Laplace Transform Method for Economic Models with Constant Proportional Caputo Derivative
Abstract
1. Introduction
2. Preliminaries
3. Applications of the Economic Model
4. Comparison
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ghanbari, B.; Atangana, A. A new application of fractional Atangana–Baleanu derivatives: Designing ABC-fractional masks in image processing. Phys. Stat. Mech. Its Appl. 2020, 542, 123516. [Google Scholar] [CrossRef]
- Ghanbari, B.; Akgül, A. Abundant new analytical and approximate solutions to the generalized Schamel equation. Phys. Scr. 2020, 95, 075201. [Google Scholar] [CrossRef]
- Allahviranloo, T.; Ghanbari, B. On the fuzzy fractional differential equation with interval Atangana-Baleanu fractional derivative approach. Chaos Solitons Fractals 2020, 128, 109397. [Google Scholar] [CrossRef]
- Salari, A.; Ghanbari, B. Existence and multiplicity for some boundary value problems involving Caputo and Atangana–Baleanu fractional derivatives: A variational approach. Chaos Solitons Fractals 2019, 127, 312–317. [Google Scholar] [CrossRef]
- Akgül, A.; Akgül, E.K. On solutions of new type fractional differential equations occurring in the electrohydrodynamic flow. Electron. Res. Arch. 2020, 28, 537. [Google Scholar]
- Farman, M.; Akgül, A.; Ahmad, A.; Imtiaz, S. Analysis and dynamical behavior of fractional-order cancer model with vaccine strategy. Math. Methods Appl. Sci. 2020, 43, 4871–4882. [Google Scholar] [CrossRef]
- Modanli, M.; Akgül, A. On Solutions of Fractional order Telegraph partial differential equation by Crank-Nicholson finite difference method. Appl. Math. Nonlinear Sci. 2020, 5, 163–170. [Google Scholar] [CrossRef]
- Nagle, R.K.; Staff, E.B.; Snider, A.D. Fundamentals Dfferential Equations; Pearson: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
- Baleanu, D.; Fernandez, A.; Akgül, A. On a fractional operator combining proportional and classical differintegrals. Mathematics 2020, 8, 360. [Google Scholar] [CrossRef]
- Gupta, S.; Kumar, D.; Singh, J. Analytical solutions of convection–diffusion problems by combining Laplace transform method and homotopy perturbation method. Alexasandria Eng. J. 2015, 54, 645–651. [Google Scholar] [CrossRef]
- Anjum, N.; He, J.H. Laplace transform, making the variational iteration method easier. Appl. Math. Lett. 2019, 92, 134–138. [Google Scholar] [CrossRef]
- Zhou, Z.; Ma, J.; Gao, X. Convergence of iterative Laplace transform methods for a system of fractional PDEs and PIDEs arising in option pricing. East Asian J. Appl. Math. 2018, 8, 782–808. [Google Scholar] [CrossRef]
- Bashir, T.; Kalim, M. Solution of non-homogeneous differential equations using faddeev-leverrier method together with Laplace transform. Adv. Differ. Equations Control. Process. 2018, 19, 343–357. [Google Scholar] [CrossRef]
- Jingtang, M.; Zhiqiang, Z. Convergence analysis of iterative Laplace transform methods for the coupled PDEs from regime-switching option pricing. J. Sci. Comput. 2018, 75, 1656–1674. [Google Scholar]
- Eljaoui, E.; Melliani, S.; Chadli, L.S. Aumann fuzzy improper integral and its application to solve fuzzy integro-differential equations by Laplace transform method. Adv. Fuzzy Syst. 2018, 2018, 9730502. [Google Scholar] [CrossRef]
- Zhou, Z.; Ma, J.; Sun, H.W. Fast Laplace transform methods for free-boundary problems of fractional diffusion equations. J. Sci. Comput. 2018, 74, 49–69. [Google Scholar] [CrossRef]
- Yonghong, S.; Wei, C. Laplace Transform method for the ulam stability of linear fractional differential equations with constant coefficient. Mediterr. J. Math. 2017, 14, UNSP 25. [Google Scholar]
- Fatoorehchi, H.; Abolghasemi, H. Series solution of nonlinear differential equations by a novel extension of the Laplace transform method. Int. J. Comput. Math. 2016, 93, 1299–1319. [Google Scholar] [CrossRef]
- Jacobs, A.B. High-order compact finite difference and Laplace transform method for the solution of time-fractional heat equations with Dirichlet and Neumann boundary conditions. Numer. Methods Partial. Differ. Equ. 2016, 32, 1184–1199. [Google Scholar] [CrossRef]
- Gao, W.; Veeresha, P.; Prakasha, D.G.; Baskonus, H.M. Novel dynamical structures of 2019-nCoV with nonlocal operator via powerful computational technique. Biology 2020, 9, 107. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Bulut, H.; Atas, S.S. Optical solitons to the fractional Schrödinger-Hirota equation. Appl. Math. Nonlinear Sci. 2019, 4, 535–542. [Google Scholar] [CrossRef]
- Özarslan, M.A. On a singular integral equation including a set of multivariate polynomials suggested by Laguerre polynomials. Appl. Math. Comput. 2014, 229, 350–358. [Google Scholar] [CrossRef]
- Kürt, C.; Özarslan, M.A.; Fernandez, A. On a certain bivariate Mittag-Leffler function analysed from a fractional-calculus point of view. Math. Meth. Appl. Sci. 2020. [Google Scholar] [CrossRef]
- Logeswari, K.; Ravichandran, C. A new exploration on existence of fractional neutral integro- differential equations in the concept of Atangana–Baleanu derivative. Phys. A Stat. Mech. Its Appl. 2020, 544, 123454. [Google Scholar] [CrossRef]
- Ravichandran, C.; Logeswaria, K.; Jarad, F. New results on existence in the framework of Atangana–Baleanu derivative for fractional integro-differential equations. Chaos Solitons Fractals 2019, 125, 194–200. [Google Scholar] [CrossRef]
- Kumar, S.; Nisar, K.S.; Kumar, R.; Cattani, C.; Samet, B. A new Rabotnov fractional-exponential function-based fractional derivative for diffusion equation under external force. Math. Methods Appl. Sci. 2020, 43, 4460–4471. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A.; Odibat, Z.; Aldhaifallah, M. Kottakkaran Sooppy Nisar, A comparison study of two modified analytical approach for the solution of nonlinear fractional shallow water equations in fluid flow. AIMS Math. 2020, 5, 3035–3055. [Google Scholar] [CrossRef]
- Manafianheris, J. Solving the integro-differential equations using the modified Laplace Adomian decomposition method. J. Math. Ext. 2012, 6, 1–15. [Google Scholar]
- Manafianheris, J.; Lakestani, M. New Improvement of the Expansion Methods for Solving the Generalized Fitzhugh-Nagumo Equation with Time-Dependent Coefficients. Int. J. Eng. Math. 2015, 2015, 107978. [Google Scholar]
- Acay, B.; Baş, E.; Abdeljawad, T. Fractional economic models based on market equilibrium in the frame of different type kernels. Chaos Solitons Fractals 2020, 130, 109438. [Google Scholar] [CrossRef]
- Gao, W.; Veeresha, P.; Baskonus, H.M.; Prakasha, D.G.; Kumar, P. A New Study of Unreported Cases of 2019-nCOV Epidemic Outbreaks. Chaos Solitons Fractals 2020, 138, 1–6. [Google Scholar] [CrossRef]
- Cattani, C. A review on Harmonic Wavelets and their fractional extension. J. Adv. Eng. Comput. 2018, 2, 224–238. [Google Scholar] [CrossRef]
- Cattani, C.; Rushchitskii, Y.Y. Cubically nonlinear elastic waves: Wave equations and methods of analysis. Int. Appl. Mech. 2003, 39, 1115–1145. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Fernandez, A.; Kürt, C.; Özarslan, M.A. A naturally emerging bivariate Mittag-Leffler function and associated fractional-calculus operators. arXiv 2020, arXiv:2002.12171. [Google Scholar] [CrossRef]
C, CPC and RL | Convolution | Laplace Transform |
---|---|---|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karatas Akgül, E.; Akgül, A.; Baleanu, D. Laplace Transform Method for Economic Models with Constant Proportional Caputo Derivative. Fractal Fract. 2020, 4, 30. https://doi.org/10.3390/fractalfract4030030
Karatas Akgül E, Akgül A, Baleanu D. Laplace Transform Method for Economic Models with Constant Proportional Caputo Derivative. Fractal and Fractional. 2020; 4(3):30. https://doi.org/10.3390/fractalfract4030030
Chicago/Turabian StyleKaratas Akgül, Esra, Ali Akgül, and Dumitru Baleanu. 2020. "Laplace Transform Method for Economic Models with Constant Proportional Caputo Derivative" Fractal and Fractional 4, no. 3: 30. https://doi.org/10.3390/fractalfract4030030
APA StyleKaratas Akgül, E., Akgül, A., & Baleanu, D. (2020). Laplace Transform Method for Economic Models with Constant Proportional Caputo Derivative. Fractal and Fractional, 4(3), 30. https://doi.org/10.3390/fractalfract4030030