A Fractional Measles Model Having Monotonic Real Statistical Data for Constant Transmission Rate of the Disease
Abstract
:1. Introduction
2. Analysis of the Model
3. Numerical Simulations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kermack, W.O.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A 1927, 115, 700–721. [Google Scholar] [CrossRef]
- Kermack, W.O.; McKendrick, A.G. Contributions to the mathematical theory of epidemics, II—The problem of endemicity. Proc. R. Soc. Lond. A 1932, 138, 55–83. [Google Scholar] [CrossRef]
- Kermack, W.O.; McKendrick, A.G. Contributions to the mathematical theory of epidemics, III—Further studies of the problem of endemicity. Proc. R. Soc. Lond. A 1933, 141, 94–122. [Google Scholar] [CrossRef]
- Angstmann, C.N.; Henry, B.I.; McGann, A.V. A fractional-order infectivity SIR model. Physica A 2016, 452, 86–93. [Google Scholar] [CrossRef]
- Area, I.; Batarfi, H.; Losada, J.; Nieto, J.J.; Shammakh, W.; Torres, Á. On a fractional order Ebola epidemic model. Adv. Differ. Equ. 2015, 2015, 278. [Google Scholar] [CrossRef]
- Goufo, E.F.D.; Noutchie, S.C.O.; Mugisha, S. A fractional SEIR epidemic model for spatial and temporal spread of measles in metapopulations. Abstr. Appl. Anal. 2014, 2014, 781028. [Google Scholar]
- Hanert, E.; Schumacher, E.; Deleersnijder, E. Front dynamical in fractional-order epidemic models. J. Theor. Biol. 2011, 279, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Özalp, N.; Demirci, E. A fractional order SEIR model with vertical transmission. Math. Comput. Model. 2011, 54, 1–6. [Google Scholar] [CrossRef]
- Saeedian, M.; Khalighi, M.; Azimi-Tafreshi, N.; Jafari, G.R.; Ausloos, M. Memory effects on epidemic evolution: The susceptible-infected-recovered epidemic model. Phys. Rev. E 2017, 95, 022409. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Z.; Huang, X.; Li, Y. Dynamic analysis of a fractional-order delayed SIR model with saturated incidence and treatment functions. Int. J. Bifur. Chaos 2018, 28, 1850180. [Google Scholar] [CrossRef]
- Huang, J.; Ruan, S.; Wu, X.; Zhou, X. Seasonal transmission dynamics of measles in China. Theory Biosci. 2018, 137, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives, Translated from the 1987 Russian Original; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Diethelm, K.A. A fractional calculus based model for the simulation of an outbreak of dengue fever. Nonlinear Dyn. 2013, 71, 613–619. [Google Scholar] [CrossRef]
- Lin, W. Global existence theory and chaos control of fractional differential equations. J. Math. Anal. Appl. 2007, 332, 709–726. [Google Scholar] [CrossRef]
- Almeida, R.; da Cruz, A.M.C.B.; Martins, N.; Monteiro, M.T.T. An epidemiologial MSEIR model described by the Caputo frational derivative. Int. J. Dynam. Control 2019, 7, 776–784. [Google Scholar] [CrossRef]
- Diethelm, K.A. The Analysis of Fractional Differential Equations; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Ahmed, E.; El-Sayed, A.M.A.; El-Saka, H.A.A. Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. J. Math. Anal. Appl. 2007, 325, 542–553. [Google Scholar] [CrossRef]
- Rosa, S.; Torres, D.F.M. Parameter estimation, sensitivity analysis and optimal control of a periodic epidemic model with application to HRSV in Florida. Stat. Optim. Inf. Comput. 2018, 6, 139–149. [Google Scholar] [CrossRef]
- Garrappa, R. Numerical Solution of Fractional Differential Equations: A Survey and a Software Tutorial. Mathematics 2018, 6, 16. [Google Scholar] [CrossRef]
- Wesolowski, A.; Winter, A.; Tatem, A.J.; Qureshi, T.; Engø-Monsen, K.; Buckee, C.O.; Cummings, D.A.T.; Metcalf, C.J.E. Measles outbreak risk in Pakistan: Exploring the potential of combining vaccination coverage and incidence data with novel data-streams to strengthen control. Epidemiol. Infect. 2018, 146, 1575–1583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IndexMundi. Available online: https://www.indexmundi.com/pakistan/demographics_profile.html (accessed on 20 June 2019).
disease transmission rate | Estimated | |
A | birth rate | Fixed |
natural mortality rate | Fixed | |
percentage of vaccinated individuals | Fixed | |
rate at which an exposed person becomes infective | Fixed | |
rate an infected recovers | Fixed | |
fractional order parameter | Estimated |
Parameter | Sensitivity Indices |
---|---|
A | |
Parameter | Sensitivity Indices |
---|---|
A | |
Monotonicity | Classical | Fractional |
---|---|---|
Increasing | ||
Decreasing | ||
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, R.; Qureshi, S. A Fractional Measles Model Having Monotonic Real Statistical Data for Constant Transmission Rate of the Disease. Fractal Fract. 2019, 3, 53. https://doi.org/10.3390/fractalfract3040053
Almeida R, Qureshi S. A Fractional Measles Model Having Monotonic Real Statistical Data for Constant Transmission Rate of the Disease. Fractal and Fractional. 2019; 3(4):53. https://doi.org/10.3390/fractalfract3040053
Chicago/Turabian StyleAlmeida, Ricardo, and Sania Qureshi. 2019. "A Fractional Measles Model Having Monotonic Real Statistical Data for Constant Transmission Rate of the Disease" Fractal and Fractional 3, no. 4: 53. https://doi.org/10.3390/fractalfract3040053
APA StyleAlmeida, R., & Qureshi, S. (2019). A Fractional Measles Model Having Monotonic Real Statistical Data for Constant Transmission Rate of the Disease. Fractal and Fractional, 3(4), 53. https://doi.org/10.3390/fractalfract3040053