Implementation and Convergence Analysis of Homotopy Perturbation Coupled With Sumudu Transform to Construct Solutions of Local-Fractional PDEs
Abstract
:1. Introduction
2. Local Fractional Calculus Preliminaries
3. Local Fractional Sumudu Transform
4. Local Fractional Sumudu Transform Coupled with Homotopy Perturbation (LHPSTM)
5. Analysis on Convergence
6. Application
6.1. Exemple 1
6.2. Example 2: Local Fractional Dissipative Wave Equation
6.3. Example 3: Local Fractional Damped Wave Equation
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Caponetto, R.; Dongola, G.; Fortuna, L. Fractional Order Systems: Modeling and Control Application; World Scientific: Singapore, 2010. [Google Scholar]
- Miller, K.S.; Rosso, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Petras, I. Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation; Springe: Berlin, Germany, 2011. [Google Scholar]
- Podlubny, I. Fractional Differential Equations: Mathematics in Science and Engineering; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Belgacem, F.B.M.; Silambarasan, R.; Zakia, H.; Mekkaoui, T. New and Extended Applications of the Natural and Sumudu Transforms: Fractional Diffusion and Stokes Fluid Flow Realms. In Advances in Real and Complex Analysis with Applications; Chapter No. 6; Springer: Berlin, Germany, 2017; pp. 107–120. [Google Scholar]
- Zakia, H.; Mekkaoui, T.; Belgacem, F.B. Numerical simulations for a variable order fractional Schnakenberg model. In AIP Conference Proceedings; American Institute of Physics: College Park, ML, USA, 2014; Volume 1637. [Google Scholar]
- Singh, J.; Kumar, D.; Hammouch, Z.; Atangana, A. A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl. Math. Comput. 2018, 316, 504–515. [Google Scholar] [CrossRef]
- Zakia, H.; Mekkaoui, T. Travelling-wave solutions for some fractional partial differential equation by means of generalized trigonometry functions. Int. J. Appl. Math. Res. 2012, 1, 206–212. [Google Scholar]
- Zakia, H.; Mekkaoui, T. Traveling-wave solutions of the generalized Zakharov equation with time-space fractional derivatives. Math. Eng. Sci. Aerosp. 2014, 5, 1–11. [Google Scholar]
- Wang, K.-L.; Liu, S.-Y. He’s Fractional Derivative for Nonlinear Fractional Heat Transfer Equation. Ther. Sci. 2016, 20, 793–796. [Google Scholar] [CrossRef]
- Liu, F.-J.; Li, Z.-B.; Zhang, S.; Liu, H.-Y. He’s Fractional Derivative for Heat Conduction in a Fractal Medium Arising in Silk-worm Cocoon Hierarchy. Ther. Sci. 2015, 9, 1155–1159. [Google Scholar] [CrossRef]
- Hammouch, Z.; Mekkaoui, T. Control of a new chaotic fractional-order system using Mittag-Leffler stability. Nonlinear Stud. 2015, 22, 565–577. [Google Scholar]
- Yang, X.-J.; Srivastava, H.M.; Cattani, C. Local fractional homotopy perturbation method for solving fractal partial differential equations arising in mathematical physics. Rom. Rep. Phys. 2015, 67, 752–761. [Google Scholar]
- Yan, S.-P.; Jafari, H.; Jassim, H.K. Local fractional Adomian decomposition and function decomposition methods for Laplace equation within local fractional operators. Adv. Math. Phys. 2014, 2014, 161580. [Google Scholar] [CrossRef]
- Zhang, Y.-Z.; Yang, A.-M.; Long, Y. Initial boundary value problem for fractal heat equation in the semi-infinite region by Yang-Laplace transform. Therm. Sci. 2014, 18, 677–681. [Google Scholar] [CrossRef]
- Yang, X.-J.; Baleanu, D. Fractal heat conduction problem solved by local fractional variation iteration method. Therm. Sci. 2013, 17, 625–628. [Google Scholar] [CrossRef] [Green Version]
- Watugala, G.K. Sumudu transform: A new integral transform to solve differential equations and control engineering problems. Integr. Educ. 1993, 24, 35–43. [Google Scholar] [CrossRef]
- He, J.-H. Homotopy perturbation technique. Comput. Meth. Appl. Mech. Eng. 1999, 178, 257–262. [Google Scholar] [CrossRef]
- He, J.-H. A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Int. J. Non Linear Mech. 2000, 35, 37–43. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, D.; Kılıçman, A. Homotopy perturbation method for fractional gas dynamics equation using Sumudu transform. Abstr. Appl. Anal. 2013, 2013, 934060. [Google Scholar] [CrossRef]
- Dinkar, S.; Singh, P.; Chauhan, S. Homotopy Perturbation Sumudu Transform Method with He’s Polynomial for Solutions of Some Fractional Nonlinear Partial Differential Equations. Int. J. Nonlinear Sci. 2016, 21, 91–97. [Google Scholar]
- Touchent, K.A.; Belgacem, F.B.M. Nonlinear fractional partial differential equations systems solutions through a hybrid homotopy perturbation Sumudu transform method. Nonlinear Stud. 2015, 22, 591–600. [Google Scholar]
- Youssif, E.A.; Hamed, S.H.M. Solution of nonlinear fractional differential equations using the homotopy perturbation Sumudu transform method. Appl. Math. Sci. 2014, 8, 2195–2210. [Google Scholar] [CrossRef]
- Yang, X.-J.; Baleanu, D.; Zhong, W. Approximate solutions for diffusion equations on Cantor space-time. Proc. Rom. Acad. Ser. A 2013, 14, 127–133. [Google Scholar]
- Yang, X.-J.; Hristov, J.; Srivastava, H.M.; Ahmad, B. Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation. Abstr. Appl. Anal. 2014, 2014, 278672. [Google Scholar] [CrossRef]
- Liu, C.-F.; Kong, S.; Yuan, S. Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem. Therm. Sci. 2013, 17, 715–721. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.-J.; Baleanu, D.; Khan, Y.; Mohyud-Din, S.T. Local fractional variational iteration method for diffusion and wave equations on Cantor sets. Rom. J. Phys. 2014, 59, 36–48. [Google Scholar]
- Srivastava, H.M.; Golmankhaneh, A.K.; Baleanu, D.; Yang, X.-J. Local fractional Sumudu transform with application to IVPs on Cantor sets. Abstr. Appl. Anal. 2014, 2014, 620529. [Google Scholar] [CrossRef]
- Yang, X.-J. Advanced Local Fractional Calculus and Its Applications; World Science: New York, NY, USA, 2012. [Google Scholar]
- Belgacem, F.B.M.; Karaballi, A.A. Sumudu transform fundamental properties investigations and applications. Int. J. Stochastic Anal. 2006, 2006, 91083. [Google Scholar] [CrossRef]
- Deeb, K.Q.; Belgacem, F.B.M. Applications of the Sumudu transform to fractional differential equations. Nonlinear Stud. 2011, 18, 99–112. [Google Scholar]
- Singh, J.; Kumar, D.; Nieto, J.J. A reliable algorithm for a local fractional tricomi equation arising in fractal transonic flow. Entropy 2016, 18, 206. [Google Scholar] [CrossRef]
- Su, W.-H.; Baleanu, D.; Yang, X.-J.; Jafari, H. Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method. Fix. Point Theory Appl. 2013, 2013, 89. [Google Scholar] [CrossRef] [Green Version]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ait Touchent, K.; Hammouch, Z.; Mekkaoui, T.; Belgacem, F.B.M. Implementation and Convergence Analysis of Homotopy Perturbation Coupled With Sumudu Transform to Construct Solutions of Local-Fractional PDEs. Fractal Fract. 2018, 2, 22. https://doi.org/10.3390/fractalfract2030022
Ait Touchent K, Hammouch Z, Mekkaoui T, Belgacem FBM. Implementation and Convergence Analysis of Homotopy Perturbation Coupled With Sumudu Transform to Construct Solutions of Local-Fractional PDEs. Fractal and Fractional. 2018; 2(3):22. https://doi.org/10.3390/fractalfract2030022
Chicago/Turabian StyleAit Touchent, Kamal, Zakia Hammouch, Toufik Mekkaoui, and Fethi B. M. Belgacem. 2018. "Implementation and Convergence Analysis of Homotopy Perturbation Coupled With Sumudu Transform to Construct Solutions of Local-Fractional PDEs" Fractal and Fractional 2, no. 3: 22. https://doi.org/10.3390/fractalfract2030022
APA StyleAit Touchent, K., Hammouch, Z., Mekkaoui, T., & Belgacem, F. B. M. (2018). Implementation and Convergence Analysis of Homotopy Perturbation Coupled With Sumudu Transform to Construct Solutions of Local-Fractional PDEs. Fractal and Fractional, 2(3), 22. https://doi.org/10.3390/fractalfract2030022