Structure, Fractality, Mechanics and Durability of Calcium Silicate Hydrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydration of Tricalcium Silicate and Dicalcium Silicate
2.2. Sol-Gel Method
2.3. Chemical Coprecipitation Method
2.4. Hydrothermal Synthesis Method
3. C-S-H Structure
3.1. Study on the Structure of C-S-H
3.2. C-S-H Theoretical Models
- Powers–Brownyard model;
- Feldman–Sereda model;
- Munich model;
- Tobermorite–jennite model;
- Simulated model;
4. Fractality of C-S-H
5. Mechanical Properties of C-S-H
5.1. Mechanical Experiments
5.2. Mechanical Simulation
6. Durability of C-S-H
6.1. C-S-H Carbonization
6.2. Micro-Nano Structure of C-S-H under Chloride Attack
6.3. Micro-Nano Structure of C-S-H under Sulfate Attack
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gunasekaran, K.; Kumar, P.S.; Lakshmipathy, M. Mechanical and bond properties of coconut shell concrete. Constr. Build. Mater. 2011, 25, 92–98. [Google Scholar] [CrossRef]
- Mannan, M.A.; Ganapathy, C. Engineering properties of concrete with oil palm shell as coarse aggregate. Constr. Build. Mater. 2002, 16, 29–34. [Google Scholar] [CrossRef]
- Wang, L.; He, T.; Zhou, Y.; Tang, S.; Tan, J.; Liu, Z.; Su, J. The influence of fiber type and length on the cracking resistance, durability and pore structure of face slab concrete. Constr. Build. Mater. 2021, 282, 122706. [Google Scholar] [CrossRef]
- Wang, L.; Luo, R.; Zhang, W.; Jin, M.; Tang, S. Effects of fineness and content of phosphorus slag on cement hydration, permeability, pore structure and fractal dimension of concrete. Fractals 2021, 29, 2140004. [Google Scholar] [CrossRef]
- Picker, A.; Nicoleau, L.; Burghard, Z.; Bill, J.; Zlotnikov, I.; Labbez, C.; Nonat, A.; Cölfen, H. Mesocrystalline calcium silicate hydrate: A bioinspired route toward elastic concrete materials. Sci. Adv. 2017, 3, e1701216. [Google Scholar] [CrossRef] [Green Version]
- Hou, D.; Zhao, T.; Ma, H.; Li, Z. Reactive molecular simulation on water confined in the nanopores of the valcium silicate hydrate gel: Structure, reactivity, and mechanical properties. J. Phys. Chem. C 2015, 119, 1346–1358. [Google Scholar] [CrossRef]
- Picker, A.; Nicoleau, L.; Nonat, A.; Labbez, C.; Cölfen, H. Identification of binding peptides on calcium silicate hydrate: A novel view on vement additives. Adv. Mater. 2014, 26, 1135–1140. [Google Scholar] [CrossRef] [PubMed]
- DeJong, M.J.; Ulm, F.-J. The nanogranular behavior of C-S-H at elevated temperatures (up to 700 °C). Cem. Concr. Res. 2007, 37, 1–12. [Google Scholar] [CrossRef]
- Missana, T.; García-Gutiérrez, M.; Mingarro, M.; Alonso, U. Analysis of barium retention mechanisms on calcium silicate hydrate phases. Cem. Concr. Res. 2017, 93, 8–16. [Google Scholar] [CrossRef]
- Kilcoyne, D.; Monteiro, P.; Yoon, S.; Ha, J.; Chae, S. X-ray spectromicroscopic study of interactions between NaCl and calcium silicate hydrates. Mag. Concr. Res. 2014, 66, 141–149. [Google Scholar] [CrossRef]
- Wang, L.; Guo, F.; Lin, Y.; Yang, H.; Tang, S. Comparison between the effects of phosphorous slag and fly ash on the C-S-H structure, long-term hydration heat and volume deformation of cement-based materials. Constr. Build. Mater. 2020, 250, 118807. [Google Scholar] [CrossRef]
- Wang, L.; Yang, H.; Zhou, S.; Chen, E.; Tang, S. Hydration, mechanical property and C-S-H structure of early-strength low-heat cement-based materials. Mater. Lett. 2018, 217, 151–154. [Google Scholar] [CrossRef]
- Zhou, W.; Duan, L.; Tang, S.; Chen, E.; Hanif, A. Modeling the evolved microstructure of cement pastes governed by diffusion through barrier shells of C-S-H. J. Mater. Sci. 2019. [Google Scholar] [CrossRef]
- Tang, S.; Hubao, A.; Chen, J.; Yu, W.; He, Z. The interactions between water molecules and C-S-H surfaces in loads-induced nanopores: A molecular dynamics study. Appl. Surf. Sci. 2019, 496, 143744. [Google Scholar] [CrossRef]
- Wang, L.; Dong, Y.; Zhou, S.; Chen, E.; Tang, S. Energy saving benefit, mechanical performance, volume stabilities, hydration properties and products of low heat cement-based materials. Energ. Bulidings 2018, 170, 157–169. [Google Scholar] [CrossRef]
- Youssef, M.; Pellenq, R.J.M.; Yildiz, B. Glassy Nature of Water in an Ultraconfining Disordered Material: The Case of Calcium−Silicate−Hydrate. J. Am. Chem. Soc. 2011, 133, 2499–2510. [Google Scholar] [CrossRef]
- Tang, S.; Li, Z.; Chen, E.; Shao, H. Impedance measurement to characterize the pore structure in Portland cement paste. Constr. Build. Mater. 2014, 51, 106–112. [Google Scholar] [CrossRef]
- Tang, S.; Li, Z.; Zhu, H.G.; Shao, H.; Chen, E. Permeability interpretation for young cement paste based on impedance measurement. Constr. Build. Mater. 2014, 59, 120–128. [Google Scholar] [CrossRef]
- Tang, S.; Chen, E.; Shao, H.; Li, Z. A fractal approach to determine thermal conductivity in cement pastes. Constr. Build. Mater. 2015, 74. [Google Scholar] [CrossRef]
- Tang, S.; Chen, E.; Li, Z.; Shao, H. Assessment of steady state diffusion of volatile organic compounds in unsaturated building materials based on fractal diffusion model. Build. Environ. 2015, 84. [Google Scholar] [CrossRef]
- Tang, S.; Cai, X.; He, Z.; Zhou, W.; Shao, H.; Li, Z.; Wu, T.; Chen, E. The review of pore structure evaluation in cementitious materials by electrical methods. Constr. Build. Mater. 2016, 117, 273–284. [Google Scholar] [CrossRef]
- Janik, J.A.; Kurdowski, W.; PodsiadŁy, R.; Samseth, J. Fractal structure of C-S-H and tobermorite phases. Acta Phys. Pol. A 2001, 100, 529–537. [Google Scholar] [CrossRef]
- Wu, T.; Li, C.; Wang, Y.; Li, Y.; Tang, S.; Borg, R.P. Improved non-contact variable-frequency AC impedance instrument for cement hydration and pore structure based on SVM calibration method. Measurement 2021, 179, 109402. [Google Scholar] [CrossRef]
- Wang, L.; Jin, M.; Wu, Y.; Zhou, Y.; Tang, S. Hydration, shrinkage, pore structure and fractal dimension of silica fume modified low heat Portland cement-based materials. Constr. Build. Mater. 2021, 272, 121952. [Google Scholar] [CrossRef]
- Wang, L.; Guo, F.; Yang, H.; Wang, Y.; Tang, S. Comparison of fly ash, PVA fiber, MgO and shrinkage-reducing admixture on the frost resistance of face slab concrete via pore structural and fractal analysis. Fractals 2021, 29, 214002. [Google Scholar] [CrossRef]
- Daimon, M.; Abo-El-Enein, S.A.; Rosara, G.; Goto, S.; Kondo, R. Pore structure of calcium silicate hydrate in hydrated tricalcium silicate. J. Am. Ceram. Soc. 1977, 60, 110–114. [Google Scholar] [CrossRef]
- Lawrencejr, F.; Young, J. Studies on the hydration of tricalcium silicate pastes I. Scanning electron microscopic examination of microstructural features. Cem. Concr. Res. 1973, 3, 149–161. [Google Scholar] [CrossRef]
- Goto, S.; Daimon, M.; Hosaka, G.; Kondo, R. Composition and morphology of hydrated tricalcium silicate. J. Am. Ceram. Soc. 2006, 59, 281–284. [Google Scholar] [CrossRef]
- Ciach, T.; Gillott, J.; Swenson, E.; Sereda, P. Microstructure of calcium silicate hydrate. Cem. Concr. Res. 1971, 1. [Google Scholar] [CrossRef] [Green Version]
- Jennings, H.; Dalgleish, B.; Pratt, P. Morpholgical development of hydrating calcium silicate as examined by electron microscopy techniques. J. Am. Ceram. Soc. 1981, 64, 567–572. [Google Scholar] [CrossRef]
- Stucke, M.S.; Majumdar, A.J. The morphology and composition of an immature C3S paste. Cem. Concr. Res. 1977, 7, 711–718. [Google Scholar] [CrossRef]
- Alizadeh, A.; Raki, L.; Makar, J.; Beaudoin, J.; Moudrakovski, I. Hydration of tricalcium silicate in the presence of synthetic calcium-silicate-hydrate. J. Mater. Chem. 2009, 19. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Diallo, F. Seeding effect of nano-CaCO3 on the hydration of tricalcium silicate. Transp. Res. Rec. 2010, 2141, 61–67. [Google Scholar] [CrossRef]
- Gauffinet, S. Hydration of alite containing aluminium. Adv. Appl. Ceram. 2020. [Google Scholar] [CrossRef]
- Fernandez, L.; Alonso, C.; Hidalgo, A.; Andrade, C. The role of magnesium during the hydration of C3S and C-S-H formation. Scanning electron microscopy and mid-infrared studies. Adv. Cem. Res. 2005, 17, 9–21. [Google Scholar] [CrossRef]
- Tajuelo Rodriguez, E.; Richardson, I.G.; Black, L.; Boehm-Courjault, E.; Nonat, A.; Skibsted, J. Composition, silicate anion structure and morphology of calcium silicate hydrates (C-S-H) synthesised by silica-lime reaction and by controlled hydration of tricalcium silicate (C3S). Adv. Appl. Ceram. 2015, 114, 362–371. [Google Scholar] [CrossRef] [Green Version]
- Gauffinet, S.; Finot, E.; Lesniewska, E.; Nonat, A. Study of C-S-H growth on C3S surface during its early hydration. Mater. Struct. 2004, 38, 435–442. [Google Scholar] [CrossRef]
- Herrero, M.J.; Fernández-Jiménez, A.; Palomo, A. Alkaline hydration of C2S and C3S. J. Am. Ceram. Soc. 2015, 99. [Google Scholar] [CrossRef]
- Minet, J.; Abramson, S.; Bresson, B.; Franceschini, A.; Van Damme, H.; Lequeux, N. Organic calcium silicate hydrate hybrids: A new approach to cement based nanocomposites. J. Mater. Chem. 2006, 16, 1379–1383. [Google Scholar] [CrossRef]
- Suzuki, S.; Sinn, E. Observation of calcium silicate hydrate by the precipitation method. J. Mater. Sci. Lett. 1994, 13, 1058–1060. [Google Scholar] [CrossRef]
- Russias, J.; Frizon, F.; Cau-Dit-Coumes, C.; Malchere, A.; Douillard, T.; Joussot-Dubienz, C. Incorporation of aluminum into C-S-H structures: From synthesis to nanostructural characterization. J. Am. Ceram. Soc. 2008, 91, 2337–2342. [Google Scholar] [CrossRef]
- Pelisser, F.; Gleize, P.J.P.; Mikowski, A. Structure and micro-nanomechanical characterization of synthetic calcium-silicate-hydrate with poly(vinyl alcohol). Cem. Concr. Compos. 2014, 48, 1–8. [Google Scholar] [CrossRef]
- Mojumdar, S.C.; Raki, L. Preparation and properties of calcium silicate hydrate-poly(vinyl alcohol) nanocomposite materials. J. Therm. Anal. Calorim. 2005, 82, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Mostafa, N.Y.; Kishar, E.A.; Abo-El-Enein, S.A. FTIR study and cation exchange capacity of Fe3+- and Mg2+-substituted calcium silicate hydrates. J. Alloy. Compd. 2009, 473, 538–542. [Google Scholar] [CrossRef]
- Youssef, H.; Ibrahim, D.; Komarneni, S.; Mackenzie, K.J.D. Synthesis of 11Å Al-substituted tobermorite from trachyte rock by hydrothermal treatment. Ceram. Int. 2010, 36, 203–209. [Google Scholar] [CrossRef]
- Mortel, H. Mineralbestand, Gefuge und physikalische Eigenschaften von Kalksandsteinen. Fortschr. Mineral. 1980, 58, 37–67. [Google Scholar]
- Okada, Y.; Ishida, H.; Mitsuda, T. 29Si NMR spectroscopy of silicate anions in hydrothermally formed C-S-H. J. Am. Ceram. Soc. 1994, 77, 765–768. [Google Scholar] [CrossRef]
- Števula, L.; Petrovič, J. Formation of an intermediate C-S-H phase during the hydrothermal synthesis of gyrolite. Cem. Concr. Res. 1983, 13, 684–688. [Google Scholar] [CrossRef]
- Siauciunas, R.; Baltakys, K. Formation of gyrolite during hydrothermal synthesis in the mixtures of CaO and amorphous SiO2 or quartz. Cem. Concr. Res. 2004, 34, 2029–2036. [Google Scholar] [CrossRef]
- Diamond, S.; Dolch, W.; White, J. Effects of isomorphous substitution in hydrothemal-synthesized Tobermorite: Technical paper. Am. Mineral. 2020, 51 Pt 1, 388–401. [Google Scholar] [CrossRef] [Green Version]
- Nocuń-Wczelik, W. Effect of some inorganic admixtures on the formation and properties of calcium silicate hydrates produced in hydrothermal conditions. Cem. Concr. Res. 1997, 27, 83–92. [Google Scholar] [CrossRef]
- Miyake, M.; Komarneni, S.; Roy, R. Kinetics, equilibria and thermodynamics of ion exchange in substituted tobermorites. Mater. Res. Bull. 1989, 24, 311–320. [Google Scholar] [CrossRef]
- Hartmann, A.; Buhl, J.C. The influence of sucrose on the crystallization behaviour in the system CaO-SiO2-C12H22O11-H2O under hydrothermal conditions. Mater. Res. Bull. 2010, 45, 396–402. [Google Scholar] [CrossRef]
- Hartmann, A.; Khakhutov, M.; Buhl, J.C. Hydrothermal synthesis of CSH-phases (tobermorite) under influence of Ca-formate. Mater. Res. Bull. 2014, 51, 389–396. [Google Scholar] [CrossRef]
- Huang, X.; Jiang, D.; Tan, S. Novel hydrothermal synthesis method for tobermorite fibers and investigation on their thermal stability. Mater. Res. Bull. 2002, 37, 1885–1892. [Google Scholar] [CrossRef]
- Chappuis, J. A new model for a better understanding of the cohesion of hardened hydraulic materials. Colloids Surf. Physicochem. Eng. Asp. 1999, 156, 223–241. [Google Scholar] [CrossRef]
- Viehland, D.; Li, J.-F.; Yuan, L.-J.; Xu, Z. Mesostructure of calcium silicate hydrate (C-S-H) gels in Portland cement paste: Short-range ordering, nanocrystallinity, and local compositional order. J. Am. Ceram. Soc. 1996, 79, 1731–1744. [Google Scholar] [CrossRef]
- Diamond, S. Cement paste microstructure—An overview at several levels. Cem. Concr. Assoc. 1976, 33, 5–31. [Google Scholar]
- He, Y.; Zhao, X.; Lu, L.; Struble, L.J.; Hu, S. Effect of C/S ratio on morphology and structure of hydrothermally synthesized calcium silicate hydrate. J. Wuhan Univ. Technol. Mater. Sci. 2011, 26, 770–773. [Google Scholar] [CrossRef]
- Diamond, S. Identification of hydrated cement constituents using a scanning electron microscope energy dispersive X-ray spectrometer combination. Cem. Concr. Res. 1972, 2, 617–632. [Google Scholar] [CrossRef]
- Escalante-Garcia, J.I.; Mendoza, G.; Sharp, J.H. Indirect determination of the Ca/Si ratio of the C-S-H gel in Portland cements. Cem. Concr. Res. 1999, 29, 1999–2003. [Google Scholar] [CrossRef]
- Taylor, R.; Richardson, I.G.; Brydson, R.M.D. Nature of C-S-H in 20 year old neat ordinary Portland cement and 10% Portland cement-90% ground granulated blast furnace slag pastes. Adv. Appl. Ceram. 2007, 106, 294–301. [Google Scholar] [CrossRef]
- Garbev, K.; Bornefeld, M.; Beuchle, G.; Stemmermann, P. Cell dimensions and composition of nanocrystalline calcium silicate hydrate solid solutions. Part 2: X-Ray and thermogravimetry study. J. Am. Ceram. Soc. 2008, 91, 3015–3023. [Google Scholar] [CrossRef]
- Chatterji, S. CaO/SiO2 mole ratio of calcium silicate hydrate in fully hydrated tricalcium silicate paste. Cem. Concr. Res. 1980, 10, 783–787. [Google Scholar] [CrossRef]
- Hou, D. Molecular Simulation on Cement-Based Materials; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Greener, J.; Peemoeller, H.; Choi, C.; Holly, R.; Reardon, E.J.; Hansson, C.M.; Pintar, M.M. Monitoring of hydration of white cement paste with proton NMR spin–spin relaxation. J. Am. Ceram. Soc. 2000, 83, 623–627. [Google Scholar] [CrossRef]
- Wang, P.S.; Ferguson, M.M.; Eng, G.; Bentz, D.P.; Ferraris, C.F.; Clifton, J.R. 1H nuclear magnetic resonance characterization of Portland cement: Molecular diffusion of water studied by spin relaxation and relaxation time-weighted imaging. J. Mater. Sci. 1998, 33, 3065–3071. [Google Scholar] [CrossRef]
- Bordallo, H.N.; Aldridge, L.P.; Desmedt, A. Water dynamics in hardened ordinary Portland cement paste or concrete: From quasielastic neutron scattering. J. Phys. Chem. B 2006, 110, 17966–17976. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, Z.; Li, Z. The structure of silicate ions in C-S-H discussed from chemical composition. Adv. Cem. Res. 2012, 24, 263–281. [Google Scholar] [CrossRef]
- Jennings, H.M. Refinements to colloid model of C-S-H in cement: CM-II. Cem. Concr. Res. 2008, 38, 275–289. [Google Scholar] [CrossRef]
- Brunauer, S.; Kantro, D.L.; Copeland, L.E. The stoichiometry of the hydration of β-dicalcium silicate and tricalcium silicate at room temperature. J. Am. Chem. Soc. 1958, 80, 761–767. [Google Scholar] [CrossRef]
- Allen, A.J.; Thomas, J.J.; Jennings, H.M. Composition and density of nanoscale calcium-silicate-hydrate in cement. Nat. Mater. 2007, 6, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Zanni, H.; Rassem-Bertolo, R.; Masse, S.; Fernandez, L.; Nieto, P.; Bresson, B. A spectroscopic NMR investigation of the calcium silicate hydrates present in cement and concrete. Magn. Reson. Imaging 1996, 14, 827–831. [Google Scholar] [CrossRef]
- Johansson, K.; Larsson, C.; Antzutkin, O.N.; Forsling, W.; Kota, H.R.; Ronin, V. Kinetics of the hydration reactions in the cement paste with mechanochemically modified cement 29Si magic-angle-spinning NMR study. Cem. Concr. Res. 1999, 29, 1575–1581. [Google Scholar] [CrossRef]
- Cong, X.; Kirkpatrick, R.J. 29Si MAS NMR study of the structure of calcium silicate hydrate. Adv. Cem. Based Mater. 1996, 3, 144–156. [Google Scholar] [CrossRef]
- Gautham, S.; Sasmal, S. Determination of fracture toughness of nano-scale cement composites using simulated nanoindentation technique. Theor. Appl. Fract. Mech. 2019, 103, 102275. [Google Scholar] [CrossRef]
- Chen, J.J.; Thomas, J.J.; Taylor, H.F.W.; Jennings, H.M. Solubility and structure of calcium silicate hydrate. Cem. Concr. Res. 2004, 34, 1499–1519. [Google Scholar] [CrossRef] [Green Version]
- Black, L.; Garbev, K.; Stemmermann, P.; Hallam, K.R.; Allen, G.C. Characterisation of crystalline C-S-H phases by X-ray photoelectron spectroscopy. Cem. Concr. Res. 2003, 33, 899–911. [Google Scholar] [CrossRef]
- García-Lodeiro, I.; Fernández-Jiménez, A.; Sobrados, I.; Sanz, J.; Palomo, A. C-S-H gels: Interpretation of 29Si MAS-NMR spectra. J. Am. Ceram. Soc. 2012, 95, 1440–1446. [Google Scholar] [CrossRef]
- Richardson, I.G.; Brough, A.R.; Brydson, R.; Groves, G.W.; Dobson, C.M. Location of aluminum in substituted calcium silicate hydrate (C-S-H) gels as determined by 29Si and 27Al NMR and EELS. J. Am. Ceram. Soc. 1993, 76, 2285–2288. [Google Scholar] [CrossRef]
- Powers, T.C. Mechanism of shrinkage and reversible creep of hardened cement paste. Proc. Int. Conf. Lond. 1965, 1965. [Google Scholar]
- Mondal, P. Nanomechanical Properties of Cementitious Materials. Ph.D. Dissertation, Northwestern University, Evanston, IL, USA, 2008. [Google Scholar]
- Feldman, R.F.; Sereda, P.J. A model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties. Mater. Constr. 1968, 1, 509–520. [Google Scholar] [CrossRef] [Green Version]
- Wittmann, F.H. The structure of hardened cement paste-A basis for a better understanding of the materials properties. Proc. Int. Conf. Hydraul. Cem. Pastes Struct. Prop. 1976, 16, 96–117. [Google Scholar]
- Bonaccorsi, E.; Merlino, S.; Kampf, A. The crystal structure of Tobermorite 14 Å (Plombierite), a C-S-H phase. J. Am. Ceram. Soc. 2005, 88, 505–512. [Google Scholar] [CrossRef]
- Shahsavari, R.; Buehler, M.; Pellenq, R.; Ulm, F.-J. First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: Case study of Tobermorite and Jennite. J. Am. Ceram. Soc. 2009, 92, 2323–2330. [Google Scholar] [CrossRef]
- Bonaccorsi, E.; Merlino, S.; Taylor, H.F.W. The crystal structure of jennite, Ca9Si6O18(OH)(6)·8H2O. Cem. Concr. Res. 2004, 34, 1481–1488. [Google Scholar] [CrossRef]
- Hou, D.; Zhang, W.; Wang, P.; Wang, M.; Zhang, H. Mesoscale insights on the structure, mechanical performances and the damage process of calcium-silicate-hydrate. Constr. Build. Mater. 2021, 287, 123031. [Google Scholar] [CrossRef]
- Taylor, H. Proposed struture for calcium silicate hydrate gel. J. Am. Ceram. Soc. 2005, 69, 464–467. [Google Scholar] [CrossRef]
- Yu, P.; Kirkpatrick, R.; Poe, B.; McMillan, P.; Cong, X. Structure of calcium silicate hydrate (C-S-H): Near-, mid-, and far-infrared spectroscopy. J. Am. Ceram. Soc. 2004, 82, 742–748. [Google Scholar] [CrossRef]
- Komarneni, S.; Roy, D.M.; Fyfe, C.A.; Kennedy, G.J. Naturally occurring 1.4 nm tobermorite and synthetic jennite: Characterization by 27Al and 29Si MAS-NMR spectroscopy and cation exchange properties. Cem. Concr. Res. 1987, 17, 891–895. [Google Scholar] [CrossRef]
- Sumetsky, M.; Dulashko, Y. Radius variation of optical fibers with angstrom accuracy. Opt. Lett. 2010, 35, 4006–4008. [Google Scholar] [CrossRef]
- Claringbull, G. A re-examination of Tobermorite. Miner. Mag. 1952, 29, 960–962. [Google Scholar] [CrossRef]
- Skinner, L.; Chae, S.; Benmore, C.; Wenk, H.-R.; Monteiro, P. Nanostructure of calcium silicate hydrates in cements. Phys. Rev. Lett. 2010, 104, 195502. [Google Scholar] [CrossRef] [PubMed]
- Richardson, I.G. The calcium silicate hydrates. Cem. Concr. Res. 2008, 38, 137–158. [Google Scholar] [CrossRef]
- Richardson, I.G. The nature of C-S-H in hardened cements. Cem. Concr. Res. 1999, 29. [Google Scholar] [CrossRef]
- Richardson, I.G.; Groves, G.W. The incorporation of minor trace elements into calcium silicate hydrate (C-S-H) gel in hardened cement pastes. Cem. Concr. Res. 1993, 23, 131–138. [Google Scholar] [CrossRef]
- Grutzeck, M.W. A new model for the formation of calcium silicate hydrate (c-s-h). Mater. Res. Innov. 1999, 3, 160–170. [Google Scholar] [CrossRef]
- Gmira, A. Microscopic physical basis of the poromechanical behavior of cement-based materials. Mater. Struct. 2003, 37, 3–14. [Google Scholar] [CrossRef]
- Pellenq, R.; Lequeux, N.; Van Damme, H. Engineering the bonding scheme in C-S-H: The iono-covalent framework. Cem. Concr. Res. 2008, 38, 159–174. [Google Scholar] [CrossRef]
- Pellenq, R.; Kushima, A.; Shahsavari, R.; Van Vliet, K.; Buehler, M.; Yip, S.; Ulm, F.-J. A realistic molecular model of cement hydrates. Proc. Natl. Acad. Sci. USA 2009, 106, 16102–16107. [Google Scholar] [CrossRef] [Green Version]
- Dolado, J.; Griebel, M.; Hamaekers, J. A molecular dynamic study of cementitious calcium silicate hydrate (C-S-H) gels. J. Am. Ceram. Soc. 2007, 90, 3938–3942. [Google Scholar] [CrossRef]
- Cannon, J.; Mandelbrot, B. The fractal geometry of nature. Am. Math. Mon. 1984, 91, 594. [Google Scholar] [CrossRef]
- Thormann, J.; Pfeifer, P.; Kunz, U. Dynamic performance of hexadecane steam reforming in a microstructured reactor. Chem. Eng. J. 2012, 191, 410–415. [Google Scholar] [CrossRef]
- Dobrescu, G.; Berger, D.; Papa, F.; Ionescu, N.I. Fractal dimensions of lanthanum ferrite samples by adsorption isotherm method. Appl. Surf. Sci. 2003, 220, 154–158. [Google Scholar] [CrossRef]
- Han, K.K.; Zhou, Y.; Lin, W.G.; Zhu, J.H. One-pot synthesis of foam-like magnesia and its performance in CO2 adsorption. Microporous Mesoporous Mater. 2013, 169, 112–119. [Google Scholar] [CrossRef]
- Kriechbaum, M.; Degovics, G.; Tritthart, J.; Laggner, P. Fractal structure of Portland cement paste during age hardening analyzed by small-angle X-ray scattering. Prog. Colloid Polym. Sci. 1989, 79, 101–105. [Google Scholar] [CrossRef]
- Tang, S.W.; He, Z.; Cai, X.H.; Cai, R.J.; Zhou, W.; Li, Z.J.; Shao, H.Y.; Wu, T.; Chen, E. Volume and surface fractal dimensions of pore structure by NAD and LT-DSC in calcium sulfoaluminate cement pastes. Constr. Build. Mater. 2017, 143, 395–418. [Google Scholar] [CrossRef]
- Fernández-Martínez, M. A survey on fractal dimension for fractal structures. Appl. Math. Nonlinear Sci. 2016, 1, 437–472. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Martínez, M.; Sánchez-Granero, M. Fractal dimension for fractal structures. Topol. Appl. 2014, 163, 93–111. [Google Scholar] [CrossRef]
- Ai, T.; Zhang, R.; Zhou, H.W.; Pei, J.L. Box-counting methods to directly estimate the fractal dimension of a rock surface. Appl. Surf. Sci. 2014, 314, 610–621. [Google Scholar] [CrossRef]
- Yuan, C.Q.; Li, J.; Yan, X.P.; Peng, Z. The use of the fractal description to characterize engineering surfaces and wear particles. Wear 2003, 255, 315–326. [Google Scholar] [CrossRef]
- Yu, F.; Sun, D.; Wang, J.; Hu, M. Influence of aggregate size on compressive strength of pervious concrete. Constr. Build. Mater. 2019, 209, 463–475. [Google Scholar] [CrossRef]
- Liebovitch, L.S.; Toth, T. A fast algorithm to determine fractal dimensions by box counting. Phys. Lett. A 1989, 141, 386–390. [Google Scholar] [CrossRef]
- Buczkowski, S.; Kyriacos, S.; Nekka, F.; Cartilier, L. The modified box-counting method: Analysis of some characteristic parameters. Pattern Recogn. 1998, 31, 411–418. [Google Scholar] [CrossRef]
- Pentland, A. Fractal-based description of natural scenes. IEEE Trans. Pattern Anal. Mach. Intell. 1984, 6, 661–674. [Google Scholar] [CrossRef] [PubMed]
- Krantz, S.G. Fractal geometry. Math. Intell. 1989, 11, 12–16. [Google Scholar] [CrossRef]
- Pfeifer, P. Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces. Chem. Phys. 1984, 80. [Google Scholar] [CrossRef]
- Sarkar, N.; Chaudhuri, B. An efficient differential box counting approach to compute fractal dimension of image. IEEE Trans. Syst. Man Cybern. 1994, 24, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Lü, Q.; Qiu, Q.; Zheng, J.; Wang, J.; Zeng, Q. Fractal dimension of concrete incorporating silica fume and its correlations to pore structure, strength and permeability. Constr. Build. Mater. 2019, 228, 116986. [Google Scholar] [CrossRef]
- Fernández-Martínez, M.; Guirao, J. An intelligent approach for curve filling. J. Intell. Fuzzy Syst. 2018, 35, 3931–3936. [Google Scholar] [CrossRef]
- Sánchez-Granero, M.; Fernández-Martínez, M. Calculating Hausdorff Dimension in Higher Dimensional Spaces. Symmetry 2019, 11, 564. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Martínez, M.; Rodríguez-Bermúdez, G.; Vera, J. On discrete models of fractal dimension to explore the complexity of discrete dynamical systems. J. Differ. Equ. Appl. 2016, 1–17. [Google Scholar] [CrossRef]
- Miller, M.; Bobko, C.; Vandamme, M.; Ulm, F.-J. Surface roughness criteria for cement paste nanoindentation. Cem. Concr. Res. 2008, 38, 467–476. [Google Scholar] [CrossRef]
- Shen, W.; Gan, G.; Dong, R.; Tan, Y.; Chen, H.; Xiao, L. Fabrication and characterization of nano colloid surfaced concrete. Mater. Struct. 2011, 44, 1559. [Google Scholar] [CrossRef]
- Tang, S.; Huang, J.; Duan, L.; Yu, P.; Chen, E. A review on fractal footprint of cement-based materials. Powder Technol. 2020, 370, 237–250. [Google Scholar] [CrossRef]
- Tang, S.; Cai, R.; He, Z.; Cai, X.; Shao, H.; Li, Z.; Yang, H.; Chen, E. Continuous microstructural correlation of slag/superplasticizer cement pastes by heat and impedance methods via fractal analysis. Fractals 2017, 25. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; Wang, L.; Cai, R.; Cai, X.; He, Z.; Chen, E. The evaluation of electrical impedance of three-dimensional fractal networks embedded in a cube. Fractals 2017, 25. [Google Scholar] [CrossRef]
- Tang, S.; Yu, P.; Wang, L.; Cai, R.; Chen, E. The analysis of thermal resistance of three dimensional fractal networks embedded in a sphere. Fractals 2018, 26. [Google Scholar] [CrossRef]
- Yu, P.; Duan, Y.H.; Chen, E.; Tang, S.; Wang, X.R. Microstructure-based fractal models for heat and mass transport properties of cement paste. Int. J. Heat Mass Transf. 2018, 126, 432–447. [Google Scholar] [CrossRef]
- Shen, W.; Zhang, T.; Hu, J.; Ma, W.; Zhou, M. Self similarity of the spherical C-S-H particle in cement paste. J. Wuhan Univ. Technol. Mater. Sci. 2009, 24, 684–687. [Google Scholar] [CrossRef]
- Yang, J.; Huang, J.; He, X.; Su, Y.; Tan, H.; Chen, W.; Wang, X.; Strnadel, B. Segmented fractal pore structure covering nano- and micro-ranges in cementing composites produced with GGBS. Constr. Build. Mater. 2019, 225, 1170–1182. [Google Scholar] [CrossRef]
- Luan, Y.; Ishida, T.; Nawa, T.; Sagawa, T. Enhanced model and simulation of hydration process of blast furnace slag in blended cement. J. Adv. Concr. Technol. 2012, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Richardson, I.G. Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: Applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume. Cem. Concr. Res. 2004, 34, 1733–1777. [Google Scholar] [CrossRef]
- Kim, J.; Choi, Y.C.; Choi, S. Fractal characteristics of pore structures in GGBFS-based cement pastes. Appl. Surf. Sci. 2018, 428, 304–314. [Google Scholar] [CrossRef]
- Zeng, Q.; Li, K.; Fen-Chong, T.; Dangla, P. Surface fractal analysis of pore structure of high-volume fly-ash cement pastes. Appl. Surf. Sci. 2010, 257, 762–768. [Google Scholar] [CrossRef]
- Jennings, H.; Thomas, J.; Gevrenov, J.; Constantinides, G.; Ulm, F.-J. A multi-technique investigation of the nanoporosity of cement paste. Cem. Concr. Res. 2007, 37, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Thomas, J.; Jennings, H. A colloidal interpretation of chemical aging of the C-S-H gel and its effects on the properties of cement paste. Cem. Concr. Res. 2006, 36, 30–38. [Google Scholar] [CrossRef]
- Zeng, Q.; Luo, M.; Pang, X.; Li, L.; Li, K. Surface fractal dimension: An indicator to characterize the microstructure of cement-based porous materials. Appl. Surf. Sci. 2013, 282, 302–307. [Google Scholar] [CrossRef]
- Winslow, D.; Bukowski, J.; Young, J. The fractal arrangement of hydrated cement paste. Cem. Concr. Res. 1995, 25. [Google Scholar] [CrossRef]
- Livingston, R. Fractal nucleation and growth model for the hydration of tricalcium silicate. Cem. Concr. Res. 2000, 30, 1853–1860. [Google Scholar] [CrossRef]
- Thomas, J.; Chen, J.; Allen, A.; Jennings, H. Effects of decalcification on the microstructure and surface area of cement and tricalcium silicate pastes. Cem. Concr. Res. 2004, 34, 2297–2307. [Google Scholar] [CrossRef]
- Ridi, F.; Fratini, E.; Baglioni, P. Fractal structure evolution during cement hydration by differential scanning calorimetry: Effect of organic additives. J. Phys. Chem. C 2013, 117, 25478–25487. [Google Scholar] [CrossRef]
- Duan, P.; Shui, Z.; Chen, W.; Shen, C. Influence of superplasticizer on composition and pore structure of C-S-H. Constr. Build. Mater. 2013, 44, 87–91. [Google Scholar] [CrossRef]
- Wang, L.; Jin, M.; Guo, F.; Wang, Y.; Tang, S. Pore structural and fractal analysis of the influence of fly ash and silica fume on the mechanical property and abrasion resistance of concrete. Fractals 2020, 29, 214003. [Google Scholar] [CrossRef]
- Zhu, W.; Hughes, J.; Bicanic, N.; Pearce, C. Nanoindentation mapping of mechanical properties of cement paste and natural rocks. Mater. Charact. 2007, 58, 1189–1198. [Google Scholar] [CrossRef]
- Constantinides, G.; Ulm, F.-J. The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling. Cem. Concr. Res. 2004, 34, 67–80. [Google Scholar] [CrossRef]
- Hu, C.; Han, Y.; Gao, Y.; Zhang, Y.; Li, Z. Property investigation of calcium-silicate-hydrate (C-S-H) gel in cementitious composites. Mater. Charact. 2014, 95, 129–139. [Google Scholar] [CrossRef]
- Sebastiani, M.; Moscatelli, R.; Ridi, F.; Baglioni, P.; Carassiti, F. High-resolution high-speed nanoindentation mapping of cement pastes: Unravelling the effect of microstructure on the mechanical properties of hydrated phases. Mater. Des. 2016, 97, 372–380. [Google Scholar] [CrossRef]
- Hou, D.; Li, H.; Zhang, L.; Zhang, J. Nano-scale mechanical properties investigation of C-S-H from hydrated tri-calcium silicate by nano-indentation and molecular dynamics simulation. Constr. Build. Mater. 2018, 189, 265–275. [Google Scholar] [CrossRef]
- Feldman, R.F. Factors affecting young’s modulus—Porosity relation of hydrated portland cement compacts. Cem. Concr. Res. 1972, 2, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Plassard, C.; Lesniewska, E.; Pochard, I.; Nonat, A. Intrinsic Elastic Properties of Calcium Silicate Hydrates by Nanoindentation. In Proceedings of the 12th International Congress on the Chemistry of Cement, Montreal, QC, Canada, 8 July 2007; p. 44. [Google Scholar]
- Pelisser, F.; Gleize, P.; Mikowski, A. Effect of the Ca/Si molar ratio on the micro/nanomechanical properties of synthetic C-S-H measured by nanoindentation. J. Phys. Chem. C 2012, 116, 17219–17227. [Google Scholar] [CrossRef]
- Tang, Y.; Dun, Y.; Miao, Y.; Zhao, X.; Zuo, Y. Influence of the C-S-H amount on [Cl-]/[OH-] ratio of simulated concrete SPS and the corrosion susceptibility of steel. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2017, 32, 430–436. [Google Scholar] [CrossRef]
- Tennis, P.D.; Jennings, H.M. A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes. Cem. Con. Res. 2000, 30, 855–863. [Google Scholar] [CrossRef]
- Foley, E.M.; Kim, J.J.; Reda Taha, M.M. Synthesis and nano-mechanical characterization of calcium-silicate-hydrate (C-S-H) made with 1.5 CaO/SiO2 mixture. Cem. Concr. Res. 2012, 42, 1225–1232. [Google Scholar] [CrossRef]
- Bauchy, M.; Laubie, H.; Abdolhosseini Qomi, M.J.; Hoover, C.G.; Ulm, F.J.; Pellenq, R.J.M. Fracture toughness of calcium-silicate-hydrate from molecular dynamics simulations. J. Non Cryst. Solids. 2015, 419, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Shahsavari, R. Balancing strength and toughness of calcium-silicate-hydrate via random nanovoids and particle inclusions: Atomistic modeling and statistical analysis. J. Mech. Phys. Solids 2016, 96, 204. [Google Scholar] [CrossRef] [Green Version]
- Hou, D.; Zhu, Y.; Lu, Y.; Li, Z. Mechanical properties of calcium silicate hydrate (C-S-H) at nano-scale: A molecular dynamics study. Mater. Chem. Phys. 2014, 146, 503–511. [Google Scholar] [CrossRef]
- Manzano, H.; Dolado, J.S.; Guerrero, A.; Ayuela, A. Mechanical properties of crystalline calcium-silicate-hydrates: Comparison with cementitious C-S-H gels. Phys. Status Solidi A 2007, 204, 1775. [Google Scholar] [CrossRef]
- Qomi, M.J.A.; Krakowiak, K.J.; Bauchy, M.; Stewart, K.L.; Shahsavari, R.; Jagannathan, D.; Brommer, D.B.; Baronnet, A.; Buehler, M.J.; Yip, S.; et al. Combinatorial molecular optimization of cement hydrates. Nat. Commun. 2014, 5, 10. [Google Scholar] [CrossRef]
- Brown, L.; Allison, P.G.; Sanchez, F. Use of nanoindentation phase characterization and homogenization to estimate the elastic modulus of heterogeneously decalcified cement pastes. Mater. Des. 2018, 142, 308–318. [Google Scholar] [CrossRef]
- Alizadeh, R.; Beaudoin, J.J.; Raki, L. Mechanical properties of calcium silicate hydrates. Mater. Struct. 2011, 44, 13–28. [Google Scholar] [CrossRef] [Green Version]
- Sevelsted, T.F.; Skibsted, J. Carbonation of C-S-H and C-A-S-H samples studied by 13C, 27Al and 29Si MAS-NMR spectroscopy. Cem. Concr. Res. 2015, 71, 56–65. [Google Scholar] [CrossRef]
- Morandeau, A.E.; White, C.E. In situ X-ray pair distribution function analysis of accelerated carbonation of a synthetic calcium-silicate-hydrate gel. J. Mater. Chem. A 2015, 3, 8597–8605. [Google Scholar] [CrossRef]
- Chang, J.; Fang, Y. Quantitative analysis of accelerated carbonation products of the synthetic calcium silicate hydrate(C-S-H) by QXRD and TG/MS. J. Therm. Anal. Calorim. 2015, 119, 57–62. [Google Scholar] [CrossRef]
- Black, L.; Breen, C.; Yarwood, J.; Garbev, K.; Stemmermann, P.; Gasharova, B. Structural features of C-S-H(I) and its carbonation in air-A raman spectroscopic study. Part II: Carbonated phases. J. Am. Ceram. Soc. 2007, 90, 908–917. [Google Scholar] [CrossRef]
- Morandeau, A.E.; White, C.E. Role of magnesium-stabilized amorphous calcium carbonate in mitigating the extent of carbonation in alkali-activated slag. Chem. Mater. 2015, 27, 6625–6634. [Google Scholar] [CrossRef]
- Li, J.; Yu, Q.; Huang, H.; Yin, S. Effects of Ca/Si ratio, aluminum and magnesium on the carbonation behavior of calcium silicate hydrate. Materials 2019, 12, 1268. [Google Scholar] [CrossRef] [Green Version]
- Bensted, J. Raman spectral studies of carbonation phenomena. Cem. Concr. Res. 1977, 7, 161–164. [Google Scholar] [CrossRef]
- Castellote, M.; Andrade, C.; Turrillas, X.; Campo, J.; Cuello, G.J. Accelerated carbonation of cement pastes in situ monitored by neutron diffraction. Cem. Concr. Res. 2008, 38, 1365–1373. [Google Scholar] [CrossRef]
- Morandeau, A.; Thiéry, M.; Dangla, P. Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties. Cem. Concr. Res. 2014, 56, 153–170. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Li, Y.; Lin, S.; Tang, L.; Dong, Z.; Xing, F.; Dong, B.; Hong, S. Changes in chemical phases and microscopic characteristics of fly ash blended cement pastes in different CO2 concentrations. Constr. Build. Mater. 2020, 257, 119598. [Google Scholar] [CrossRef]
- Ibáñez, J.; Artús, L.; Cuscó, R.; López, Á.; Menéndez, E.; Andrade, M.C. Hydration and carbonation of monoclinic C2S and C3S studied by Raman spectroscopy. J. Raman Spectrosc. 2007, 38, 61–67. [Google Scholar] [CrossRef]
- Ceukelaire, L.D.; Nieuwenburg, D.V.J.C.; Research, C. Accelerated carbonation of a blast-furnace cement concrete. Cem. Concr. Res. 1993, 23, 442–452. [Google Scholar] [CrossRef]
- Tang, S.; Li, Z.; Chen, E.; Shao, H. Non-steady state migration of chloride ions in cement pastes at early age. RSC Adv. 2014, 4. [Google Scholar] [CrossRef]
- Chen, E.; Tang, S.; Leung, C. Corrosion-induced cracking in reinforced concrete due to chloride contamination and ingress. ACI Mater. J. 2019, 116. [Google Scholar] [CrossRef]
- Tang, S.; Yuan, J.; Cai, R.; Wei, X.; Zhao, C.; Cai, X.; He, Z.; Chen, E. Continuous monitoring for leaching of calcium sulfoaluminate cement pastes incorporated with ZnCl2 under the attacks of chloride and sulfate. Chemosphere 2019, 223. [Google Scholar] [CrossRef] [PubMed]
- Page, C. Mechanism of corrosion protection in reinforced concrete marine structures. Nature 1975, 258, 514–515. [Google Scholar] [CrossRef]
- Schießl, P.; Raupach, M. Laboratory studies and calculations on the influence of crack width on chloride-induced corrosion of steel in concrete. ACI Mater. J. 1997, 94, 56–62. [Google Scholar]
- Cabrera, J.G. Deterioration of concrete due to reinforcement steel corrosion. Cem. Concr. Compos. 1996, 18, 47–59. [Google Scholar] [CrossRef]
- Zibara, H.; Hooton, D.; Thomas, M.D.A.; Stanish, K. Influence of the C/S and C/A ratios of hydration products on the chloride ion binding capacity of lime-SF and lime-MK mixtures. Cem. Concr. Res. 2008, 38, 422–426. [Google Scholar] [CrossRef]
- Plusquellec, G.; Nonat, A. Interaction between calcium silicate hydrate (C-S-H) and calcium chloride, bromide and nitrate. Cem. Concr. Res. 2016, 90, 89–96. [Google Scholar] [CrossRef]
- Sun, R.; Wang, D.; Wang, Y.; Zhang, L.; Gu, Y. Study on durability against dry-wet cycles and chloride ion erosion of concrete revetment materials at the water-level-fluctuations zone in yellow river delta wetlands. Wetlands 2020, 1–15. [Google Scholar] [CrossRef]
- Yang, Z.Q.; Shiyu, S.; Wang, L.; Feng, T.; Gao, Y.; Mu, S.; Tang, L.; Jiang, J. Improving the chloride binding capacity of cement paste by adding nano-Al2O3: The cases of blended cement pastes. Constr. Build. Mater. 2020, 232, 117219. [Google Scholar] [CrossRef]
- Yogarajah, E.; Nawa, T.; Kurumisawa, K. Electrokinetic potential of hydrated cement in relation to adsorption of chlorides. Cem. Concr. Res. 2009, 39, 340–344. [Google Scholar] [CrossRef]
- Hirao, H.; Yamada, K.; Takahashi, H.; Zibara, H. Chloride binding of cement estimated by binding isotherms of hydrates. J. Adv. Concr. Technol. 2005, 3, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Jiang, L.; Yan, X.; Song, Z.; Guo, M.; Cao, C. Role of swelling agent and set-controlling admixtures on chloride binding and diffusion in cement matrix. Constr. Build. Mater. 2019, 230. [Google Scholar] [CrossRef]
- Ramachandran, V. Possible states of chloride in the hydration of tricalcium silicate in the presence of calcium chloride. Mater. Constr. 1971, 4. [Google Scholar] [CrossRef]
- Beaudoin, J.; Ramachandran, V.; Feldman, R. Interaction of chloride and C-S-H. Cem. Concr. Res. 1991, 21. [Google Scholar] [CrossRef] [Green Version]
- Yogarajah, E.; Nawa, T.; Kurumisawa, K. Influence of surface electrical properties of C-S-H on chloride binding in slag-blended cementitious materials. J. Mater. Civ. Eng. 2018, 30. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Hou, D.; Jiang, J.; Wang, P. Chloride ions transport and adsorption in the nano-pores of silicate calcium hydrate: Experimental and molecular dynamics studies. Constr. Build. Mater. 2016, 126, 991–1001. [Google Scholar] [CrossRef]
- Zhou, Y.; Hou, D.; Jiang, J.; Liu, L.; She, W.; Yu, J. Experimental and molecular dynamics studies on the transport and adsorption of chloride ions in the nano-pores of calcium silicate phase: The influence of calcium to silicate ratios. Microporous Mesoporous Mater. 2018, 255, 23–35. [Google Scholar] [CrossRef]
- Ye, H.; Huang, L.; Chen, Z. Influence of activator composition on the chloride binding capacity of alkali-activated slag. Cem. Concr. Compos. 2019, 104, 103368. [Google Scholar] [CrossRef]
- Hou, D.; Li, T.; Wang, P. Molecular dynamics study on the structure and dynamics of NaCl solution transport in the nanometer channel of C-A-S-H gel. ACS Sustain. Chem. Eng. 2018, 6, 9498–9509. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, C.; Zeng, Q.; Yang, C.; Luo, C.; Yang, K. Deterioration of mortars exposed to sulfate attack under electrical field. Constr. Build. Mater. 2016, 117, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; He, Z.; Tang, S.; Li, Y. Effect of Al in slag blended cement paste under sulfate attack. J. Wuhan Univ. Technol. Mater. Sci. 2017, 32, 1087–1094. [Google Scholar] [CrossRef]
- Gollop, R.S.; Taylor, H.F.W. Microstructural and microanalytical studies of sulfate attack. I. Ordinary portland cement paste. Cem. Concr. Res. 1992, 22, 1027–1038. [Google Scholar] [CrossRef]
- Li, X. Study on the mechanism of magnesium sulfate to cement and C-S-H gel. Adv. Mater. Res. 2011, 243–249, 4687–4690. [Google Scholar] [CrossRef]
- Bonen, D. Composition and appearance of magnesium silicate hydrate and its relation to deterioration of cement-based Materials. J. Am. Ceram. Soc. 2005, 75, 2904–2906. [Google Scholar] [CrossRef]
- De Weerdt, K.; Justnes, H. The effect of sea water on the phase assemblage of hydrated cement paste. Cem. Concr. Compos. 2015, 55, 215–222. [Google Scholar] [CrossRef]
- Lee, S.; Moon, H.Y.; Swamy, R.N. Sulfate attack and role of silica fume in resisting strength loss. Cem. Concr. Compos. 2005, 27, 65–76. [Google Scholar] [CrossRef]
- Hekal, E.; Kishar, E.; Mostafa, H. Magnesium sulfate attack on hardened blended cement pastes under different circumstances. Cem. Concr. Res. 2002, 32, 1421–1427. [Google Scholar] [CrossRef]
- Chenguang, H.; Qingjun, D.; Xiaoxin, F. Effect of Temperature and Fly Ash Content on C-S-H Microstructure in Portland Cement Pastes; The 14th International Congress on the Chemistry of CementICCC: Beijing, China, 2015; p. 1. [Google Scholar]
- Ding, Q.; Wang, H.; Hu, C.; Zhang, G. Effect of corrosive solutions on C-S-H microstructure in portland cement paste with fly ash. J. Wuhan Univ. Technol. Mater. Sci. 2016, 31, 1002–1007. [Google Scholar] [CrossRef]
- Qingjun, D.; Gaozhan, Z.; Chenguang, H.; Shuguang, H. Effect of Sulfate Attack on C-S-H Microstructure in Hardened Portland Cement Pastes; The 14th International Congress on the Chemistry of CementICCC: Beijing, China, 2015; p. 1. [Google Scholar]
- Kunther, W.; Lothenbach, B.; Skibsted, J. Influence of the Ca/Si ratio of the C-S-H phase on the interaction with sulfate ions and its impact on the ettringite crystallization pressure. Cem. Concr. Res. 2015, 69. [Google Scholar] [CrossRef]
- Feng, X.; Li, X.; Wei, Q. Investigation of sulphate attack on C-S-H gel. Adv. Mater. Res. 2011, 287–290, 1116–1120. [Google Scholar] [CrossRef]
- Yang, J.; Hou, D.; Ding, Q. Ionic hydration structure, dynamics and adsorption mechanism of sulfate and sodium ions in the surface of calcium silicate hydrate gel: A molecular dynamics study. Appl. Surf. Sci. 2018, 448, 559–570. [Google Scholar] [CrossRef]
- Hu, C.; Ding, Q.; Wang, H.; Feng, X. Thermodynamic stability of sulfate ions on calcium aluminosilicate hydrate microstructure. J. Wuhan Univ. Technol. Mater. Sci. 2019, 34, 638–647. [Google Scholar] [CrossRef]
- Santhanam, M.; Cohen, M.D.; Olek, J. Effects of gypsum formation on the performance of cement mortars during external sulfate attack. Cem. Concr. Res. 2003, 33, 325–332. [Google Scholar] [CrossRef]
- Rozière, E.; Loukili, A.; El Hachem, R.; Grondin, F. Durability of concrete exposed to leaching and external sulphate attacks. Cem. Concr. Res. 2009, 39, 1188–1198. [Google Scholar] [CrossRef] [Green Version]
- Gollop, R.S.; Taylor, H.F.W. Microstructural and microanalytical studies of sulfate attack III. Sulfate-resisting portland cement: Reactions with sodium and magnesium sulfate solutions. Cem. Concr. Res. 1995, 25, 1581–1590. [Google Scholar] [CrossRef]
- Mehta, P.K. Mechanism of sulfate attack on portland cement concrete—Another look. Cem. Concr. Res. 1983, 13, 401–406. [Google Scholar] [CrossRef]
- Santhanam, M.; Cohen, M.D.; Olek, J. Mechanism of sulfate attack: A fresh look: Part 1: Summary of experimental results. Cem. Concr. Res. 2002, 32, 915–921. [Google Scholar] [CrossRef]
- Bensted, J. Thaumasite—Background and nature in deterioration of cements, mortars and concretes. Cem. Concr. Compos. 1999, 21, 117–121. [Google Scholar] [CrossRef]
- Bensted, J. Thaumasite-direct, woodfordite and other possible formation routes. Cem. Concr. Compos. 2003, 25, 873–877. [Google Scholar] [CrossRef]
- Barcelo, L.; Gartner, E.; Barbarulo, R.; Hossack, A.; Ahani, R.; Thomas, M.; Hooton, D.; Brouard, E.; Delagrave, A.; Blair, B. A modified ASTM C1012 procedure for qualifying blended cements containing limestone and SCMs for use in sulfate-rich environments. Cem. Concr. Res. 2014, 63, 75–88. [Google Scholar] [CrossRef]
- Köhler, S.; Heinz, D.; Urbonas, L. Effect of ettringite on thaumasite formation. Cem. Concr. Res. 2006, 36, 697–706. [Google Scholar] [CrossRef]
- Irassar, E.F. Sulfate attack on cementitious materials containing limestone filler—A review. Cem. Concr. Res. 2009, 39, 241–254. [Google Scholar] [CrossRef]
- Rahman, M.M.; Bassuoni, M.T. Thaumasite sulfate attack on concrete: Mechanisms, influential factors and mitigation. Constr. Build. Mater. 2014, 73, 652–662. [Google Scholar] [CrossRef]
- Bellmann, F.; Stark, J. Prevention of thaumasite formation in concrete exposed to sulphate attack. Cem. Concr. Res. 2007, 37, 1215–1222. [Google Scholar] [CrossRef]
- Lothenbach, B.; Rentsch, D.; Wieland, E. Hydration of a silica fume blended low-alkali shotcrete cement. Phys. Chem. Earth 2013, 70–71. [Google Scholar] [CrossRef]
- Bellmann, F.; Stark, J. The role of calcium hydroxide in the formation of thaumasite. Cem. Concr. Res. 2008, 38, 1154–1161. [Google Scholar] [CrossRef]
- Sotiriadis, K.; Nikolopoulou, E.; Tsivilis, S.; Pavlou, A.; Chaniotakis, E.; Swamy, R.N. The effect of chlorides on the thaumasite form of sulfate attack of limestone cement concrete containing mineral admixtures at low temperature. Constr. Build. Mater. 2013, 43, 156–164. [Google Scholar] [CrossRef]
Method | Principle | Advantages | Disadvantages |
---|---|---|---|
Hydration of C3S and C2S [26,27,28,29,30,31,32,33,34,35,36,37,38] | Use a single C3S hydration method to produce C-S-H | Reduces the types and quantities of hydration products | Ca(OH)2 exists; unhydrated particles found |
Sol-gel method [39] | Metal salt decomposed, sol formed, gelled, inorganic material obtained | Low temperature, easy control, uniformly trace components, synthesis product uniformity and high purity | Long time to prepare, limited to the laboratory |
Chemical coprecipitation method [40,41,42,43] | Insoluble substance causes another soluble substance to precipitate together | Simple synthesis operation, low cost, short synthesis cycle, low synthesis temperature, conditions easy to control | Precipitant addition causes high local concentration, agglomeration, uneven composition |
Hydrothermal synthesis method [44,45,46,47,48,49,50,51,52,53,54,55] | High-temperature pressure, material undergoes hydrolysis reaction, crystals formed when supersaturated | Replace high-temperature solid-phase reaction; reduce reaction temperature; product good crystallinity, high purity, good dispersion | Low yield, long reaction time |
Models | Foundation | Features | Disadvantages |
---|---|---|---|
Powers–Brownyard model [80,81,82] | Porosity test, water vapor adsorption test | Layered structure, collapse when dry, water not allowed to re-enter | Unable to follow the arrangement rules of the pores in the C-S-H gel, unable to explain the creep and shrinkage |
Feldman–Sereda model [83] | Based on the test results of nitrogen adsorption isotherms | Solid contact, weak van der Waals bonds, strong ionic covalent bonds | Based on few features of C-S-H |
Munich model [84] | Based on adsorption measurement | Van der Waals bonds, strong ionic covalent bonds | Fails to explain the creep or drying shrinkage, unable to describe pore structure |
Tobermorite–jennite model [85,86,87,89,90,91,92,93,94,95,96,97,98] | Natural silicate pore structure | Highly similar to C-S-H structure | Pore structure cannot be explained clearly |
Molecular dynamics model [99,100,101,102] | Molecular dynamics | Atomic level performs operations; predict structural characteristics | Need experimentation to verify its correctness and applicability |
Methods | Principle | Limitations | Measuring Range |
---|---|---|---|
MIP | The fluid and air are pulled out of specimen, and then mercury is intruded into pores of specimen by pressure. Measure the volume of mercury entering the specimen pore under pressure, and porosity can be computed by Washburn equation | 1. C-S-H gel pores are different from the real cylindrical shape required by the Washburn equation; 2. The pressure that causes mercury to enter the pores may damage the pores; 3. Unconnected pores are difficult to be detected. | Several nm–hundreds of μm |
NAD | The adsorption isotherms are determined and pore size distribution is computed based on the Kelvin equation | 1. The micro-pores are not determined; 2. Nitrogen molecules are larger than water molecules and cannot enter very fine pores | 0.5−100 nm |
LT-DSC | Specimen is saturated with water. Freezing–melting process is required. The registered heat flux is measured by the Gibbs–Thomson equation | 1. Results vary fairly; 2. Limited pore range; 3. Freezing–melting process may affect pore structure | 2–1 μm |
SAXS and SANS | Scattering of X-rays or neutrons occurs because of the scattering contrast among various components. X-rays probe the fluctuations of the electronic density, whereas neutrons probe the fluctuations of the nuclear scattering cross section. | 1. The relation between scattering data and pore structure is not well established; 2. Expensive to measure | 1–20 μm |
Fractal Dimension | Test Method/Condition | Disadvantages |
---|---|---|
From FHH model and Neimark’s model [144] | Nitrogen adsorption, oven dry | Fractal dimension does not have a direct relationship with other pore structure parameters (such as pore volume or average diameter) |
From Neffati’s model [143] | Low temperature differential scanning calorimetry | Within 7–70 nm, no obvious relation among fractal dimensions, hydration age and superplasticizers content |
Methods | Findings | Disadvantages |
---|---|---|
SEM,EDS [146] | LD-CSH and HD-CSH are identified | Cement products are diverse and complex; low accuracy of nano-indentation test; pores in the concrete structure; purity of sample optimized |
Nano-indentation [148] | when W/C ratio in cement paste increases, the Ca/Si ratio decreases | |
Nano-indentation [149] | C3S products are tested, transformation from LD to HD improves the mechanical strength of C-S-H gels | |
Nano-indentation [151] | Interlayer water affects the mechanical properties of C-S-H, dehydration causes E to decrease | Mechanism behind has not been revealed yet |
AFM [147] | ELD-CSH about 22 GPa, HHD-CSH about 29 GPa | Findings cannot reach a consensus, Ca/Si ratio of C-S-H decreases, H and E increase |
AFM [152] | The E of C-S-H increases with the increase in the Ca/Si ratio | |
AFM [150,153,154,155,156] | The E of C-S-H is independent of Ca/Si ratio and silicate polymerization degree |
Researchers | Principle | Findings | Possible Improvements |
---|---|---|---|
Bauchy et al. [157] | Molecular dynamics | C-S-H fracture appears as ductile fracture | Verified by various experiments |
Qomi et al. [161] | Molecular dynamics | the indentation modulus and hardness of C-S-H decrease with the increase in Ca/Si ratio | |
Hou et al. [159] | Molecular dynamics | A layered C-S-H model at the molecular level is constructed | Structure of tobermorite, jennite and C-S-H are not completely consistent |
Shahsavari et al. [86] | First principles | Mechanical properties of C-S-H with different crystal structures are evaluated | |
Zhang et al. [158] | Molecular dynamics | After CH enters the C-S-H interlayer, its strength and fracture toughness increase; a strong hydrogen bond is formed | Consider a variety of positions for analysis |
Manzano et al. [160] | Lattice dynamic simulations | Ca/Si ratio increases, the volume, shear stress and E of C-S-H all decrease | C-S-H is an amorphous structure |
Mechanical Parameters | Ref. |
---|---|
HLD-CSH = 0.73 ± 0.15 GPa, HHD-CSH = 1.27 ± 0.18 GPa; ELD-CSH = 23.4 ± 3.4 GPa, EHD-CSH = 31.4 ± 2.1 GPa | [146] |
ELD-CSH = 22 GPa, EHD-CSH = 29 GPa | [147] |
EX,Y = 40–50 GPa, EZ = 25 GPa | [159] |
Original hardened cement E = 31.1 ± 0.9 GPa; decreased to be 13.7 ± 1.7 GPa | [162] |
E of C-S-H, CaCO3 and C3S about 39 ± 5 GPa, 59 ± 6 GPa and 110 ± 30 GPa | [163] |
Researchers | Methods | Findings |
---|---|---|
Sevelsted et al. [164] | 29Si NMR | The decomposition rate decreased with the increase in the Ca/Si ratio |
Morandeau et al. [168] | X-ray scattering | C-S-H reacted with carbon dioxide, aragonite and calcite produced on the surface in the first 27 min, aragonite slowly transformed into calcite |
Black et al. [167] | NMR; XRD | C-S-H amorphous calcium carbonate hydrate was formed within minutes of exposure to air |
Sevelsted et al. [164] | 27Al NMR | All Al sites consumed during the carbonization reaction, mainly incorporated into the amorphous silicon phase, few Al [5] sites were found |
Morandeau et al. [172] | Phenolphthalein spray test | High-magnesium cement paste prevented removal of extra calcium from the C-A-S-H gel, preventing the progress of the carbonization reaction |
Ibáñez et al. [174] | Raman microscope | Carbonization in C3S 500–1000 μm from surface |
Ca2+ Concentration (mmol/L) | ζ Potential (mV) |
---|---|
0 | −11.7 |
0.1 | −8.5 |
0.5 | −6.8 |
0.6 | −3.2 |
0.7 | −1.2 |
0.8 | 2.5 |
0.9 | 4.6 |
1.0 | 5.1 |
2.5 | 15.6 |
10.0 | 27.3 |
Cl- Concentration (mmol/L) | ζ Potential (mV) |
---|---|
1.0 | −2.8 |
2.1 | −3.3 |
3.0 | −3.6 |
5.0 | −4.4 |
10.0 | −5.8 |
15.0 | −6.4 |
17.0 | −6.9 |
20.0 | −7.5 |
25.0 | −8.1 |
30.0 | −8.5 |
35.0 | −9.6 |
40.0 | −10.0 |
pH | Surface Charge Densities (mC/m2) |
---|---|
11.10 | 0 |
11.20 | 2 |
11.24 | 23 |
11.30 | 29 |
11.41 | 62 |
11.53 | 83 |
11.60 | 110 |
11.71 | 132 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, S.; Wang, Y.; Geng, Z.; Xu, X.; Yu, W.; A, H.; Chen, J. Structure, Fractality, Mechanics and Durability of Calcium Silicate Hydrates. Fractal Fract. 2021, 5, 47. https://doi.org/10.3390/fractalfract5020047
Tang S, Wang Y, Geng Z, Xu X, Yu W, A H, Chen J. Structure, Fractality, Mechanics and Durability of Calcium Silicate Hydrates. Fractal and Fractional. 2021; 5(2):47. https://doi.org/10.3390/fractalfract5020047
Chicago/Turabian StyleTang, Shengwen, Yang Wang, Zhicheng Geng, Xiaofei Xu, Wenzhi Yu, Hubao A, and Jingtao Chen. 2021. "Structure, Fractality, Mechanics and Durability of Calcium Silicate Hydrates" Fractal and Fractional 5, no. 2: 47. https://doi.org/10.3390/fractalfract5020047
APA StyleTang, S., Wang, Y., Geng, Z., Xu, X., Yu, W., A, H., & Chen, J. (2021). Structure, Fractality, Mechanics and Durability of Calcium Silicate Hydrates. Fractal and Fractional, 5(2), 47. https://doi.org/10.3390/fractalfract5020047