The Solutions of Some Riemann–Liouville Fractional Integral Equations
Abstract
:1. Introduction
2. Preliminaries
- (i)
- (ii)
- (iii)
- (iv)
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- (i)
- (ii)
- (iii)
- (iv)
- (v)
3. Main Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, C.; Li, C.P. Remarks on fractional derivatives of distributions. Tbilisi Math. J. 2017, 10, 1–18. [Google Scholar] [CrossRef]
- Li, C.; Li, C.P. Clarkson, K. Several results of fractional differential and integral equations in distribution. Mathematics 2018, 6, 97. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Li, C.P. Humphries, T.; Plowman, H. Remarks on the generalized fractional Laplacian operator. Mathematics 2019, 7, 320. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, E.C.; Jarosz, S.; Vaz, J., Jr. Fractional calculus via Laplace transform and its application in relaxation processes. Commun. Nonlinear Sci. Numer. Simul. 2019, 69, 58–72. [Google Scholar] [CrossRef]
- Demirci, E.; Ozalp, N. A method for solving differential equations of fractional order. J. Comput. Appl. Math. 2012, 236, 2754–2762. [Google Scholar] [CrossRef] [Green Version]
- Morita, T. Solution for initial-value problems of a fractional differential equation. J. Korean Phys. Soc. 2005, 46, 580–584. [Google Scholar]
- Morita, T.; Sato, K. Solution of fractional differential equations in terms of distribution theory. Interdiscip. Inform. Sci. 2006, 12, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Morita, T.; Sato, K. Neumann-series solution of fractional differential equation. Interdiscip. Inform. Sci. 2010, 16, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Morita, T.; Sato, K. Solution of Laplace’s differential equation and fractional differential equation of that type. Appl. Math. 2013, 4, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Kiryakova, V. Fractional calculus operators of special functions? The result is well predictable. Chaos, Soli. Frac. 2017, 102, 2–15. [Google Scholar] [CrossRef]
- Campos, L.M.B.C. On the solution of some simple fractional differential equations. Internat. J. Math. Math. Sci. 1990, 13, 481–496. [Google Scholar] [CrossRef] [Green Version]
- Khudair, A.R. On solving non-homogeneous fractional differential equations of Euler type. Comp. Appl. Math. 2013, 32, 577–584. [Google Scholar] [CrossRef]
- Zhukovskaya, N.V.; Kilbas, A.A. Solving homogeneous fractional differential equations of Euler type. Differ. Equ. 2011, 47, 1714–1725. [Google Scholar] [CrossRef]
- Kim, M.H.; Ri, G.C.; Choe, G.S.; Chol, O.H. Cauchy type problems of linear Riemann–Liouville fractional differential equations with variable coefficients. arXiv 2016, arXiv:1608.00601. [Google Scholar]
- Zhao, K.; Ma, Y. Study on the existence of solutions for a class of nonlinear neutral Hadamard-type fractional integro-differential equation with infinite delay. Fractal Fract. 2021, 5, 52. [Google Scholar] [CrossRef]
- Zhao, K.; Suo, L.; Liao, Y. Boundary value problem for a class of fractional integro-differential coupled systems with Hadamard fractional calculus and impulses. Bound. Value Probl. 2019, 1, 105. [Google Scholar] [CrossRef]
- Zhao, K.; Deng, S. Existence and Ulam-Hyers stability of a kind of fractional-order multiple point BVP involving noninstantaneous impulses and abstract bounded operator. Adv. Differ. Equ. 2021, 2021, 44. [Google Scholar] [CrossRef]
- Zhao, K. Impulsive boundary value problems for two classes of fractional differential equation with two different Caputo fractional derivatives. Mediterr. J. Math. 2016, 13, 1033–1050. [Google Scholar] [CrossRef]
- Zhao, K.; Gong, P. Existence of positive solutions for a class of higher-order Caputo fractional differential equation. Qual. Theory Dyn. Syst. 2015, 14, 157–171. [Google Scholar] [CrossRef]
- Zhao, K. Multiple positive solutions of integral BVPs for high-order nonlinear fractional differential equations with impulses and distributed delays. Dyn. Syst. 2015, 30, 208–223. [Google Scholar] [CrossRef]
- Zhao, K. Impulsive integral boundary value problems of the higher-order fractional differential equation with eigenvalue arguments. Adv. Differ. Equ. 2015, 2015, 382. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Huang, H. Existence results of nonlocal boundary value problem for a nonlinear fractional differential coupled system involving fractional order impulses. Adv. Differ. Equ. 2019, 2019, 36. [Google Scholar] [CrossRef] [Green Version]
- Rosales, J.; Go´mez, J.F.; Gui´a, M.; Tkach, V. Fractional electromagnetic waves. In Proceedings of the 11th International Conference Laser and Fiber-Optical Networks Modeling, Kharkov, Ukraine, 5–8 September 2011. [Google Scholar]
- Sun, H.H.; Onaral, B.; Tsao, Y.Y. Application of the positive reality principle to metal electrode linear polarization phenomena. IEEE Trans. BME 1984, 10, 664–674. [Google Scholar] [CrossRef]
- Koeller, R.C. Applications of fractional calculus ot the theorem of viscoelasticity. J. Appl. Mech. 1984, 51, 229–307. [Google Scholar] [CrossRef]
- Glöckle, W.G.; Nonnenmacher, T.F. A fractional calculus approach to self-similar protein dynamics. Biophys. J. 1995, 68, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: New York, NY, USA, 2006. [Google Scholar]
- Das, S. Fractional Fractional Calculus; Springer: New York, NY, USA, 2011. [Google Scholar]
- Kimeu, J.M. Fractional Calculus: Definitions and Applications; Western Kentucky University: Bowling Green, KY, USA, 2009. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Garrappa, R.; Kaslik, E.; Popolizio, M. Evaluation of fractional integrals and derivatives of elementary functions: Overview and tutorial. Mathematics 2019, 7, 407. [Google Scholar] [CrossRef] [Green Version]
- Makogin, V.; Mishura, Y. Fractional integrals, derivatives and integral equations with weighted Takagi-Landsberg functions. arXiv 2020, arXiv:2003.13285v1. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Trujillo, J.J. Computation of fractional integrals via functions of hypergeometric and Bessel type. J. Comput. Appl. Math. 2000, 118, 223–239. [Google Scholar] [CrossRef]
- Agarwal, R.; Jain, S.; Agarwal, R.P.; Baleanu, D. A remark on the fractional integral operators and the image formulas of generalized Lommel-Wright function. Front. Phys. 2018, 6, 79. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Vladimirov, V.S. Methods of the Theory of Generalized Functions; Taylor & Francis: London, UK; New York, NY, USA, 2002. [Google Scholar]
- El-Nabulsi, R.A. Fractional variational problems from extended exponentially fractional integral. Appl. Math. Comput. 2011, 217, 9492–9496. [Google Scholar]
- Labora, D.C.; Rodriguez-Lopez, R. Improvements in a method for solving fractional integral equations with some links with fractional differential equations. Fract. Calc. Appl. Anal. 2018, 21, 174–189. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Saigo, M. On Mittag-Leffler type function, fractional calculus operators and solutions of integral equations. Int. Trans. Spec. Funct. 1996, 4, 355–370. [Google Scholar] [CrossRef]
- Agarwal, R.; Jain, S.; Agarwal, R.P. Solution of fractional Volterra integral equation and non-homogeneous time fractional heat equation using integral transform of pathway type. Progr. Fract. Differ. Appl. 2015, 1, 145–155. [Google Scholar]
- Li, C.; Li, C.P.; Kacsmar, B.; Lacroix, R.; Tilbury, K. The Abel integral equations in distribution. Adv. Anal. 2017, 2, 88–104. [Google Scholar] [CrossRef]
- Li, C. Babenko’s approach to Abel’s integral equations. Mathematics 2018, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Humphries, T.; Plowman, H. Solutions to Abel integral equations in distribution. Axioms 2018, 7, 66. [Google Scholar] [CrossRef] [Green Version]
- Labora, D.C.; Rodriguez-Lopez, R. From fractional order equations to integer order equations. Fract. Calc. Appl. Anal. 2017, 20, 1405–1423. [Google Scholar] [CrossRef] [Green Version]
- Yousefi, A.; Javadi, S.; Babolian, E. A computational approach for solving fractional integral equations based on Legendre collocation method. Math. Sci. 2019, 13, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Karuna, K.; Nonlaopon, K.; Orankitjaroen, S.; Kim, H. On the solutions of non-homogeneous fractional integral equations via Laplace transform. J. Math. Comput. Sci. 2021, 11, 6999–7014. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaewnimit, K.; Wannalookkhee, F.; Nonlaopon, K.; Orankitjaroen, S. The Solutions of Some Riemann–Liouville Fractional Integral Equations. Fractal Fract. 2021, 5, 154. https://doi.org/10.3390/fractalfract5040154
Kaewnimit K, Wannalookkhee F, Nonlaopon K, Orankitjaroen S. The Solutions of Some Riemann–Liouville Fractional Integral Equations. Fractal and Fractional. 2021; 5(4):154. https://doi.org/10.3390/fractalfract5040154
Chicago/Turabian StyleKaewnimit, Karuna, Fongchan Wannalookkhee, Kamsing Nonlaopon, and Somsak Orankitjaroen. 2021. "The Solutions of Some Riemann–Liouville Fractional Integral Equations" Fractal and Fractional 5, no. 4: 154. https://doi.org/10.3390/fractalfract5040154
APA StyleKaewnimit, K., Wannalookkhee, F., Nonlaopon, K., & Orankitjaroen, S. (2021). The Solutions of Some Riemann–Liouville Fractional Integral Equations. Fractal and Fractional, 5(4), 154. https://doi.org/10.3390/fractalfract5040154