Spline Collocation for Multi-Term Fractional Integro-Differential Equations with Weakly Singular Kernels
Abstract
:1. Introduction
2. Basic Notations and Definitions
3. Problem Setting
4. Integral Equation Reformulation
5. Existence, Uniqueness and Smoothness of the Solution
6. Numerical Method
7. Convergence Analysis
8. Numerical Examples
9. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diethelm, K. The Analysis of Fractional Differential Equations; Springer: Berlin, Germany, 2010. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Samko, S.; Kilbas, A.; Marichev, O. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Machado, J.T.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1140–1153. [Google Scholar] [CrossRef] [Green Version]
- Rossikhin, Y.A.; Shitikova, M.V. Applications of fractional calculus to dynamical problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 1997, 50, 15–67. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Freed, A.D.; Diethelm, K.; Luchko, Y. Fractional-Order Viscoelasticity (FOV): Constitutive Development Using the Fractional Calculus; Technical Report 2002-211914, NASA Glenn Research Center: Cleveland, OH, USA, 2002. [Google Scholar]
- Glöckle, W.G.; Nonnenmacher, T.F. A fractional calculus approach to self-similar protein dynamics. Biophys. J. 1995, 68, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Metzler, R.; Schick, W.; Kilian, H.G.; Nonnenmacher, T. Relaxation in filled polymers: A fractional calculus approach. J. Chem. Phys. 1995, 103, 7180–7186. [Google Scholar] [CrossRef]
- Ahmad, W.; El-Khazali, R. Fractional-order dynamical models of love. Chaos Solitons Fractals 2007, 33, 1367–1375. [Google Scholar] [CrossRef]
- Song, L.; Xu, S.; Yang, J. Dynamical models of happiness with fractional order. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 616–628. [Google Scholar] [CrossRef]
- Fallahgoul, H.; Focardi, S.; Fabozzi, F. Fractional Calculus and Fractional Processes with Applications to Financial Economics: Theory and Application; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Tang, S.; Ying, Y. Homogenizing atomic dynamics by fractional differential equations. J. Comput. Phys. 2017, 346, 539–551. [Google Scholar] [CrossRef]
- Yu, Y.; Perdikaris, P.; Karniadakis, G.E. Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms. J. Comput. Phys. 2016, 323, 219–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopka, R. Estimation of supercapacitor energy storage based on fractional differential equations. Nanoscale Res. Lett. 2017, 12, 636. [Google Scholar] [CrossRef] [Green Version]
- Goufo, E.F.D.; Nieto, J.J. Attractors for fractional differential problems of transition to turbulent flows. J. Comput. Appl. Math. 2018, 339, 329–342. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Sandev, T.; Metzler, R.; Chechkin, A. From continuous time random walks to the generalized diffusion equation. Fract. Calc. Appl. Anal. 2018, 21, 10–28. [Google Scholar] [CrossRef] [Green Version]
- Klafter, J.; Lim, S.; Metzler, R. Fractional Dynamics: Recent Advances; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2012. [Google Scholar]
- Diethelm, K.; Ford, N.J.; Freed, A.D. Detailed error analysis for a fractional Adams method. Numer. Algorithms 2004, 36, 31–52. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Pal, K.; Ford, N.J. Higher order numerical methods for solving fractional differential equations. BIT Numer. Math. 2014, 54, 555–584. [Google Scholar] [CrossRef] [Green Version]
- Garrappa, R. Trapezoidal methods for fractional differential equations: Theoretical and computational aspects. Math. Comput. Simul. 2015, 110, 96–112. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Roberts, J.; Yan, Y. Detailed error analysis for a fractional Adams method with graded meshes. Numer. Algorithms 2018, 78, 1195–1216. [Google Scholar] [CrossRef] [Green Version]
- Pedas, A.; Tamme, E. Numerical solution of nonlinear fractional differential equations by spline collocation methods. J. Comput. Appl. Math. 2014, 255, 216–230. [Google Scholar] [CrossRef]
- Ford, N.J.; Morgado, M.L.; Rebelo, M. A nonpolynomial collocation method for fractional terminal value problems. Comput. Appl. Math. 2015, 275, 392–402. [Google Scholar] [CrossRef] [Green Version]
- Cen, Z.; Huang, J.; Xu, A. An efficient numerical method for a two-point boundary value problem with a Caputo fractional derivative. J. Comput Appl. Math. 2018, 336, 1–7. [Google Scholar] [CrossRef]
- Kopteva, N.; Stynes, M. An efficient collocation method for a Caputo two-point boundary value problem. BIT Numer. Math. 2015, 55, 1105–1123. [Google Scholar] [CrossRef] [Green Version]
- Stynes, M.; Gracia, J.L. A finite difference method for a two-point boundary value problem with a Caputo fractional derivative. IMA J. Numer. Anal. 2015, 35, 698–721. [Google Scholar] [CrossRef] [Green Version]
- Pedas, A.; Tamme, E. Spline collocation for nonlinear fractional boundary value problems. Appl. Math. Comput. 2014, 244, 502–513. [Google Scholar] [CrossRef]
- Pedas, A.; Tamme, E.; Vikerpuur, M. Smoothing transformation and spline collocation for nonlinear fractional initial and boundary value problems. J. Comput. Appl. Math. 2017, 317, 1–16. [Google Scholar] [CrossRef]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus. Models and Numerical Methods; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2016. [Google Scholar]
- Ma, X.; Huang, C. Spectral collocation method for linear fractional integro-differential equations. Appl. Math. Model. 2014, 38, 1434–1448. [Google Scholar] [CrossRef]
- Diethelm, K.; Luchko, Y. Numerical solution of linear multi-term initial value problems of fractional order. J. Comput. Anal. Appl. 2004, 6, 243–263. [Google Scholar]
- Diethelm, K.; Ford, N.J. Multi-order fractional differential equations and their numerical solution. Appl. Math. Comput. 2004, 154, 621–640. [Google Scholar] [CrossRef]
- Liang, H.; Stynes, M. Collocation methods for general Caputo two-point boundary value problems. J. Sci. Comput. 2018, 76, 390–425. [Google Scholar] [CrossRef]
- Kolk, M.; Pedas, A.; Tamme, E. Smoothing transformation and spline collocation for linear fractional boundary value problems. Appl. Math. Comput. 2016, 283, 234–250. [Google Scholar] [CrossRef]
- Pedas, A.; Tamme, E. On the convergence of spline collocation methods for solving fractional differential equations. J. Comput. Appl. Math. 2011, 235, 3502–3514. [Google Scholar] [CrossRef] [Green Version]
- Pedas, A.; Tamme, E. Piecewise polynomial collocation for linear boundary value problems of fractional differential equations. J. Comput. Appl. Math. 2012, 236, 3349–3359. [Google Scholar] [CrossRef] [Green Version]
- Kolk, M.; Pedas, A.; Tamme, E. Modified spline collocation for linear fractional differential equations. J. Comput. Appl. Math. 2015, 283, 28–40. [Google Scholar] [CrossRef]
- Faghih, A.; Mokhtary, P. A new fractional collocation method for a system of multi-order fractional differential equations with variable coefficients. J. Comput. Appl. Math. 2021, 383, 113139. [Google Scholar] [CrossRef]
- Ahmad, B.; Nieto, J.J. Existence Results for Nonlinear Boundary Value Problems of Fractional Integrodifferential Equations with Integral Boundary Conditions. Bound. Value Probl. 2009, 2009, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Alsaedi, A.; Ntouyas, S.K.; Agarwal, R.P.; Ahmad, B. On Caputo type sequential fractional differential equations with nonlocal integral boundary conditions. Adv. Differ. Equ. 2015, 33, 1238–1250. [Google Scholar] [CrossRef] [Green Version]
- Yan, R.; Sun, S.; Lu, H.; Zhao, Y. Existence of solutions for fractional differential equations with integral boundary conditions. Adv. Differ. Equ. 2014, 2014, 25. [Google Scholar] [CrossRef] [Green Version]
- Vikerpuur, M. Two collocation type methods for fractional differential equations with non-local boundary conditions. Math. Model. Anal. 2017, 22, 654–670. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Zeng, Q. Fractional differential equations with integral boundary conditions. J. Nonlinear Sci. Appl. 2015, 8, 309–314. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Xiao, J.; Ford, N.J. Collocation methods for fractional integro-differential equations with weakly singular kernels. Numer. Algorithms 2014, 65, 723–743. [Google Scholar] [CrossRef]
- Pedas, A.; Tamme, E.; Vikerpuur, M. Spline collocation for fractional weakly singular integro-differential equations. Appl. Numer. Math. 2016, 110, 204–214. [Google Scholar] [CrossRef]
- Pedas, A.; Tamme, E.; Vikerpuur, M. Numerical solution of linear fractional weakly singular integro-differential equations with integral boundary conditions. Appl. Numer. Math. 2020, 149, 124–140. [Google Scholar] [CrossRef]
- Stynes, M. Too much regularity may force too much uniqueness. Frac. Calc. Appl. Anal. 2016, 19, 1554–1562. [Google Scholar] [CrossRef] [Green Version]
- Stynes, M. Fractional-order derivatives defined by continuous kernels are too restrictive. Appl. Math. Lett. 2018, 85, 22–26. [Google Scholar] [CrossRef]
- Brunner, H. Collocation Methods for Volterra Integral and Related Functional Equations; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Parts, I.; Pedas, A.; Tamme, E. Piecewise polynomial collocation for Fredholm integro-differential equations with weakly singular kernels. SIAM J. Numer. Anal. 2005, 43, 1897–1911. [Google Scholar] [CrossRef]
- Kolk, M.; Pedas, A. Numerical solution of Volterra integral equations with weakly singular kernels which may have a boundary singularity. Math. Model. Anal. 2009, 14, 79–89. [Google Scholar] [CrossRef]
- Kolk, M.; Pedas, A.; Vainikko, G. High-Order Methods for Volterra Integral Equations with General Weak Singularities. Numer. Funct. Anal. Optim. 2009, 30, 1002–1024. [Google Scholar] [CrossRef]
- Vikerpuur, M. Numerical Solution of Fractional Differential Equations. Ph.D. Thesis, University of Tartu, Tartu, Estonia, 2020. [Google Scholar]
- Brunner, H.; Pedas, A.; Vainikko, G. Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels. SIAM J. Numer. Anal. 2001, 39, 957–982. [Google Scholar] [CrossRef]
- Vainikko, G. Which Functions are Fractionally Differentiable? Z. Anal. Anwend. 2016, 35, 465–487. [Google Scholar] [CrossRef]
- Vainikko, G. Multidimensional Weakly Singular Integral Equations; Lecture Notes in Mathematics 1549; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Pedas, A.; Tamme, E. Spline collocation methods for linear multi-term fractional differential equations. J. Comput. Appl. Math. 2011, 236, 167–176. [Google Scholar] [CrossRef] [Green Version]
4 | ||||||||
8 | 1.48 | 2.30 | 5.03 | 5.61 | ||||
16 | 1.54 | 2.62 | 5.29 | 5.46 | ||||
32 | 1.58 | 2.74 | 5.17 | 5.69 | ||||
64 | 1.62 | 2.80 | 4.33 | 5.76 | ||||
128 | 1.64 | 2.82 | 4.48 | 5.75 | ||||
256 | 1.66 | 2.82 | 4.57 | 5.74 | ||||
512 | 1.67 | 2.83 | 4.62 | 5.72 | ||||
1.68 | 2.83 | 4.76 | 5.66 |
4 | ||||||||
8 | 5.20 | 7.78 | 9.41 | 9.34 | ||||
16 | 4.98 | 8.81 | 11.1 | 12.0 | ||||
32 | 4.85 | 8.69 | 11.9 | 12.8 | ||||
64 | 4.79 | 8.45 | 11.8 | 11.7 | ||||
128 | 4.77 | 8.29 | 11.7 | 11.6 | ||||
256 | 4.76 | 8.18 | 11.6 | 11.6 | ||||
512 | 4.76 | 8.13 | 11.4 | 10.6 | ||||
4.76 | 8.00 | 11.3 | 11.3 |
4 | ||||||||
8 | 1.53 | 2.51 | 3.23 | 3.48 | ||||
16 | 1.55 | 2.67 | 3.58 | 3.71 | ||||
32 | 1.58 | 2.59 | 3.83 | 4.02 | ||||
64 | 1.61 | 2.73 | 4.01 | 4.14 | ||||
128 | 1.63 | 2.78 | 4.10 | 4.19 | ||||
256 | 1.65 | 2.80 | 4.12 | 4.19 | ||||
512 | 1.66 | 2.81 | 4.11 | 4.16 | ||||
1.68 | 2.83 | 4.76 | 5.66 |
4 | ||||||||
8 | 2.23 | 5.00 | 7.51 | 8.19 | ||||
16 | 2.27 | 5.13 | 7.90 | 8.65 | ||||
32 | 2.29 | 4.89 | 8.06 | 8.97 | ||||
64 | 2.29 | 4.75 | 8.12 | 9.05 | ||||
128 | 2.30 | 4.68 | 8.14 | 9.07 | ||||
256 | 2.30 | 4.64 | 8.15 | 9.06 | ||||
512 | 2.27 | 4.62 | 8.15 | 9.03 | ||||
2.14 | 4.16 | 8.00 | 8.00 |
4 | ||||||||
8 | 2.28 | 5.26 | 11.3 | 16.0 | ||||
16 | 2.29 | 4.84 | 11.3 | 16.6 | ||||
32 | 2.29 | 4.64 | 10.7 | 16.8 | ||||
64 | 2.30 | 4.61 | 10.4 | 16.6 | ||||
128 | 2.30 | 4.60 | 10.1 | 16.5 | ||||
256 | 2.18 | 4.60 | 10.0 | 16.5 | ||||
512 | 2.14 | 4.60 | 9.94 | 16.4 | ||||
2.14 | 4.16 | 9.85 | 16.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedas, A.; Vikerpuur, M. Spline Collocation for Multi-Term Fractional Integro-Differential Equations with Weakly Singular Kernels. Fractal Fract. 2021, 5, 90. https://doi.org/10.3390/fractalfract5030090
Pedas A, Vikerpuur M. Spline Collocation for Multi-Term Fractional Integro-Differential Equations with Weakly Singular Kernels. Fractal and Fractional. 2021; 5(3):90. https://doi.org/10.3390/fractalfract5030090
Chicago/Turabian StylePedas, Arvet, and Mikk Vikerpuur. 2021. "Spline Collocation for Multi-Term Fractional Integro-Differential Equations with Weakly Singular Kernels" Fractal and Fractional 5, no. 3: 90. https://doi.org/10.3390/fractalfract5030090
APA StylePedas, A., & Vikerpuur, M. (2021). Spline Collocation for Multi-Term Fractional Integro-Differential Equations with Weakly Singular Kernels. Fractal and Fractional, 5(3), 90. https://doi.org/10.3390/fractalfract5030090