Qualitative Study on Solutions of a Hadamard Variable Order Boundary Problem via the Ulam–Hyers–Rassias Stability
Abstract
:1. Introduction
2. Auxiliary Notions
- (1)
- A set is termed as a generalized interval whenever it is either a standard interval, a point, or ∅.
- (2)
- By assuming J as a generalized interval, a finite set consisting of generalized intervals contained in J is named a partition of J provided that every lies in exactly one of the generalized intervals E in .
- (3)
- By virtue of above notations, the function is defined to be a piecewise constant w.r.t. whenever , g admits constant values on E.
3. Existence Criterion and Ulam–Hyers–Rassias Stability
- (HP1)
- For , define
- (HP2)
- For , let and so that, for any and .
- (HP3)
- as an increasing mapping and so that ,
4. Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FDE | Fractional Differential Equation |
FBVP | Fractional Boundary Value Problem |
References
- Riaz, U.; Zada, A.; Ali, Z.; Popa, I.L.; Rezapour, S.; Etemad, S. On a Riemann-Liouville type implicit coupled system via generalized boundary conditions. Mathematics 2021, 9, 1205. [Google Scholar] [CrossRef]
- Afshari, H.; Kalantari, S.; Karapinar, E. Solution of fractional differential equations via coupled fixed point. Electron. J. Differ. Equ. 2015, 286, 2015. [Google Scholar]
- Shah, K.; Hussain, W. Investigating a class of nonlinear fractional differential equations and its Hyers-Ulamstability by means of topological degree theory. Numer. Funct. Anal. Optim. 2019, 40, 1355–1372. [Google Scholar] [CrossRef]
- Boutiara, A.; Etemad, S.; Hussain, A.; Rezapour, S. The generalized U-H and U-H stability and existence analysis of a coupled hybrid system of integro-differential IVPs involving φ-Caputo fractional operators. Adv. Differ. Equ. 2021, 2021, 95. [Google Scholar] [CrossRef]
- Ben Chikh, S.; Amara, A.; Etemad, S.; Rezapour, S. On Hyers-Ulam stability of a multi-order boundary value problems via Riemann-Liouville derivatives and integrals. Adv. Differ. Equ. 2020, 2020, 547. [Google Scholar] [CrossRef]
- Mohammadi, H.; Rezapour, S.; Etemad, S.; Baleanu, D. Two sequential fractional hybrid differential inclusions. Adv. Differ. Equ. 2020, 2020, 385. [Google Scholar] [CrossRef]
- Etemad, S.; Rezapour, S.; Sakar, F.M. On a fractional Caputo-Hadamard problem with boundary value conditions via different orders of the Hadamard fractional operators. Adv. Differ. Equ. 2020, 2020, 272. [Google Scholar] [CrossRef]
- Amara, A.; Etemad, S.; Rezapour, S. Topological degree theory and Caputo-Hadamard fractional boundary value problems. Adv. Differ. Equ. 2020, 2020, 369. [Google Scholar] [CrossRef]
- Alsaedi, A.; Baleanu, D.; Etemad, S.; Rezapour, S. On coupled systems of time-fractional differential problems by using a new fractional derivative. J. Funct. Spaces 2016, 2016, 4626940. [Google Scholar] [CrossRef]
- Shah, K.; Khan, R.A. Existence and uniqueness results to a coupled system of fractional order boundary value problems by topological degree theory. Numer. Funct. Anal. Optim. 2016, 37, 887–899. [Google Scholar] [CrossRef]
- Etemad, S.; Souid, M.S.; Telli, B.; Kaabar, M.K.A.; Rezapour, S. Investigation of the neutral fractional differential inclusions of Katugampola-type involving both retarded and advanced arguments via Kuratowski MNC technique. Adv. Differ. Equ. 2021, 2021, 214. [Google Scholar] [CrossRef]
- Matar, M.M. Approximate controllability of fractional nonlinear hybrid differential systems via resolvent operators. J. Math. 2019, 2019, 8603878. [Google Scholar] [CrossRef]
- Thaiprayoon, C.; Sudsutad, W.; Alzabut, J.; Etemad, S.; Rezapour, S. On the qualitative analysis of the fractional boundary value problem describing thermostat control model via ψ-Hilfer fractional operator. Adv. Differ. Equ. 2021, 2021, 201. [Google Scholar] [CrossRef]
- Alzabut, J.; Ahmad, B.; Etemad, S.; Rezapour, S.; Zada, A. Novel existence techniques on the generalized ϕ-Caputo fractional inclusion boundary problem. Adv. Differ. Equ. 2021, 2021, 135. [Google Scholar] [CrossRef]
- Zada, A.; Ali, S. Stability analysis of multi-point boundary value problem for sequential fractional differential equations with noninstantaneous impulses. Int. J. Nonlinear Sci. Numer. Simul. 2018, 19, 763–774. [Google Scholar] [CrossRef]
- Zada, A.; Ali, S.; Li, Y. Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous integral impulses and boundary condition. Adv. Differ. Equ. 2017, 2017, 317. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, P.; Ammi, R.; Asad, J. Existence and uniqueness results on time scales for fractional nonlocal thermistor problem in the conformable sense. Adv. Differ. Equ. 2021, 2021, 162. [Google Scholar] [CrossRef]
- Agarwal, P.; Attary, M.; Maghasedi, M.; Kumam, P. Solving higher-order boundary and initial value problems via Chebyshev-spectral method: Application in elastic foundation. Symmetry 2020, 12, 987. [Google Scholar] [CrossRef]
- Sunarto, A.; Agarwal, P.; Sulaiman, J.; Chew, J.V.L.; Momani, S. Quarter-sweep preconditioned relaxation method, algorithm and efficiency analysis for fractional mathematical equation. Fractal Fract. 2021, 5, 98. [Google Scholar] [CrossRef]
- Wang, B.; Jahanshahi, H.; Volos, C.; Bekiros, S.; Yusuf, A.; Agarwal, P.; Aly, A.A. Control of a symmetric chaotic supply chain system using a new fixed-time super-twisting sliding mode technique subject to control input limitations. Symmetry 2021, 13, 1257. [Google Scholar] [CrossRef]
- Samko, S.G. Fractional integration and differentiation of variable order. Anal. Math. 1995, 21, 213–236. [Google Scholar] [CrossRef]
- Akgul, A.; Inc, M.; Baleanu, D. On solutions of variable-order fractional differential equations. Int. J. Opt. Control Theor. Appl. 2017, 7, 112–116. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.G.; Chang, A.; Zhang, Y.; Chen, W. A review on variable-order fractional differential equations: Mathematical, foundations, physical models, and its applications. Fract. Calc. Appl. Anal. 2019, 22, 27–59. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S. Existence of solutions for two point boundary value problems with singular differential equations of variable order. Electron. J. Differ. Equ. 2013, 245, 1–16. [Google Scholar]
- Zhang, S.; Hu, L. Unique existence result of approximate solution to initial value problem for fractional differential equation of variable order involving the derivative arguments on the half-axis. Mathematics 2019, 7, 286. [Google Scholar] [CrossRef] [Green Version]
- Refice, A.; Souid, M.S.; Stamova, I. On the boundary value problems of Hadamard fractional differential equations of variable order via Kuratowski MNC technique. Mathematics 2021, 9, 1134. [Google Scholar] [CrossRef]
- Bouazza, Z.; Etemad, S.; Souid, M.S.; Rezapour, S.; Martinez, F.; Kaabar, M.K.A. A study on the solutions of a multiterm FBVP of variable order. J. Funct. Spaces 2021, 2021, 9939147. [Google Scholar]
- Li, N.; Wang, C. New existence results of positive solution for a class of nonlinear fractional differential equations. Acta Math. Sci. 2013, 33, 847–854. [Google Scholar] [CrossRef]
- Sousa, J.V.D.C.; de Oliveira, E.C. Two new fractional derivatives of variable order with non-singular kernel and fractional differential equation. Comput. Appl. Math. 2018, 37, 5375–5394. [Google Scholar] [CrossRef]
- Lin, R.; Liu, F.; Anh, V.; Turner, I. Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl. Math. Comput. 2009, 212, 435–445. [Google Scholar] [CrossRef] [Green Version]
- Hristova, S.; Benkerrouche, A.; Souid, M.S.; Hakem, A. Boundary value problems of Hadamard fractional differential equations of variable order. Symmetry 2021, 13, 896. [Google Scholar] [CrossRef]
- Benchohra, M.; Lazreg, J.E. Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative. Stud. Univ. Babes-Bolyai Math. 2017, 62, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Almeida, R.; Torres, D.F.M. Computing Hadamard type operators of variable fractional order. Appl. Math. Comput. 2015, 257, 74–88. [Google Scholar] [CrossRef] [Green Version]
- Almeida, R.; Tavares, D.; Torres, D.F.M. The Variable-Order Fractional Calculus of Variations, 1st ed.; Springer: Cham, Switzerland, 2019; ISBN 978-3-319-94005-2. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, 1st ed.; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; ISBN 0444518320. [Google Scholar]
- An, J.; Chen, P. Uniqueness of solutions to initial value problem of fractional differential equations of variable-order. Dyn. Sys. Appl. 2019, 28, 607–623. [Google Scholar]
- Zhang, S. The uniqueness result of solutions to initial value problems of differential equations of variable-order. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2018, 112, 407–423. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, L. The existence of solutions and generalized Lyapunov-type inequalities to boundary value problems of differential equations of variable order. AIMS Math. 2020, 5, 2923–2943. [Google Scholar] [CrossRef]
- Rus, I.A. Ulam stabilities of ordinary differential equations in a Banach space. Carpathian J. Math. 2010, 26, 103–107. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benkerrouche, A.; Souid, M.S.; Etemad, S.; Hakem, A.; Agarwal, P.; Rezapour, S.; Ntouyas, S.K.; Tariboon, J. Qualitative Study on Solutions of a Hadamard Variable Order Boundary Problem via the Ulam–Hyers–Rassias Stability. Fractal Fract. 2021, 5, 108. https://doi.org/10.3390/fractalfract5030108
Benkerrouche A, Souid MS, Etemad S, Hakem A, Agarwal P, Rezapour S, Ntouyas SK, Tariboon J. Qualitative Study on Solutions of a Hadamard Variable Order Boundary Problem via the Ulam–Hyers–Rassias Stability. Fractal and Fractional. 2021; 5(3):108. https://doi.org/10.3390/fractalfract5030108
Chicago/Turabian StyleBenkerrouche, Amar, Mohammed Said Souid, Sina Etemad, Ali Hakem, Praveen Agarwal, Shahram Rezapour, Sotiris K. Ntouyas, and Jessada Tariboon. 2021. "Qualitative Study on Solutions of a Hadamard Variable Order Boundary Problem via the Ulam–Hyers–Rassias Stability" Fractal and Fractional 5, no. 3: 108. https://doi.org/10.3390/fractalfract5030108
APA StyleBenkerrouche, A., Souid, M. S., Etemad, S., Hakem, A., Agarwal, P., Rezapour, S., Ntouyas, S. K., & Tariboon, J. (2021). Qualitative Study on Solutions of a Hadamard Variable Order Boundary Problem via the Ulam–Hyers–Rassias Stability. Fractal and Fractional, 5(3), 108. https://doi.org/10.3390/fractalfract5030108