Implementation and Convergence Analysis of Homotopy Perturbation Coupled With Sumudu Transform to Construct Solutions of Local-Fractional PDEs
Abstract
1. Introduction
2. Local Fractional Calculus Preliminaries
3. Local Fractional Sumudu Transform
4. Local Fractional Sumudu Transform Coupled with Homotopy Perturbation (LHPSTM)
5. Analysis on Convergence
6. Application
6.1. Exemple 1
6.2. Example 2: Local Fractional Dissipative Wave Equation
6.3. Example 3: Local Fractional Damped Wave Equation
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Caponetto, R.; Dongola, G.; Fortuna, L. Fractional Order Systems: Modeling and Control Application; World Scientific: Singapore, 2010. [Google Scholar]
- Miller, K.S.; Rosso, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Petras, I. Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation; Springe: Berlin, Germany, 2011. [Google Scholar]
- Podlubny, I. Fractional Differential Equations: Mathematics in Science and Engineering; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Belgacem, F.B.M.; Silambarasan, R.; Zakia, H.; Mekkaoui, T. New and Extended Applications of the Natural and Sumudu Transforms: Fractional Diffusion and Stokes Fluid Flow Realms. In Advances in Real and Complex Analysis with Applications; Chapter No. 6; Springer: Berlin, Germany, 2017; pp. 107–120. [Google Scholar]
- Zakia, H.; Mekkaoui, T.; Belgacem, F.B. Numerical simulations for a variable order fractional Schnakenberg model. In AIP Conference Proceedings; American Institute of Physics: College Park, ML, USA, 2014; Volume 1637. [Google Scholar]
- Singh, J.; Kumar, D.; Hammouch, Z.; Atangana, A. A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl. Math. Comput. 2018, 316, 504–515. [Google Scholar] [CrossRef]
- Zakia, H.; Mekkaoui, T. Travelling-wave solutions for some fractional partial differential equation by means of generalized trigonometry functions. Int. J. Appl. Math. Res. 2012, 1, 206–212. [Google Scholar]
- Zakia, H.; Mekkaoui, T. Traveling-wave solutions of the generalized Zakharov equation with time-space fractional derivatives. Math. Eng. Sci. Aerosp. 2014, 5, 1–11. [Google Scholar]
- Wang, K.-L.; Liu, S.-Y. He’s Fractional Derivative for Nonlinear Fractional Heat Transfer Equation. Ther. Sci. 2016, 20, 793–796. [Google Scholar] [CrossRef]
- Liu, F.-J.; Li, Z.-B.; Zhang, S.; Liu, H.-Y. He’s Fractional Derivative for Heat Conduction in a Fractal Medium Arising in Silk-worm Cocoon Hierarchy. Ther. Sci. 2015, 9, 1155–1159. [Google Scholar] [CrossRef]
- Hammouch, Z.; Mekkaoui, T. Control of a new chaotic fractional-order system using Mittag-Leffler stability. Nonlinear Stud. 2015, 22, 565–577. [Google Scholar]
- Yang, X.-J.; Srivastava, H.M.; Cattani, C. Local fractional homotopy perturbation method for solving fractal partial differential equations arising in mathematical physics. Rom. Rep. Phys. 2015, 67, 752–761. [Google Scholar]
- Yan, S.-P.; Jafari, H.; Jassim, H.K. Local fractional Adomian decomposition and function decomposition methods for Laplace equation within local fractional operators. Adv. Math. Phys. 2014, 2014, 161580. [Google Scholar] [CrossRef]
- Zhang, Y.-Z.; Yang, A.-M.; Long, Y. Initial boundary value problem for fractal heat equation in the semi-infinite region by Yang-Laplace transform. Therm. Sci. 2014, 18, 677–681. [Google Scholar] [CrossRef]
- Yang, X.-J.; Baleanu, D. Fractal heat conduction problem solved by local fractional variation iteration method. Therm. Sci. 2013, 17, 625–628. [Google Scholar] [CrossRef]
- Watugala, G.K. Sumudu transform: A new integral transform to solve differential equations and control engineering problems. Integr. Educ. 1993, 24, 35–43. [Google Scholar] [CrossRef]
- He, J.-H. Homotopy perturbation technique. Comput. Meth. Appl. Mech. Eng. 1999, 178, 257–262. [Google Scholar] [CrossRef]
- He, J.-H. A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Int. J. Non Linear Mech. 2000, 35, 37–43. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, D.; Kılıçman, A. Homotopy perturbation method for fractional gas dynamics equation using Sumudu transform. Abstr. Appl. Anal. 2013, 2013, 934060. [Google Scholar] [CrossRef]
- Dinkar, S.; Singh, P.; Chauhan, S. Homotopy Perturbation Sumudu Transform Method with He’s Polynomial for Solutions of Some Fractional Nonlinear Partial Differential Equations. Int. J. Nonlinear Sci. 2016, 21, 91–97. [Google Scholar]
- Touchent, K.A.; Belgacem, F.B.M. Nonlinear fractional partial differential equations systems solutions through a hybrid homotopy perturbation Sumudu transform method. Nonlinear Stud. 2015, 22, 591–600. [Google Scholar]
- Youssif, E.A.; Hamed, S.H.M. Solution of nonlinear fractional differential equations using the homotopy perturbation Sumudu transform method. Appl. Math. Sci. 2014, 8, 2195–2210. [Google Scholar] [CrossRef]
- Yang, X.-J.; Baleanu, D.; Zhong, W. Approximate solutions for diffusion equations on Cantor space-time. Proc. Rom. Acad. Ser. A 2013, 14, 127–133. [Google Scholar]
- Yang, X.-J.; Hristov, J.; Srivastava, H.M.; Ahmad, B. Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation. Abstr. Appl. Anal. 2014, 2014, 278672. [Google Scholar] [CrossRef]
- Liu, C.-F.; Kong, S.; Yuan, S. Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem. Therm. Sci. 2013, 17, 715–721. [Google Scholar] [CrossRef]
- Yang, X.-J.; Baleanu, D.; Khan, Y.; Mohyud-Din, S.T. Local fractional variational iteration method for diffusion and wave equations on Cantor sets. Rom. J. Phys. 2014, 59, 36–48. [Google Scholar]
- Srivastava, H.M.; Golmankhaneh, A.K.; Baleanu, D.; Yang, X.-J. Local fractional Sumudu transform with application to IVPs on Cantor sets. Abstr. Appl. Anal. 2014, 2014, 620529. [Google Scholar] [CrossRef]
- Yang, X.-J. Advanced Local Fractional Calculus and Its Applications; World Science: New York, NY, USA, 2012. [Google Scholar]
- Belgacem, F.B.M.; Karaballi, A.A. Sumudu transform fundamental properties investigations and applications. Int. J. Stochastic Anal. 2006, 2006, 91083. [Google Scholar] [CrossRef]
- Deeb, K.Q.; Belgacem, F.B.M. Applications of the Sumudu transform to fractional differential equations. Nonlinear Stud. 2011, 18, 99–112. [Google Scholar]
- Singh, J.; Kumar, D.; Nieto, J.J. A reliable algorithm for a local fractional tricomi equation arising in fractal transonic flow. Entropy 2016, 18, 206. [Google Scholar] [CrossRef]
- Su, W.-H.; Baleanu, D.; Yang, X.-J.; Jafari, H. Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method. Fix. Point Theory Appl. 2013, 2013, 89. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ait Touchent, K.; Hammouch, Z.; Mekkaoui, T.; Belgacem, F.B.M. Implementation and Convergence Analysis of Homotopy Perturbation Coupled With Sumudu Transform to Construct Solutions of Local-Fractional PDEs. Fractal Fract. 2018, 2, 22. https://doi.org/10.3390/fractalfract2030022
Ait Touchent K, Hammouch Z, Mekkaoui T, Belgacem FBM. Implementation and Convergence Analysis of Homotopy Perturbation Coupled With Sumudu Transform to Construct Solutions of Local-Fractional PDEs. Fractal and Fractional. 2018; 2(3):22. https://doi.org/10.3390/fractalfract2030022
Chicago/Turabian StyleAit Touchent, Kamal, Zakia Hammouch, Toufik Mekkaoui, and Fethi B. M. Belgacem. 2018. "Implementation and Convergence Analysis of Homotopy Perturbation Coupled With Sumudu Transform to Construct Solutions of Local-Fractional PDEs" Fractal and Fractional 2, no. 3: 22. https://doi.org/10.3390/fractalfract2030022
APA StyleAit Touchent, K., Hammouch, Z., Mekkaoui, T., & Belgacem, F. B. M. (2018). Implementation and Convergence Analysis of Homotopy Perturbation Coupled With Sumudu Transform to Construct Solutions of Local-Fractional PDEs. Fractal and Fractional, 2(3), 22. https://doi.org/10.3390/fractalfract2030022