Approximate Controllability of Semilinear Stochastic Integrodifferential System with Nonlocal Conditions
Abstract
:1. Introduction
2. Preliminaries
3. Main Result
- Step 1.
- For any is continuous on J in the -sense. Let . Then, for any fixed , it follows from Holder’s inequality, Lemma 1, and presume for the theorem that:
- Step 2.
- For each positive integer q, let , then the set is clearly a bounded, closed, and convex set in :
- Step 3.
- Define the operators and as:
4. Example
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Kalman, R.E. Controllability of linear systems. Contrib. Differ. Equ. 1963, 1, 190–213. [Google Scholar]
- Barnett, S. Introduction to Mathematical Control Theory; Clarendon Press: Oxford, UK, 1975. [Google Scholar]
- Curtain, R.F.; Zwart, H. Introduction to infinite dimensional linear systems theory. In Texts in Applied Mathematics; Springer: New York, NY, USA, 1995. [Google Scholar]
- Dauer, J.P.; Mahmudov, N.I. Approximate Controllability of semilinear function equations in Hilbert spaces. J. Math. Anal. Appl. 2002, 273, 310–327. [Google Scholar] [CrossRef]
- Mahmudov, N.I. Controllability of linear stochastic systems. IEEE Trans. Autom. Control 2001, 46, 724–731. [Google Scholar] [CrossRef]
- Mahmudov, N.I. Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces. SIAM J. Control Optim. 2003, 45, 1604–1622. [Google Scholar] [CrossRef]
- Mahmudov, N.I.; Zorlu, S. Controllability of nonlinear stochastic systems. J. Control 2003, 76, 95–104. [Google Scholar] [CrossRef]
- Mahmudov, N.I. Controllability of linear stochastic systems in Hilbert spaces. J. Math. Anal. Appl. 2001, 259, 64–82. [Google Scholar] [CrossRef]
- Mahmudov, N.I. Controllability of semilinear stochastic systems in Hilbert spaces. J. Math. Anal. Appl. 2003, 288, 197–211. [Google Scholar] [CrossRef]
- Bashirov, A.E.; Kerimov, K.R. On controllability conception for stochastic systems. SIAM J. Control Optim. 1997, 35, 384–398. [Google Scholar] [CrossRef]
- Balachandran, K.; Dauer, J.P. Controllability of nonlinear systems in Banach spaces. J. Optim. Theory Appl. 2002, 115, 7–28. [Google Scholar] [CrossRef]
- Sakthivel, R.; Kim, J.H.; Mahmudov, N.I. On Controllability of nonlinear stochastic systems. Rep. Math. Phys 2006, 58, 433–443. [Google Scholar] [CrossRef]
- Chang, Y.K.; Nieto, J.J.; Li, W.S. Controllability of semilinear differential systems with nonlocal initial conditions in Banach spaces. J. Optim. Theory Appl. 2009, 142, 267–273. [Google Scholar] [CrossRef]
- Shukla, A.; Sukavanam, N.; Pandey, D.N. Approximate controllability of fractional semilinear stochastic system of order α ∈ (1,2]. Nonlinear Stud. 2015, 22, 131–138. [Google Scholar] [CrossRef]
- Kumar, S.; Sukavanam, N. On the Approximate Controllability of a Functional Order Control Systems with Delay. Nonlinear Dyn. Syst. Theory 2013, 13, 69–78. [Google Scholar]
- Ito, K. On stochastic differential equations. Mem. Am. Math. Soc. 1951, 4, 1–51. [Google Scholar] [CrossRef]
- Sakthivel, R.; Revathi, P.; Ren, Y. Existence of solutions for nonlinear fractional stochastic differential equations. Nonlinear Anal. TMA 2013, 81, 70–86. [Google Scholar] [CrossRef]
- Sakthivel, R.; Anandhi, E.R. Approximate controllability of impulsive differential equations with state-depenent delay. Int. J. Control 2010, 83, 387–393. [Google Scholar] [CrossRef]
- Shukla, A.; Sukavanam, N.; Pandey, D.N. Controllability of semilinear stochastic system with multiple delays in control. Adv. Control Optim. Dyn. Syst. 2014, 3, 306–312. [Google Scholar] [CrossRef]
- Sakthivel, R.; Nieto, J.J.; Mahmudov, N.I. Approximate controllability of nonlinear deterministic and stochastic systems with unbounded delay. Taiwan. J. Math 2010, 14, 1777–1797. [Google Scholar] [CrossRef]
- Balachendran, K.; Karthikeyan, S. Controllability of stochastic integrodifferential systems. Int. J. Control 2007, 80, 486–491. [Google Scholar] [CrossRef]
- Balachendran, K.; Sakthivel, R. Controllability of integrodifferential systems in Banach spaces. Appl. Math. Comput. 2001, 118, 63–71. [Google Scholar] [CrossRef]
- Balachendran, K.; Kim, J.H.; Karthikeyan, S. Controllability of semilinear stochastic integrodifferential systems. Kybernetika 2007, 43, 31–44. [Google Scholar]
- Luo, J.; Liu, K. Stability of infinite dimensional stochastic evolution equations with memory and markovian jumps. Stoch. Process. Appl. 2008, 118, 864–895. [Google Scholar] [CrossRef]
- Da Prato, G.; Zabczyk, J. Stochastic Equations in Infinite Dimensions. In Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anguraj, A.; Ramkumar, K. Approximate Controllability of Semilinear Stochastic Integrodifferential System with Nonlocal Conditions. Fractal Fract. 2018, 2, 29. https://doi.org/10.3390/fractalfract2040029
Anguraj A, Ramkumar K. Approximate Controllability of Semilinear Stochastic Integrodifferential System with Nonlocal Conditions. Fractal and Fractional. 2018; 2(4):29. https://doi.org/10.3390/fractalfract2040029
Chicago/Turabian StyleAnguraj, Annamalai, and K. Ramkumar. 2018. "Approximate Controllability of Semilinear Stochastic Integrodifferential System with Nonlocal Conditions" Fractal and Fractional 2, no. 4: 29. https://doi.org/10.3390/fractalfract2040029
APA StyleAnguraj, A., & Ramkumar, K. (2018). Approximate Controllability of Semilinear Stochastic Integrodifferential System with Nonlocal Conditions. Fractal and Fractional, 2(4), 29. https://doi.org/10.3390/fractalfract2040029