An Application of the Sonine–Letnikov Fractional Derivative for the Radial Schrödinger Equation
Abstract
1. Introduction
2. Materials and Methods
3. Main Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- Hristov, J. Approximate solutions to fractional subdiffusion equations. Eur. Phys. J. Spec. Top. 2011, 193, 229–243. [Google Scholar] [CrossRef]
- Santos, M.A.F. Non-Gaussian distributions to random walk in the context of memory kernels. Fractal Fract. 2018, 2, 20. [Google Scholar] [CrossRef]
- Hristov, J. Response functions in linear viscoelastic constitutive equations and related fractional operators. Math. Model. Nat. Phenom. 2019, 14, 305. [Google Scholar] [CrossRef]
- Santos, M.A.F. Fractional Prabhakar derivative in diffusion equation with non-static stochastic resetting. Physics 2019, 1, 40–58. [Google Scholar] [CrossRef]
- Sonine, N. On differentiation with an arbitrary index. Sb. Math. 1872, 6, 1–36. [Google Scholar]
- Letnikov, A.V. On explanation of the main propositions of differentiation theory with an arbitrary index. Sb. Math. 1873, 6, 413–445. [Google Scholar]
- Tarasov, V.E. Remark to history of fractional derivatives on complex plane: Sonine-Letnikov and Nishimoto derivatives. Fract. Differ. Calc. 2016, 6, 147–149. [Google Scholar] [CrossRef]
- Nishimoto, K. Fractional derivative and integral, Part I. J. Coll. Eng. Ser. B 1976, 17, 11–19. [Google Scholar]
- Nishimoto, K. Nishimoto’s fractional differintegration and the solution of Legendre’s differential equation. J. Coll. Eng. Ser. B 1976, 17, 21–25. [Google Scholar]
- Nishimoto, K. Osler’s cut and Nishimoto’s cut. J. Coll. Eng. Ser. B 1977, 18, 9–13. [Google Scholar]
- Nishimoto, K. Kummer’s twenty-four functions and N-fractional calculus. Nonlinear Anal. 1997, 30, 1271–1282. [Google Scholar] [CrossRef]
- Romero, S.S.; Srivastava, H.M. An application of the N fractional calculus operator method to a modified Whittaker equation. Appl. Math. Comput. 2000, 115, 11–21. [Google Scholar]
- Miyakoda, T. On an almost free damping vibration equation using N-fractional calculus. J. Comput. Appl. Math. 2002, 144, 233–240. [Google Scholar] [CrossRef]
- Nishimoto, K. Some topics in N-fractional calculus. Res. Inst. Math. Sci. 2003, 1341, 52–76. [Google Scholar]
- Nishimoto, K. N-fractional calculus of some multi-powers functions. Res. Inst. Math. Sci. 2008, 1579, 79–87. [Google Scholar]
- Nishimoto, K. N-fractional calculus and its applications. , , In Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and Its Applications, Porto, Portugal, 19–21 July 2006. [Google Scholar]
- Nishimoto, K. N-fractional calculus of products of some power functions and some doubly infinite sums. Appl. Math. Comput. 2007, 187, 340–349. [Google Scholar] [CrossRef]
- Nishimoto, K. On the N-fractional calculus of some composite functions. Res. Inst. Math. Sci. 2007, 1538, 20–29. [Google Scholar]
- Miyakoda, T. On the N-fractional calculus of some algebraic functions. Res. Inst. Math. Sci. 2008, 1579, 50–65. [Google Scholar]
- Nishimoto, K. N-fractional calculus of some functions which include a root sign. Res. Inst. Math. Sci. 2008, 1579, 66–78. [Google Scholar]
- Yilmazer, R. N-fractional calculus operator Nμ method to a modified hydrogen atom equation. Math. Commun. 2010, 15, 489–501. [Google Scholar]
- Miyakoda, T.; Nishimoto, K. N-fractional calculus operator method to some second order homogeneous Euler’s equation. Res. Inst. Math. Sci. 2011, 1727, 22–34. [Google Scholar]
- Nishimoto, K.; Wang, P.-Y.; Lin, S.-D. N-fractional calculus of some logarithmic functions and some identities. Res. Inst. Math. Sci. 2011, 1727, 48–59. [Google Scholar]
- Nishimoto, K. Solutions to the homogeneous Chebyshev’s equation by means of N-fractional calculus operator. Res. Inst. Math. Sci. 2011, 1772, 39–63. [Google Scholar]
- Nishimoto, K. Solutions to the nonhomogeneous Chebyshev’s equation by means of N-fractional calculus operator. Res. Inst. Math. Sci. 2011, 1772, 64–76. [Google Scholar]
- Yilmazer, R.; Ozturk, O. N-fractional calculus operator Nη method applied to a Gegenbauer differential equation. Cankaya Univ. J. Sci. Eng. 2012, 9, 37–48. [Google Scholar]
- Bas, E.; Yilmazer, R.; Panakhov, E. Fractional solutions of Bessel equation with N-method. Sci. World J. 2013, 2013, 685695. [Google Scholar] [CrossRef]
- Ozturk, O.; Yilmazer, R. Solutions of the radial component of the fractional Schrödinger equation using N-fractional calculus operator. Differ. Equ. Dyn. Syst. 2016. [Google Scholar] [CrossRef]
- Ozturk, O.; Yilmazer, R. On applications of the fractional calculus for some singular differential equations. Progr. Fract. Differ. Appl. 2018, 4, 27–33. [Google Scholar] [CrossRef]
- Vladimirov, V.S.; Volovich, I.V.; Zelenov, E.I. p-Adic Analysis and Mathematical Physics; World Scientific: Singapore, 1994. [Google Scholar]
- Dong, J.; Xu, M. Some solutions to the space fractional Schrödinger equation using momentum representation method. J. Math. Phys. 2007, 48, 072105. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional Heisenberg equation. Phys. Lett. A 2008, 372, 2984–2988. [Google Scholar] [CrossRef]
- Tarasov, V.E. Weyl quantization of fractional derivatives. J. Math. Phys. 2008, 49, 102112. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional generalization of the quantum Markovian master equation. Theor. Math. Phys. 2009, 158, 179–195. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional dynamics of open quantum systems. In Fractional Dynamics: Recent Advances; Klafter, J., Lim, S.C., Metzler, R., Eds.; World Scientific: Singapore, 2011; pp. 449–482. [Google Scholar]
- Tarasov, V.E. Quantum dissipation from power-law memory. Ann. Phys. 2012, 327, 1719–1729. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional quantum field theory: From lattice to continuum. Adv. High Energy Phys. 2014, 2014, 957863. [Google Scholar] [CrossRef]
- Garrappa, R.; Moret, I.; Popolizio, M. Solving the time-fractional Schrödinger equation by Krylov projection methods. J. Comput. Phys. 2015, 293, 115–134. [Google Scholar] [CrossRef]
- Tarasov, V.E.; Tarasova, V.V. Time-dependent fractional dynamics with memory in quantum and economic physics. Ann. Phys. 2017, 383, 579–599. [Google Scholar] [CrossRef]
- Ortigueira, M.D. Fractional Calculus for Scientists and Engineers; Springer: Berlin, Germany, 2011. [Google Scholar]
- Campos, L.M.B.C. On the solution of some simple fractional differential equations. Int. J. Math. Math. Sci. 1990, 13, 481–496. [Google Scholar] [CrossRef]
- Yilmazer, R.; Ozturk, O. Explicit solutions of singular differential equation by means of fractional calculus operators. Abstr. Appl. Anal. 2013, 2013, 715258. [Google Scholar] [CrossRef]
- Mills, R.L. The hydrogen atom revisited. Int. J. Hydrog. Energy 2000, 25, 1171–1183. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozturk, O.; Yilmazer, R. An Application of the Sonine–Letnikov Fractional Derivative for the Radial Schrödinger Equation. Fractal Fract. 2019, 3, 16. https://doi.org/10.3390/fractalfract3020016
Ozturk O, Yilmazer R. An Application of the Sonine–Letnikov Fractional Derivative for the Radial Schrödinger Equation. Fractal and Fractional. 2019; 3(2):16. https://doi.org/10.3390/fractalfract3020016
Chicago/Turabian StyleOzturk, Okkes, and Resat Yilmazer. 2019. "An Application of the Sonine–Letnikov Fractional Derivative for the Radial Schrödinger Equation" Fractal and Fractional 3, no. 2: 16. https://doi.org/10.3390/fractalfract3020016
APA StyleOzturk, O., & Yilmazer, R. (2019). An Application of the Sonine–Letnikov Fractional Derivative for the Radial Schrödinger Equation. Fractal and Fractional, 3(2), 16. https://doi.org/10.3390/fractalfract3020016