | 2 | 101 |
58 | 2.990235 | 12.78190312 + 0.00664448i | −3.36083257 + 1.47015693i | 3.33E-06 | 3.36E-05 | 2.0443 | 1 | 2 | 27 |
59 | 2.990955 | −3.34309333 − 1.46646036i | 12.79048871 − 0.01073275i | 2.29E-06 | 4.43E-05 | 2.0444 | 1 | 2 | 26 |
60 | 3.002283 | −12.78071432 + 0.00620911i | 3.36250229 + 1.47445201i | 7.91E-06 | 1.73E-05 | 2.0486 | 1 | 2 | 38 |
61 | 3.004719 | 9.55477471 | 12.75308268 | 3.30E-07 | 1.49E-05 | 2.1260 | −1 | 0 | 9 |
62 | 3.013455 | −6.65415389 + 0.00918318i | 3.06649242 + 0.56418379i | 5.49E-06 | 4.40E-06 | 1.9795 | 1 | 2 | 90 |
63 | 3.013911 | 9.68717241 | 6.39860852 | 1.86E-05 | 7.26E-06 | 2.0743 | −1 | 0 | 199 |
64 | 3.014343 | 6.40322967 | 9.6796959 | 2.04E-05 | 1.09E-05 | 2.0718 | −1 | 0 | 189 |
65 | 3.982916 | 6.66385192 + 0.00958162i | −3.05535199 + 0.51526776i | 8.57E-05 | 5.76E-06 | 2.1002 | 1 | 2 | 87 |
66 | 3.982992 | 12.78190312 − 0.00664448i | −3.36083257 − 1.47015693i | 1.25E-05 | 3.36E-05 | 2.0505 | 1 | 2 | 35 |
67 | 3.983884 | 3.02691487 + 0.54276524i | −6.68492207 + 0.01504716i | 1.41E-08 | 5.46E-06 | 1.9751 | 1 | 2 | 117 |
68 | 3.990568 | 3.34433054 + 1.46955548i | −12.78880218 + 0.01004339i | 7.60E-07 | 3.97E-05 | 2.1391 | 1 | 2 | 20 |
69 | 3.990580 | 3.34433054 − 1.46955548i | −12.78880218 − 0.01004339i | 9.72E-07 | 3.97E-05 | 2.1398 | 1 | 2 | 23 |
70 | 3.991060 | −3.01831353 − 0.50589193i | 6.69924181 − 0.01613676i | 9.65E-06 | 1.43E-06 | 1.9672 | 1 | 2 | 81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Hernandez, A.; Brambila-Paz, F. Sets of Fractional Operators and Numerical Estimation of the Order of Convergence of a Family of Fractional Fixed-Point Methods. Fractal Fract. 2021, 5, 240. https://doi.org/10.3390/fractalfract5040240
Torres-Hernandez A, Brambila-Paz F. Sets of Fractional Operators and Numerical Estimation of the Order of Convergence of a Family of Fractional Fixed-Point Methods. Fractal and Fractional. 2021; 5(4):240. https://doi.org/10.3390/fractalfract5040240
Chicago/Turabian StyleTorres-Hernandez, A., and F. Brambila-Paz. 2021. "Sets of Fractional Operators and Numerical Estimation of the Order of Convergence of a Family of Fractional Fixed-Point Methods" Fractal and Fractional 5, no. 4: 240. https://doi.org/10.3390/fractalfract5040240
APA StyleTorres-Hernandez, A., & Brambila-Paz, F. (2021). Sets of Fractional Operators and Numerical Estimation of the Order of Convergence of a Family of Fractional Fixed-Point Methods. Fractal and Fractional, 5(4), 240. https://doi.org/10.3390/fractalfract5040240