An Application of the Sonine–Letnikov Fractional Derivative for the Radial Schrödinger Equation
Abstract
:1. Introduction
2. Materials and Methods
3. Main Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- Hristov, J. Approximate solutions to fractional subdiffusion equations. Eur. Phys. J. Spec. Top. 2011, 193, 229–243. [Google Scholar] [CrossRef] [Green Version]
- Santos, M.A.F. Non-Gaussian distributions to random walk in the context of memory kernels. Fractal Fract. 2018, 2, 20. [Google Scholar] [CrossRef]
- Hristov, J. Response functions in linear viscoelastic constitutive equations and related fractional operators. Math. Model. Nat. Phenom. 2019, 14, 305. [Google Scholar] [CrossRef]
- Santos, M.A.F. Fractional Prabhakar derivative in diffusion equation with non-static stochastic resetting. Physics 2019, 1, 40–58. [Google Scholar] [CrossRef]
- Sonine, N. On differentiation with an arbitrary index. Sb. Math. 1872, 6, 1–36. [Google Scholar]
- Letnikov, A.V. On explanation of the main propositions of differentiation theory with an arbitrary index. Sb. Math. 1873, 6, 413–445. [Google Scholar]
- Tarasov, V.E. Remark to history of fractional derivatives on complex plane: Sonine-Letnikov and Nishimoto derivatives. Fract. Differ. Calc. 2016, 6, 147–149. [Google Scholar] [CrossRef]
- Nishimoto, K. Fractional derivative and integral, Part I. J. Coll. Eng. Ser. B 1976, 17, 11–19. [Google Scholar]
- Nishimoto, K. Nishimoto’s fractional differintegration and the solution of Legendre’s differential equation. J. Coll. Eng. Ser. B 1976, 17, 21–25. [Google Scholar]
- Nishimoto, K. Osler’s cut and Nishimoto’s cut. J. Coll. Eng. Ser. B 1977, 18, 9–13. [Google Scholar]
- Nishimoto, K. Kummer’s twenty-four functions and N-fractional calculus. Nonlinear Anal. 1997, 30, 1271–1282. [Google Scholar] [CrossRef]
- Romero, S.S.; Srivastava, H.M. An application of the N fractional calculus operator method to a modified Whittaker equation. Appl. Math. Comput. 2000, 115, 11–21. [Google Scholar]
- Miyakoda, T. On an almost free damping vibration equation using N-fractional calculus. J. Comput. Appl. Math. 2002, 144, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Nishimoto, K. Some topics in N-fractional calculus. Res. Inst. Math. Sci. 2003, 1341, 52–76. [Google Scholar]
- Nishimoto, K. N-fractional calculus of some multi-powers functions. Res. Inst. Math. Sci. 2008, 1579, 79–87. [Google Scholar]
- Nishimoto, K. N-fractional calculus and its applications. , , In Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and Its Applications, Porto, Portugal, 19–21 July 2006. [Google Scholar]
- Nishimoto, K. N-fractional calculus of products of some power functions and some doubly infinite sums. Appl. Math. Comput. 2007, 187, 340–349. [Google Scholar] [CrossRef]
- Nishimoto, K. On the N-fractional calculus of some composite functions. Res. Inst. Math. Sci. 2007, 1538, 20–29. [Google Scholar]
- Miyakoda, T. On the N-fractional calculus of some algebraic functions. Res. Inst. Math. Sci. 2008, 1579, 50–65. [Google Scholar]
- Nishimoto, K. N-fractional calculus of some functions which include a root sign. Res. Inst. Math. Sci. 2008, 1579, 66–78. [Google Scholar]
- Yilmazer, R. N-fractional calculus operator Nμ method to a modified hydrogen atom equation. Math. Commun. 2010, 15, 489–501. [Google Scholar]
- Miyakoda, T.; Nishimoto, K. N-fractional calculus operator method to some second order homogeneous Euler’s equation. Res. Inst. Math. Sci. 2011, 1727, 22–34. [Google Scholar]
- Nishimoto, K.; Wang, P.-Y.; Lin, S.-D. N-fractional calculus of some logarithmic functions and some identities. Res. Inst. Math. Sci. 2011, 1727, 48–59. [Google Scholar]
- Nishimoto, K. Solutions to the homogeneous Chebyshev’s equation by means of N-fractional calculus operator. Res. Inst. Math. Sci. 2011, 1772, 39–63. [Google Scholar]
- Nishimoto, K. Solutions to the nonhomogeneous Chebyshev’s equation by means of N-fractional calculus operator. Res. Inst. Math. Sci. 2011, 1772, 64–76. [Google Scholar]
- Yilmazer, R.; Ozturk, O. N-fractional calculus operator Nη method applied to a Gegenbauer differential equation. Cankaya Univ. J. Sci. Eng. 2012, 9, 37–48. [Google Scholar]
- Bas, E.; Yilmazer, R.; Panakhov, E. Fractional solutions of Bessel equation with N-method. Sci. World J. 2013, 2013, 685695. [Google Scholar] [CrossRef]
- Ozturk, O.; Yilmazer, R. Solutions of the radial component of the fractional Schrödinger equation using N-fractional calculus operator. Differ. Equ. Dyn. Syst. 2016. [Google Scholar] [CrossRef]
- Ozturk, O.; Yilmazer, R. On applications of the fractional calculus for some singular differential equations. Progr. Fract. Differ. Appl. 2018, 4, 27–33. [Google Scholar] [CrossRef]
- Vladimirov, V.S.; Volovich, I.V.; Zelenov, E.I. p-Adic Analysis and Mathematical Physics; World Scientific: Singapore, 1994. [Google Scholar]
- Dong, J.; Xu, M. Some solutions to the space fractional Schrödinger equation using momentum representation method. J. Math. Phys. 2007, 48, 072105. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional Heisenberg equation. Phys. Lett. A 2008, 372, 2984–2988. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.E. Weyl quantization of fractional derivatives. J. Math. Phys. 2008, 49, 102112. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.E. Fractional generalization of the quantum Markovian master equation. Theor. Math. Phys. 2009, 158, 179–195. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.E. Fractional dynamics of open quantum systems. In Fractional Dynamics: Recent Advances; Klafter, J., Lim, S.C., Metzler, R., Eds.; World Scientific: Singapore, 2011; pp. 449–482. [Google Scholar]
- Tarasov, V.E. Quantum dissipation from power-law memory. Ann. Phys. 2012, 327, 1719–1729. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional quantum field theory: From lattice to continuum. Adv. High Energy Phys. 2014, 2014, 957863. [Google Scholar] [CrossRef]
- Garrappa, R.; Moret, I.; Popolizio, M. Solving the time-fractional Schrödinger equation by Krylov projection methods. J. Comput. Phys. 2015, 293, 115–134. [Google Scholar] [CrossRef]
- Tarasov, V.E.; Tarasova, V.V. Time-dependent fractional dynamics with memory in quantum and economic physics. Ann. Phys. 2017, 383, 579–599. [Google Scholar] [CrossRef]
- Ortigueira, M.D. Fractional Calculus for Scientists and Engineers; Springer: Berlin, Germany, 2011. [Google Scholar]
- Campos, L.M.B.C. On the solution of some simple fractional differential equations. Int. J. Math. Math. Sci. 1990, 13, 481–496. [Google Scholar] [CrossRef] [Green Version]
- Yilmazer, R.; Ozturk, O. Explicit solutions of singular differential equation by means of fractional calculus operators. Abstr. Appl. Anal. 2013, 2013, 715258. [Google Scholar] [CrossRef]
- Mills, R.L. The hydrogen atom revisited. Int. J. Hydrog. Energy 2000, 25, 1171–1183. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozturk, O.; Yilmazer, R. An Application of the Sonine–Letnikov Fractional Derivative for the Radial Schrödinger Equation. Fractal Fract. 2019, 3, 16. https://doi.org/10.3390/fractalfract3020016
Ozturk O, Yilmazer R. An Application of the Sonine–Letnikov Fractional Derivative for the Radial Schrödinger Equation. Fractal and Fractional. 2019; 3(2):16. https://doi.org/10.3390/fractalfract3020016
Chicago/Turabian StyleOzturk, Okkes, and Resat Yilmazer. 2019. "An Application of the Sonine–Letnikov Fractional Derivative for the Radial Schrödinger Equation" Fractal and Fractional 3, no. 2: 16. https://doi.org/10.3390/fractalfract3020016
APA StyleOzturk, O., & Yilmazer, R. (2019). An Application of the Sonine–Letnikov Fractional Derivative for the Radial Schrödinger Equation. Fractal and Fractional, 3(2), 16. https://doi.org/10.3390/fractalfract3020016