A Data-Driven Memory-Dependent Modeling Framework for Anomalous Rheology: Application to Urinary Bladder Tissue
Abstract
:1. Introduction
- We obtain the porcine UB uniaxial relaxation data from small-to-large strains of five distinct anatomical locations.
- Our relaxation experiments are performed under increasingly larger strains, without intermediate unloading steps or tissue preconditioning.
- The mechanical response of the UB indicates nonlinear viscoelastic behavior with power-law relaxation, characterizing an anomalous, non-exponential behavior.
- In the first stage, we develop an existence study that considers a set of linear fractional building block models (Scott-Blair, fractional Kelvin-Voigt, fractional Maxwell), which are selected according to the multi-power-law nature of the relaxation data and calibration errors at the linear viscoelastic regime.
- In the second stage, we account for the large strain behavior of the corresponding tissue, by employing a fractional quasi-linear viscoelastic (FQLV). The goal is to extend the quality of power-law relaxation (due to the material’s fractal microstructure) to the large strain regime of the tissue of interest.
- All candidate fractional linear viscoelastic models provide sufficiently accurate fits for single-relaxation steps under smaller strain levels, where the two fractional order Maxwell model is the most suited for the UB data.
- The employed four-parameter FQLV model with a reduced Scott-Blair relaxation function and exponential instantaneous stress response was successful over five consecutive relaxation steps, with root mean squared errors below , and without the need of model recalibration between applied step strains.
- The lower-range of obtained fractional orders is around = 0.17–0.30, which is compatible with the observed long-time slopes of the UB relaxation data. Small values have been suggested to indicate strong fractality in bio-tissue microstructures such as collagen fibers [51].
2. Problem Setup and Methodology
2.1. Urinary Bladder Experimental Relaxation Tests
2.2. A Fractional Viscoelastic Modeling Framework for Anomalous Tissue Rheology
2.2.1. First Stage: An Existence Study of Fractional Linear Viscoelastic Models
2.2.2. Second Stage: Fractional Quasi-Linear Viscoelastic Modeling
2.2.3. Numerical Discretizations
2.3. Model Optimization
3. Results and Discussion
3.1. Linear Viscoelasticity
3.2. Nonlinear Viscoelasticity
3.3. Discussion
4. Conclusions
- Our existence study was able to relate the power-law features of specimens from five distinct bladder samples to the fractional orders in linear/quasi-linear fractional models, and is an interesting step towards an automated model selection framework.
- The bladder uniaxial relaxation data was obtained from consecutive and increasing step strain applications, indicating the presence of nonlinear, strain-dependent effects on the relaxation functions.
- Our obtained data is consistent with other bladder rheology studies, indicating higher stress levels for the trigone region, and an exponential-like stress-strain relationship.
- Among linear viscoelastic models employed for the first relaxation step ( strains), the fractional Maxwell model was the most suited for all regional bladder samples, with two fractional orders, which dominate short- and long-times. More complex linear fractional models consistently recovered the FM, and the FKV model proved to be unfeasible since it recovers a SB element.
- The employed fractional quasi-linear viscoelastic model successfully captured the multi-step relaxation behavior with four material parameters and without any requirement of parameter recalibration, yielding a fractional order range = 0.25–0.30 with root mean squared errors below .
- Fractional calculus can be a interesting alternative to describe the linear/nonlinear behavior of porcine UB especially within a material model selection framework, since fractional models potentially provide a reduced number of material parameters due to the presence of multiple power-laws in relaxation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Imbeni, V.; Kruzic, J.; Marshall, G.; Ritchie, R. The dentin-enamel junction and the fracture of human teeth. Nat. Mater. 2005, 4, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Craiem, D.; Rojo, F.; Atienza, J.; Armentano, R.; Guinea, G. Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries. Phys. Med. Biol. 2008, 53, 4543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magin, R.; Royston, T. Fractional-order elastic models of cartilage: A multi-scale approach. Commun. Nonlinear Sci. Numer. Simulat. 2010, 15, 657–664. [Google Scholar] [CrossRef]
- Suki, B.; Barabasi, A.; Lutchen, K. Lung tissue viscoelasticity: A mathematical framework and its molecular basis. J. Appl. Physiol. 1994, 76, 2749–2759. [Google Scholar] [CrossRef] [PubMed]
- Djordjević, V.; Jarić, J.; Fabry, B.; Fredberg, J.; Stamenović, D. Fractional Derivatives Embody Essential Features of Cell Rheological Behavior. Ann. Biomed. Eng. 2003, 31, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Nicolle, S.; Vezin, P.; Palierne, J.F. A strain-hardening bi-power law for the nonlinear behaviour of biological soft tissues. J. Biomech. 2010, 43, 927–932. [Google Scholar] [CrossRef] [PubMed]
- McKinley, G.; Jaishankar, A. Critical Gels, Scott Blair and the Fractional Calculus of Soft Squishy Materials; MIT: Cambridge, MA, USA, 2013. [Google Scholar]
- Suzuki, J.L.; Kharazmi, E.; Varghaei, P.; Naghibolhosseini, M.; Zayernouri, M. Anomalous Nonlinear Dynamics Behavior of Fractional Viscoelastic Beams. J. Comput. Nonlinear Dyn. 2021, 16, 111005. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Amblard, F.; Maggs, A.; Yurke, B.; Pargellis, A.; Leibler, S. Subdiffusion and anomalous local viscoelasticity in actin networks. Phys. Rev. Lett. 1996, 77, 4470. [Google Scholar] [CrossRef] [Green Version]
- Jaishankar, A.; McKinley, G. Power-law rheology in the bulk and at the interface: Quasi-properties and fractional constitutive equations. Proc. R. Soc. A 2013, 469, 20120284. [Google Scholar] [CrossRef] [Green Version]
- Samiee, M.; Akhavan-Safaei, A.; Zayernouri, M. A fractional subgrid-scale model for turbulent flows: Theoretical formulation and a priori study. Phys. Fluids 2020, 32, 055102. [Google Scholar] [CrossRef]
- Samiee, M.; Akhavan-Safaei, A.; Zayernouri, M. Tempered Fractional LES Modeling. arXiv 2021, arXiv:2103.01481. [Google Scholar]
- Akhavan-Safaei, A.; Samiee, M.; Zayernouri, M. Data-driven fractional subgrid-scale modeling for scalar turbulence: A nonlocal LES approach. J. Comput. Phys. 2021, 446, 110571. [Google Scholar] [CrossRef]
- Akhavan-Safaei, A.; Seyedi, S.H.; Zayernouri, M. Anomalous features in internal cylinder flow instabilities subject to uncertain rotational effects. Phys. Fluids 2020, 32, 094107. [Google Scholar] [CrossRef]
- Ansari, M.; Gulia, A.; Srivastava, A.; Kapoor, R. Risk factors for progression to end-stage renal disease in children with posterior urethral valves. J. Pediatr. Urol. 2010, 6, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Lopez Pereira, P.; Martinez Urrutia, M.; Espinosa, L.; Lobato, R.; Navarro, M.; Jaureguizar, E. Bladder dysfunction as a prognostic factor in patients with posterior urethral valves. BJU Int. 2002, 90, 308–311. [Google Scholar] [CrossRef]
- Korossis, S.; Bolland, F.; Southgate, J.; Ingham, E.; Fisher, J. Regional biomechanical and histological characterisation of the passive porcine urinary bladder: Implications for augmentation and tissue engineering strategies. Biomaterials 2009, 30, 266–275. [Google Scholar] [CrossRef] [Green Version]
- Morales-Orcajo, E.; Siebert, T.; Böl, M. Location-dependent correlation between tissue structure and the mechanical behaviour of the urinary bladder. Acta Biomater. 2018, 75, 263–278. [Google Scholar] [CrossRef]
- Chen, J.; Drzewiecki, B.A.; Merryman, W.D.; Pope, J.C., IV. Murine bladder wall biomechanics following partial bladder obstruction. J. Biomech. 2013, 46, 2752–2755. [Google Scholar] [CrossRef]
- Gilbert, T.W.; Wognum, S.; Joyce, E.M.; Freytes, D.O.; Sacks, M.S.; Badylak, S.F. Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix. Biomaterials 2008, 29, 4775–4782. [Google Scholar] [CrossRef] [Green Version]
- Cheng, F.; Birder, L.A.; Kullmann, F.A.; Hornsby, J.; Watton, P.N.; Watkins, S.; Thompson, M.; Robertson, A.M. Layer-dependent role of collagen recruitment during loading of the rat bladder wall. Biomech. Model. Mechanobiol. 2018, 17, 403–417. [Google Scholar] [CrossRef] [PubMed]
- Van Mastrigt, R.; Coolsaet, B.; Van Duyl, W. Passive properties of the urinary bladder in the collection phase. Med Biol. Eng. Comput. 1978, 16, 471–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Natali, A.; Audenino, A.; Artibani, W.; Fontanella, C.; Carniel, E.; Zanetti, E. Bladder tissue biomechanical behavior: Experimental tests and constitutive formulation. J. Biomech. 2015, 48, 3088–3096. [Google Scholar] [CrossRef]
- Wognum, S.; Schmidt, D.E.; Sacks, M.S. On the Mechanical Role of de Novo Synthesized Elastin in the Urinary Bladder Wall. J. Biomech. Eng. 2009, 131, 101018. [Google Scholar] [CrossRef] [PubMed]
- Nagle, A.S.; Klausner, A.P.; Varghese, J.; Bernardo, R.J.; Colhoun, A.F.; Barbee, R.W.; Carucci, L.R.; Speich, J.E. Quantification of bladder wall biomechanics during urodynamics: A methodologic investigation using ultrasound. J. Biomech. 2017, 61, 232–241. [Google Scholar] [CrossRef]
- Van Mastrigt, R.; Griffiths, D. Contractility of the urinary bladder. Urol. Int. 1979, 34, 410–420. [Google Scholar] [CrossRef]
- Regnier, C.H.; Kolsky, H.; Richardson, P.D.; Ghoniem, G.M.; Susset, J.G. The elastic behavior of the urinary bladder for large deformations. J. Biomech. 1983, 16, 915–922. [Google Scholar] [CrossRef]
- Korkmaz, I.; Rogg, B. A simple fluid-mechanical model for the prediction of the stress–strain relation of the male urinary bladder. J. Biomech. 2007, 40, 663–668. [Google Scholar] [CrossRef]
- Damaser, M.S.; Lehman, S.L. The effect of urinary bladder shape on its mechanics during filling. J. Biomech. 1995, 28, 725–732. [Google Scholar] [CrossRef]
- Damaser, M.S.; Lehman, S.L. Two mathematical models explain the variation in cystometrograms of obstructed urinary bladders. J. Biomech. 1996, 29, 1615–1619. [Google Scholar] [CrossRef]
- Watanabe, H.; Akiyama, K.; Saito, T.; Oki, F. A finite deformation theory of intravesical pressure and mural stress of the urinary bladder. Tohoku J. Exp. Med. 1981, 135, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Habteyes, F.G.; Komari, S.O.; Nagle, A.S.; Klausner, A.P.; Heise, R.L.; Ratz, P.H.; Speich, J.E. Modeling the influence of acute changes in bladder elasticity on pressure and wall tension during filling. J. Mech. Behav. Biomed. Mater. 2017, 71, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Coolsaet, B.; Van Duyl, W.; Van Mastrigt, R.; Van der Zwart, A. Step-wise cystometry of urinary bladder New dynamic procedure to investigate viscoelastic behavior. Urology 1973, 2, 255–257. [Google Scholar] [CrossRef] [Green Version]
- Van Duyl, W. A model for both the passive and active properties of urinary bladder tissue related to bladder function. Neurourol. Urodyn. 1985, 4, 275–283. [Google Scholar] [CrossRef]
- Coolsaet, B.; Van Duyl, W.; Van Mastrigt, R.; Van Der Zwart, A. Visco-EIastic Properties of the Bladder Wall. Urol. Int. 1975, 30, 16–26. [Google Scholar] [CrossRef]
- Van Mastrigt, R.; Coolsaet, B.; Van Duyl, W. First results of stepwise straining of the human urinary bladder and human bladder strips. Investig. Urol. 1981, 19, 58–61. [Google Scholar]
- Glerum, J.; Van Mastrigt, R.; Van Koeveringe, A. Mechanical properties of mammalian single smooth muscle cells III. Passive properties of pig detrusor and human a terme uterus cells. J. Muscle Res. Cell Motil. 1990, 11, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Van Mastrigt, R.; Nagtegaal, J. Dependence of the viscoelastic response of the urinary bladder wall on strain rate. Med. Biol. Eng. Comput. 1981, 19, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Alexander, R.S. Viscoplasticity of smooth muscle of urinary bladder. Am. J. Physiol.-Leg. Content 1973, 224, 618–622. [Google Scholar] [CrossRef] [Green Version]
- Susset, J.; Regnier, C. Viscoelastic properties of bladder strips: Standardization of a technique. Investig. Urol. 1981, 18, 445–450. [Google Scholar]
- Kondo, A.; Susset, J.G. Physical properties of the urinary detrusor muscle: A mechanical model based upon the analysis of stress relaxation curve. J. Biomech. 1973, 6, 141–151. [Google Scholar] [CrossRef]
- Alexander, R.S. Mechanical properties of urinary bladder. Am. J. Physiol.-Leg. Content 1971, 220, 1413–1421. [Google Scholar] [CrossRef] [PubMed]
- Venegas, J.G. Viscoelastic properties of the contracting detrusor. I. Theoretical basis. Am. J. Physiol.-Cell Physiol. 1991, 261, C355–C363. [Google Scholar] [CrossRef] [PubMed]
- Venegas, J.G.; Woll, J.P.; Woolfson, S.B.; Cravalho, E.G.; Resnick, N.; Yalla, S.V. Viscoelastic properties of the contracting detrusor. II. Experimental approach. Am. J. Physiol.-Cell Physiol. 1991, 261, C364–C375. [Google Scholar] [CrossRef]
- Nagatomi, J.; Gloeckner, D.C.; Chancellor, M.B.; Degroat, W.C.; Sacks, M.S. Changes in the biaxial viscoelastic response of the urinary bladder following spinal cord injury. Ann. Biomed. Eng. 2004, 32, 1409–1419. [Google Scholar] [CrossRef]
- Nagatomi, J.; Toosi, K.K.; Chancellor, M.B.; Sacks, M.S. Contribution of the extracellular matrix to the viscoelastic behavior of the urinary bladder wall. Biomech. Model. Mechanobiol. 2008, 7, 395–404. [Google Scholar] [CrossRef]
- Tuttle, T.G.; Morhardt, D.; Poli, A.; Park, J.M.; Arruda, E.M.; Roccabianca, S. Investigation of Fiber-Driven Mechanical Behavior of Human and Porcine Bladder Tissue Tested Under Identical Conditions. J. Biomech. Eng. 2021, 143, 111007. [Google Scholar] [CrossRef] [PubMed]
- Jokandan, M.S.; Ajalloueian, F.; Edinger, M.; Stubbe, P.R.; Baldursdottir, S.; Chronakis, I.S. Bladder wall biomechanics: A comprehensive study on fresh porcine urinary bladder. J. Mech. Behav. Biomed. Mater. 2018, 79, 92–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fung, Y.C. Biomechanics: Mechanical Properties of Living Tissues; Springer Science & Business Media: New York, NY, USA, 2013; Volume 547. [Google Scholar]
- Doehring, T.C.; Freed, A.D.; Carew, E.O.; Vesely, I. Fractional Order Viscoelasticity of the Aortic Valve Cusp: An Alternative to Quasilinear Viscoelasticity. J. Biomech. Eng. 2005, 127, 700–708. [Google Scholar] [CrossRef]
- Haddad, Y.M. Viscoelasticity of Engineering Materials; Chapman & Hall: London, UK, 1995; p. 378. [Google Scholar]
- Schiessel, H. Generalized viscoelastic models: Their fractional equations with solutions. J. Phys. A Math. Gen. 1995, 28, 6567–6584. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity; Imperial College Press: London, UK, 2010. [Google Scholar]
- Blair, G.; Veinoglou, B.; Caffyn, B. Limitations of the Newtonian time scale in relation to non-equilibrium rheological states and a theory of quasi-properties. Proc. R. Soc. A Math. Phys. Eng. Sci. 1947, 189, 69–87. [Google Scholar]
- Schiessel, H.; Blumen, A. Hierarchical analogues to fractional relaxation equations. J. Phys. A Math. Gen. 1993, 26, 5057–5069. [Google Scholar] [CrossRef]
- Lion, A. On the thermodynamics of fractional damping elements. Contin. Mech. Thermodyn. 1997, 9, 83–96. [Google Scholar] [CrossRef]
- Suzuki, J.; Zhou, Y.; D’Elia, M.; Zayernouri, M. A thermodynamically consistent fractional visco-elasto-plastic model with memory-dependent damage for anomalous materials. Comput. Methods Appl. Mech. Eng. 2021, 373, 113494. [Google Scholar] [CrossRef]
- Shen, Z.L.; Kahn, H.; Ballarini, R.; Eppell, S.J. Viscoelastic properties of isolated collagen fibrils. Biophys. J. 2011, 100, 3008–3015. [Google Scholar] [CrossRef] [Green Version]
- Bonfanti, A.; Kaplan, J.L.; Charras, G.; Kabla, A.J. Fractional viscoelastic models for power-law materials. Soft Matter 2020, 16, 6002–6020. [Google Scholar] [CrossRef] [PubMed]
- Reiter, N.; Roy, B.; Paulsen, F.; Budday, S. Insights into the Microstructural Origin of Brain Viscoelasticity. J. Elast. 2021, 145, 99–116. [Google Scholar] [CrossRef]
- Kohandel, M.; Sivaloganathan, S.; Tenti, G.; Darvish, K. Frequency dependence of complex moduli of brain tissue using a fractional Zener model. Phys. Med. Biol. 2005, 50, 2799. [Google Scholar] [CrossRef]
- Stamenović, D.; Rosenblatt, N.; Montoya-Zavala, M.; Matthews, B.; Hu, S.; Suki, B.; Wang, N.; Ingber, D. Rheological Behavior of Living Cells Is Timescale-Dependent. Biophys. J. 2007, 93, L39–L41. [Google Scholar] [CrossRef] [Green Version]
- Vincent, J. Structural Biomaterials; Princeton University Press: Princeton, NJ, USA, 2012. [Google Scholar]
- Lin, Y.; Xu, C. Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 2007, 225, 1533–1552. [Google Scholar] [CrossRef]
- Zeng, F.; Turner, I.; Burrage, K. A stable fast time-stepping method for fractional integral and derivative operators. J. Sci. Comput. 2018, 77, 283–307. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Suzuki, J.L.; Zhang, C.; Zayernouri, M. Implicit-explicit time integration of nonlinear fractional differential equations. Appl. Numer. Math. 2020, 156, 555–583. [Google Scholar] [CrossRef]
- Suzuki, J.; Naghibolhosseini, M.; Zayernouri, M. A class of fractional return-mapping algorithms for linear and nonlinear fractional visco-elasto-plastic models. 2021; in preparation. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Perdikaris, P.; Karniadakis, G.E. Fractional-order viscoelasticity in one-dimensional blood flow models. Ann. Biomed. Eng. 2014, 42, 1012–1023. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Perdikaris, P.; Karniadakis, G.E. Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms. J. Comput. Phys. 2016, 323, 219–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiss, M.Z.; Varghese, T.; Hall, T.J. Viscoelastic characterization of in vitro canine tissue. Phys. Med. Biol. 2004, 49, 4207. [Google Scholar] [CrossRef] [Green Version]
- Capilnasiu, A.; Bilston, L.; Sinkus, R.; Nordsletten, D. Nonlinear viscoelastic constitutive model for bovine liver tissue. Biomech. Model. Mechanobiol. 2020, 19, 1641–1662. [Google Scholar] [CrossRef] [Green Version]
- Davis, G.; Kohandel, M.; Sivaloganathan, S.; Tenti, G. The constitutive properties of the brain paraenchyma: Part 2. Fractional derivative approach. Med. Eng. Phys. 2006, 28, 455–459. [Google Scholar] [CrossRef]
- Naghibolhosseini, M.; Long, G.R. Fractional-order modelling and simulation of human ear. Int. J. Comput. Math. 2018, 95, 1257–1273. [Google Scholar] [CrossRef]
- Naghibolhosseini, M. Estimation of Outer-Middle Ear Transmission Using DPOAEs and Fractional-Order Modeling of Human Middle Ear; City University of New York: New York, NY, USA, 2015. [Google Scholar]
- Suzuki, J.; Zayernouri, M.; Bittencourt, M.; Karniadakis, G. Fractional-order uniaxial visco-elasto-plastic models for structural analysis. Comput. Methods Appl. Mech. Eng. 2016, 308, 443–467. [Google Scholar] [CrossRef] [Green Version]
- Barros de Moraes, E.A.; Zayernouri, M.; Meerschaert, M.M. An integrated sensitivity-uncertainty quantification framework for stochastic phase-field modeling of material damage. Int. J. Numer. Methods Eng. 2021, 122, 1352–1377. [Google Scholar] [CrossRef]
Model | Parameters | Error % | Sample | ||||
---|---|---|---|---|---|---|---|
[kPa.s] | [kPa.s] | ||||||
SB | 18.1901 | 0.226 | – | – | 4.32 | 1.72 | D |
FKV | 15.6574 | 0.225 | 2.42019 | 0.229 | 4.32 | 1.72 | |
FM | 14.7616 | 0.171 | 3976.90 | 0.743 | 2.29 | 0.91 | |
SB | 31.3077 | 0.219 | – | – | 3.47 | 1.42 | L |
FKV | 31.3462 | 0.220 | 0 | 0.503 | 3.47 | 1.41 | |
FM | 26.9311 | 0.186 | 48,826.1 | 0.932 | 2.08 | 0.82 | |
SB | 41.6335 | 0.236 | – | – | 5.33 | 1.98 | LB |
FKV | 33.2005 | 0.232 | 7.95429 | 0.252 | 5.34 | 1.99 | |
FM | 33.0853 | 0.183 | 37,339.9 | 0.935 | 3.23 | 1.20 | |
SB | 66.7689 | 0.278 | – | – | 11.1 | 3.82 | T |
FKV | 66.4714 | 0.278 | 0 | 0.907 | 11.1 | 3.83 | |
FM | 42.4338 | 0.170 | 36,938.7 | 0.999 | 4.05 | 1.37 | |
SB | 34.9254 | 0.220 | – | – | 3.21 | 1.24 | V |
FKV | 34.9254 | 0.220 | 0 | 0.579 | 3.21 | 1.25 | |
FM | 30.7605 | 0.188 | 19,799.5 | 0.797 | 2.19 | 0.84 |
Sample | Parameters | Error % | ||||
---|---|---|---|---|---|---|
A [kPa] | B | E [s] | ||||
D | 53.8823 | 0.7803 | 0.7298 | 0.2928 | 4.85 | 1.11 |
L | 79.1646 | 0.8823 | 0.5677 | 0.2673 | 4.08 | 1.00 |
LB | 74.5369 | 1.2192 | 0.3463 | 0.2510 | 4.17 | 1.00 |
T | 63.4435 | 1.2642 | 0.3590 | 0.2419 | 5.61 | 1.44 |
V | 59.3282 | 0.9449 | 0.6704 | 0.2732 | 4.74 | 1.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, J.L.; Tuttle, T.G.; Roccabianca, S.; Zayernouri, M. A Data-Driven Memory-Dependent Modeling Framework for Anomalous Rheology: Application to Urinary Bladder Tissue. Fractal Fract. 2021, 5, 223. https://doi.org/10.3390/fractalfract5040223
Suzuki JL, Tuttle TG, Roccabianca S, Zayernouri M. A Data-Driven Memory-Dependent Modeling Framework for Anomalous Rheology: Application to Urinary Bladder Tissue. Fractal and Fractional. 2021; 5(4):223. https://doi.org/10.3390/fractalfract5040223
Chicago/Turabian StyleSuzuki, Jorge L., Tyler G. Tuttle, Sara Roccabianca, and Mohsen Zayernouri. 2021. "A Data-Driven Memory-Dependent Modeling Framework for Anomalous Rheology: Application to Urinary Bladder Tissue" Fractal and Fractional 5, no. 4: 223. https://doi.org/10.3390/fractalfract5040223
APA StyleSuzuki, J. L., Tuttle, T. G., Roccabianca, S., & Zayernouri, M. (2021). A Data-Driven Memory-Dependent Modeling Framework for Anomalous Rheology: Application to Urinary Bladder Tissue. Fractal and Fractional, 5(4), 223. https://doi.org/10.3390/fractalfract5040223