Characterization and Analysis of Hybrid Fractal Antennas for Multiband Communication and Radar Applications
Abstract
1. Introduction
2. Antenna Design
- denotes the rectangle’s original length;
- indicates the rectangle’s length following n successive iterations;
- S represents the scale ratio controlling the size reduction at each stage.
- is the first rectangle’s area;
- n is the level of iteration.
Multi-Band Design Principle
3. Results and Discussion
3.1. Return Loss
- is the load impedance (impedance of the antenna);
- is the characteristic impedance of the transmission line (usually 50 ohms).
- is the reflection coefficient as defined in Equation (10).
3.2. VSWR
- is the reflection coefficient as defined in Equation (10).
3.3. Radiation Pattern
3.4. Gain
- is the antenna’s gain in that direction. ;
- is the antenna’s efficiency;
- is the antenna’s directivity in the direction .
3.5. Current Distribution
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Puente-Baliarda, C.; Borja, C.; Navarro, M.; Romeu, J. An iterative model for fractal antennas: Application to the Sierpinski gasket antenna. IEEE Trans. Antennas Propag. 2000, 48, 713–719. [Google Scholar] [CrossRef]
- Romeu, J.; Soler, J. Generalized Sierpinski fractal multiband antenna. IEEE Trans. Antennas Propag. 2002, 49, 1237–1239. [Google Scholar] [CrossRef]
- Best, S.R. On the resonant properties of the Koch fractal and other wire monopole antennas. IEEE Antennas Wirel. Propag. Lett. 2005, 1, 74–76. [Google Scholar] [CrossRef]
- Borja, C.; Romeu, J. On the behavior of Koch island fractal boundary microstrip patch antenna. IEEE Trans. Antennas Propag. 2003, 51, 1281–1291. [Google Scholar] [CrossRef]
- Anguera, J.; Martínez, E.; Puente, C.; Borja, C.; Soler, J. Broad-band dual-frequency microstrip patch antenna with modified Sierpinski fractal geometry. IEEE Trans. Antennas Propag. 2004, 52, 66–73. [Google Scholar] [CrossRef]
- Kikkawa, T.; Kimoto, K.; Watanabe, S. Ultrawideband characteristics of fractal dipole antennas integrated on Si for ULSI wireless interconnects. IEEE Electron Device Lett. 2005, 26, 767–769. [Google Scholar] [CrossRef]
- Bao, X.L.; Ruvio, G.; Ammann, M.J.; John, M. A novel GPS patch antenna on a fractal high-impedance surface substrate. IEEE Antennas Wirel. Propag. Lett. 2006, 5, 323–326. [Google Scholar] [CrossRef]
- Rmili, H.; El Mrabet, O.; Floc’h, J.-M.; Miane, J.-L. Study of an electrochemically-deposited 3-D random fractal tree-monopole antenna. IEEE Trans. Antennas Propag. 2007, 55, 1045–1050. [Google Scholar] [CrossRef]
- Chen, W.-L.; Wang, G.-M.; Zhang, C.-X. Small-size microstrip patch antennas combining Koch and Sierpinski fractal shapes. IEEE Antennas Wireless Propag. Lett. 2008, 7, 738–741. [Google Scholar] [CrossRef]
- Zainud-Deen, S.; Malhat, H.A.E.; Awadalla, K. Fractal antenna for passive UHF RFID applications. Prog. Electromagn. Res. B 2009, 16, 209–228. [Google Scholar] [CrossRef]
- Hong, T.; Gong, S.-X.; Liu, Y.; Jiang, W. Monopole antenna with quasi-fractal slotted ground plane for dual-band applications. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 595–598. [Google Scholar] [CrossRef]
- Azari, A. A new super wideband fractal microstrip antenna. IEEE Trans. Antennas Propag. 2011, 59, 1724–1727. [Google Scholar] [CrossRef]
- Levy, M.; Bose, S.; Van Dinh, A.; Kumar, D.S. A novelistic fractal antenna for ultra wideband (UWB) applications. Prog. Electromagn. Res. B 2012, 45, 369–393. [Google Scholar] [CrossRef]
- Kushwaha, N.; Kumar, R. An UWB fractal antenna with defected ground structure and swastika shape electromagnetic band gap. Prog. Electromagn. Res. B 2013, 52, 383–403. [Google Scholar] [CrossRef]
- Susila, M.; Rao, T.R.; Gupta, A. A novel smiley fractal antenna (SFA) design and development for UWB wireless applications. Prog. Electromagn. Res. C 2014, 54, 171–178. [Google Scholar] [CrossRef]
- Dyab, W.M.G.; Ibrahim, M.S.; Sakr, A.A.; Wu, K. The resonant electrical length of helical antennas placed between metallic parallel plates. In Proceedings of the 2022 16th European Conference on Antennas and Propagation (EuCAP), Madrid, Spain, 27 March–1 April 2022; pp. 1–3. [Google Scholar]
- Dyab, W.M.; Sarkar, T.K.; Salazar-Palma, M. Antenna reciprocity and the theory of electromagnetic time reversal. In Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, Chicago, IL, USA, 8–14 July 2012; pp. 1–2. [Google Scholar]
- Dyab, W.; Salama, D.; Sarkar, T.K.; Salazar-Palma, M. Multiple-frequency adaptive antenna processing over imperfect ground planes. In Proceedings of the 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), Memphis, TN, USA, 6–11 July 2014; pp. 1796–1797. [Google Scholar]
- Kumar, Y.; Singh, S. A compact multiband hybrid fractal antenna for multistandard mobile wireless applications. Wirel. Pers. Commun. 2015, 84, 57–67. [Google Scholar] [CrossRef]
- Kumar, Y.; Singh, S. Performance analysis of coaxial probe fed modified Sierpinski–Meander hybrid fractal heptaband antenna for future wireless communication networks. Wirel. Pers. Commun. 2017, 94, 3251–3263. [Google Scholar] [CrossRef]
- Kaur, G.; Rattan, M.; Jain, C. Design and optimization of psi (ψ) slotted fractal antenna using ANN and GA for multiband applications. Wirel. Pers. Commun. 2017, 97, 4573–4585. [Google Scholar] [CrossRef]
- Bangi, I.S.; Sivia, J.S. Minkowski and Hilbert curves based hybrid fractal antenna for wireless applications. AEU-Int. J. Electron. Commun. 2018, 85, 159–168. [Google Scholar] [CrossRef]
- Kaur, M.; Sivia, J.S. Minkowski, Giuseppe Peano and Koch curves based design of compact hybrid fractal antenna for biomedical applications using ANN and PSO. AEU-Int. J. Electron. Commun. 2019, 99, 14–24. [Google Scholar] [CrossRef]
- Sran, S.S.; Sivia, J.S. ANN and IFS based wearable hybrid fractal antenna with DGS for S, C and X band application. AEU–Int. J. Electron. Commun. 2020, 127, 153425. [Google Scholar] [CrossRef]
- Aouthu, S.; Anantha, B.; Gosula, R.S.R.; Swaraja, K.; Chaitanya, D.M.K.; Lakshmi, N.D. Sustainable design and analysis of a quasi snowflake fractal antenna for multiband applications. In Proceedings of the 2024 IEEE Wireless Antenna and Microwave Symposium (WAMS), Visakhapatnam, India, 29 February–3 March 2024; pp. 1–5. [Google Scholar]
- Srikanth, G.; Reddy, A.S.; Sravanthi, J.; Naik, K.H.M.; Kota, P.R. Low profile super wideband Koch snowflake fractal based monopole antenna with enhanced bandwidth and notching characteristics. In Proceedings of the 2024 2nd International Conference on Computer, Communication and Control (IC4), Indore, India, 8–10 February 2024; pp. 1–6. [Google Scholar]
- Samayoa, D.; Mollinedo, H.; Jiménez-Bernal, J.A.; Gutiérrez-Torres, C.C. Effects of Hausdorff dimension on the static and free vibration response of beams with Koch snowflake-like cross section. Fractal Fract. 2023, 7, 153. [Google Scholar] [CrossRef]
- Aravindraj, E.; Nagarajan, G.; Ramanathan, P. A compact Sierpinski gasket fractal antenna for S, C, X, and Ku band applications. Prog. Electromagn. Res. C 2024, 141, 33–40. [Google Scholar] [CrossRef]
- Ezhumalai, A.; Nagarajan, G.; Ramanathan, P. Koch snowflake fractal embedded octagonal patch antenna with hexagonal split ring for ultra-wide band and 5G applications. Prog. Electromagn. Res. C 2023, 135, 95–106. [Google Scholar] [CrossRef]
- Krishnan, T. A modified Sierpinski carpet antenna structure for multiband wireless applications. Sci. Temper 2023, 14, 398–404. [Google Scholar]
- Benkhadda, O.; Saih, M.; Ahmad, S.; Al-Gburi, A.J.A.; Zakaria, Z.; Chaji, K.; Reha, A. A miniaturized tri-wideband Sierpinski hexagonal-shaped fractal antenna for wireless communication applications. Fractal Fract. 2023, 7, 115. [Google Scholar] [CrossRef]
- Vallappil, A.K.; Khawaja, B.A.; Rahim, M.K.A.; Uzair, M.; Jamil, M.; Awais, Q. Minkowski–Sierpinski fractal structure-inspired 2×2 antenna array for use in next-generation wireless systems. Fractal Fract. 2023, 7, 158. [Google Scholar] [CrossRef]
- Azzouz, A.; Bouhmidi, R.; Chetioui, M.; Berber, R.; Al-Gburi, A.J.A. Performance optimization of crossed bowties of inverted Sierpinski fractal antenna for multiband wireless communication applications. Telemat. Inform. Rep. 2025, 19, 100231. [Google Scholar] [CrossRef]
- Remya, V.; Gajalakshmi, M.; Jayashree, S.; Kanthimathi, M. Low profile Sierpinski fractal patch antenna. In Proceedings of the 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT), Chennai, India, 10–11 March 2022; pp. 1–5. [Google Scholar]
- Rao, N. Modified Sierpinski and its use in fractal patch antenna for miniaturization and multiband behavior. In Proceedings of the 2022 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), Bangalore, India, 12–16 December 2022; pp. 1804–1809. [Google Scholar]
- Kumar, O.P.; Kumar, P.; Ali, T.; Kumar, P.; Subhash, B.K. A quadruple notch UWB antenna with decagonal radiator and Sierpinski square fractal slots. J. Sens. Actuator Netw. 2023, 12, 24. [Google Scholar] [CrossRef]
- Kalaiyarasan, R.; Nagarajan, G.; Kumaran, R.S. Design and implementation of an efficient Sierpinski carpet fractal antenna for 2.45 GHz applications. SN Comput. Sci. 2023, 4, 728. [Google Scholar] [CrossRef]
- Yazid, M.Y.I.; Baharuddin, M.H.; Islam, M.S.; Islam, M.T.; Almutairi, A.F. A Sierpinski arrowhead curve slot Vivaldi antenna for microwave head imaging system. IEEE Access 2023, 11, 32335–32347. [Google Scholar] [CrossRef]
- Porcu, I.; Maccio, C.; Muntoni, G.; Fanti, A. Design of a Sierpinski fractal antenna for breast tumors diagnosis. In Proceedings of the 2023 Photonics & Electromagnetics Research Symposium (PIERS), Prague, Czech Republic, 3–6 July 2023; pp. 1698–1704. [Google Scholar]
- Annou, A.; Berhab, S.; Chebbara, F. Koch snowflake fractal patch antenna with new ENG metamaterial loads for WiMAX and Wi-Fi. In Proceedings of the 2022 7th International Conference on Image and Signal Processing and their Applications (ISPA), Mostaganem, Algeria, 8–9 May 2022; pp. 1–5. [Google Scholar]
- Harini, V.; Sairam, M.V.S.; Madhu, R. Performance analysis of an extended Sierpinski gasket fractal antenna for mmWave femtocells applications. Wirel. Pers. Commun. 2022, 119, 1437–1468. [Google Scholar] [CrossRef]
- Azzouz, A.; Bouhmidi, R.; Munir, M.E.; Nasralla, M.M.; Chetioui, M. Performance analysis of a high-gain multi-band wheel-shaped fractal antenna using Sierpinski carpet and Koch snowflake geometries. Results Eng. 2025, 26, 105328. [Google Scholar] [CrossRef]
- Abraham, J.; Kannadhasan, S. Design and analysis of single layer proximity fed Sierpinski fractal 2x1 array antenna embedded on hexagon shaped patch with defected ground structure. J. Commun. 2022, 17, 878–889. [Google Scholar] [CrossRef]
- Vera-Reveles, G.; González-Fernández, J.V.; Castillo-León, J.F.; González, F.J.; Díaz de León-Zapata, R.; De La Rosa-Zapata, A.B.; Orocio-Castro, N.; Simón, J. Tuning bolometric parameters of Sierpinski fractal antenna-coupled SWCNT films by thermoelectric characterization at UHF frequencies. Electronics 2022, 11, 1665. [Google Scholar] [CrossRef]
- Kaur, G.; Kaur, A. Monostatic radar-based microwave imaging of breast tumor using an ultra-wideband dielectric resonator antenna (DRA) with a Sierpinski fractal defected ground structure. Mapan 2022, 37, 917–928. [Google Scholar] [CrossRef]
- Mollah, M.R.; Rahman, M.A.; Shohan, M.S.R. Design of a multi-band Sierpinski carpet fractal antenna with modified ground plane. In Proceedings of the 2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE), Gazipur, Bangladesh, 24–26 February 2022; pp. 1–5. [Google Scholar]
- Apon, R.I.; Hossen, M.Z.; Das, I.; Chakraborty, S. Design and performance analysis of a CSRR based snowflake fractal antenna for multiband applications. In Proceedings of the 2021 5th International Conference on Electrical Information and Communication Technology (EICT), Khulna, Bangladesh, 17–19 December 2021; pp. 1–5. [Google Scholar]













| Ref | Size (mm2) | Bands | Die-Mat | Gain (dBi) | BW (MHz) | Operat-Freq (GHz) |
|---|---|---|---|---|---|---|
| Prop | 40 × 60 | 7 | FR4 | 19.38 (Simulated) | 220 | 2.11/3.06/5.78/6.94/8.48/9.23/9.56 |
| [25] | 60 × 60 | 4 | FR4 | 6.75 | 600 | 2.4/3.2/7.1/10.4 |
| [38] | 65 × 65 | 2 | Roger RO4350B | 7.35 | 750 | 2.35/3.79 |
| [46] | 45 × 60 | 6 | FR4 | 8.11 | 300 | 6/6.2/7.09/7.63/9.15/10.11 |
| [47] | 40 × 40 | 5 | FR4 | 2.75 | 260 | 2.55/3.15/3.41/3.65/5.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Azzouz, A.; Bouhmidi, R.; Munir, M.E.; Nasralla, M.M.; Chetioui, M. Characterization and Analysis of Hybrid Fractal Antennas for Multiband Communication and Radar Applications. Fractal Fract. 2026, 10, 47. https://doi.org/10.3390/fractalfract10010047
Azzouz A, Bouhmidi R, Munir ME, Nasralla MM, Chetioui M. Characterization and Analysis of Hybrid Fractal Antennas for Multiband Communication and Radar Applications. Fractal and Fractional. 2026; 10(1):47. https://doi.org/10.3390/fractalfract10010047
Chicago/Turabian StyleAzzouz, Abdelbasset, Rachid Bouhmidi, Mehr E. Munir, Moustafa M. Nasralla, and Mohammed Chetioui. 2026. "Characterization and Analysis of Hybrid Fractal Antennas for Multiband Communication and Radar Applications" Fractal and Fractional 10, no. 1: 47. https://doi.org/10.3390/fractalfract10010047
APA StyleAzzouz, A., Bouhmidi, R., Munir, M. E., Nasralla, M. M., & Chetioui, M. (2026). Characterization and Analysis of Hybrid Fractal Antennas for Multiband Communication and Radar Applications. Fractal and Fractional, 10(1), 47. https://doi.org/10.3390/fractalfract10010047

