A Comparative Study of Sentiment Classification Models for Greek Reviews
Abstract
:1. Introduction
2. Theoretical Background and Review
2.1. Text Representation
2.2. Computational Methods for Sentiment Classification
2.3. Related Research for Greek Sentiment Classification
3. Methodology
3.1. Dataset Selection
3.2. Text Preprocessing
3.3. Modeling Experiments
3.3.1. Machine Learning Approaches
3.3.2. Artficial Neural Network Models
3.3.3. Transfer Learning Models
3.3.4. Large Language Models
3.4. Model Evaluation
4. Results
4.1. Machine Learning
4.2. Artificial Neural Networks
4.3. Transfer Learning Model
4.4. Large Language Models
5. Discussion
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nandwani, P.; Verma, R. A Review on Sentiment Analysis and Emotion Detection from Text. Soc. Netw. Anal. Min. 2021, 11, 81. [Google Scholar] [CrossRef] [PubMed]
- Al Maruf, A.; Khanam, F.; Haque, M.M.; Jiyad, Z.M.; Mridha, M.F.; Aung, Z. Challenges and Opportunities of Text-Based Emotion Detection: A Survey. IEEE Access 2024, 12, 18416–18450. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Deng, Y.; Bing, L.; Lam, W. A Survey on Aspect-Based Sentiment Analysis: Tasks, Methods, and Challenges. IEEE Trans. Knowl. Data Eng. 2023, 35, 11019–11038. [Google Scholar] [CrossRef]
- Li, R.; Chen, H.; Feng, F.; Ma, Z.; Wang, X.; Hovy, E. DualGCN: Exploring Syntactic and Semantic Information for Aspect-Based Sentiment Analysis. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 7642–7656. [Google Scholar] [CrossRef] [PubMed]
- Alaei, A.R.; Becken, S.; Stantic, B. Sentiment Analysis in Tourism: Capitalizing on Big Data. J. Travel. Res. 2019, 58, 175–191. [Google Scholar] [CrossRef]
- Alamoodi, A.H.; Zaidan, B.B.; Zaidan, A.A.; Albahri, O.S.; Mohammed, K.I.; Malik, R.Q.; Almahdi, E.M.; Chyad, M.A.; Tareq, Z.; Albahri, A.S.; et al. Sentiment Analysis and Its Applications in Fighting COVID-19 and Infectious Diseases: A Systematic Review. Expert Syst. Appl. 2021, 167, 114155. [Google Scholar] [CrossRef]
- Jain, P.K.; Pamula, R.; Srivastava, G. A Systematic Literature Review on Machine Learning Applications for Consumer Sentiment Analysis Using Online Reviews. Comput. Sci. Rev. 2021, 41, 100413. [Google Scholar] [CrossRef]
- Rambocas, M.; Pacheco, B.G. Online Sentiment Analysis in Marketing Research: A Review. J. Res. Interact. Mark. 2018, 12, 146–163. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, F.; Chen, T.; Pan, L.; Beliakov, G.; Wu, J. A Brief Survey of Machine Learning and Deep Learning Techniques for E-Commerce Research. J. Theor. Appl. Electron. Commer. Res. 2023, 18, 2188–2216. [Google Scholar] [CrossRef]
- Giachanou, A.; Crestani, F. Like It or Not: A Survey of Twitter Sentiment Analysis Methods. ACM Comput. Surv. 2016, 49, 1–41. [Google Scholar] [CrossRef]
- Krugmann, J.O.; Hartmann, J. Sentiment Analysis in the Age of Generative AI. Cust. Needs Solut. 2024, 11, 3. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186. [Google Scholar]
- Hartmann, J.; Heitmann, M.; Siebert, C.; Schamp, C. More than a Feeling: Accuracy and Application of Sentiment Analysis. Int. J. Res. Mark. 2023, 40, 75–87. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, Q.; Feng, Y.; Ding, Z.; Yang, Z.; Xia, R. Is ChatGPT a Good Sentiment Analyzer? A Preliminary Study. arXiv 2023, arXiv:2304.04339. [Google Scholar]
- Tsakalidis, A.; Papadopoulos, S.; Voskaki, R.; Ioannidou, K.; Boididou, C.; Cristea, A.I.; Liakata, M.; Kompatsiaris, Y. Building and Evaluating Resources for Sentiment Analysis in the Greek Language. Lang. Resour. Eval. 2018, 52, 1021–1044. [Google Scholar] [CrossRef] [PubMed]
- Bilianos, D. Experiments in Text Classification: Analyzing the Sentiment of Electronic Product Reviews in Greek. J. Quant. Linguist. 2022, 29, 374–386. [Google Scholar] [CrossRef]
- Markopoulos, G.; Mikros, G.; Iliadi, A.; Liontos, M. Sentiment Analysis of Hotel Reviews in Greek: A Comparison of Unigram Features. In Cultural Tourism in a Digital Era, Springer Proceedings in Business and Economics; Katsoni, V., Ed.; Springer Science and Business Media B.V.: Berlin/Heidelberg, Germany, 2015; pp. 373–383. [Google Scholar]
- Dontaki, C.; Koukaras, P.; Tjortjis, C. Sentiment Analysis on English and Greek Twitter Data Regarding Vaccinations. In Proceedings of the 14th International Conference on Information, Intelligence, Systems and Applications, IISA, Volos, Greece, 10–12 July 2023; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2023. [Google Scholar]
- Charalampakis, B.; Spathis, D.; Kouslis, E.; Kermanidis, K. Detecting Irony on Greek Political Tweets: A Text Mining Approach. In Proceedings of the 16th International Conference on Engineering Applications of Neural Networks (INNS), Island, Rhodes, Greece, 25–28 September 2015; Association for Computing Machinery: New York, NY, USA, 2015. [Google Scholar]
- Athanasiou, V.; Maragoudakis, M. A Novel, Gradient Boosting Framework for Sentiment Analysis in Languages Where NLP Resources Are Not Plentiful: A Case Study for Modern Greek. Algorithms 2017, 10, 34. [Google Scholar] [CrossRef]
- Katika, A.; Zoulias, E.; Koufi, V.; Malamateniou, F. Mining Greek Tweets on Long COVID Using Sentiment Analysis and Topic Modeling. In Healthcare Transformation with Informatics and Artificial Intelligence; IOS Press BV: Amsterdam, The Netherlands, 2023; Volume 305, pp. 545–548. [Google Scholar]
- Patsiouras, E.; Koroni, I.; Mademlis, I.; Pitas, I. GreekPolitics: Sentiment Analysis on Greek Politically Charged Tweets. In Proceedings of the 2023 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland, 4–8 September 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1320–1324. [Google Scholar]
- Alexandridis, G.; Varlamis, I.; Korovesis, K.; Caridakis, G.; Tsantilas, P. A Survey on Sentiment Analysis and Opinion Mining in Greek Social Media. Information 2021, 12, 331. [Google Scholar] [CrossRef]
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed Representations of Words and Phrases and Their Compositionality. In Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–8 December 2013; pp. 3111–3119. [Google Scholar]
- Pennington, J.; Socher, R.; Manning, C.D. GloVe: Global Vectors for Word Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1532–1543. [Google Scholar]
- Joulin, A.; Grave, E.; Bojanowski, P.; Mikolov, T. Bag of Tricks for Efficient Text Classification. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, Valencia, Spain, 3–7 April 2017; pp. 427–431. [Google Scholar]
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine Learning and Deep Learning. Electron. Mark. 2021, 31, 685–695. [Google Scholar] [CrossRef]
- Yadav, A.; Vishwakarma, D.K. Sentiment Analysis Using Deep Learning Architectures: A Review. Artif. Intell. Rev. 2020, 53, 4335–4385. [Google Scholar] [CrossRef]
- Vaswani, A.; Brain, G.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In Proceedings of the NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 6000–6010. [Google Scholar]
- Sanh, V.; Debut, L.; Chaumond, J.; Wolf, T. DistilBERT, a Distilled Version of BERT: Smaller, Faster, Cheaper and Lighter. arXiv 2019, arXiv:1910.01108. [Google Scholar]
- Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv 2019, arXiv:1907.11692. [Google Scholar]
- Koutsikakis, J.; Chalkidis, I.; Malakasiotis, P.; Androutsopoulos, I. GREEK-BERT: The Greeks Visiting Sesame Street. In Proceedings of the 11th Hellenic Conference on Artificial Intelligence, Athens, Greece, 2–4 September 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 110–117. [Google Scholar]
- Kalamatianos, G.; Mallis, D.; Symeonidis, S.; Arampatzis, A. Sentiment Analysis of Greek Tweets and Hashtags Using a Sentiment Lexicon. In Proceedings of the 19th Panhellenic Conference on Informatics, Athens, Greece, 1–3 October 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 63–68. [Google Scholar]
- Kydros, D.; Argyropoulou, M.; Vrana, V. A Content and Sentiment Analysis of Greek Tweets during the Pandemic. Sustainability 2021, 13, 6150. [Google Scholar] [CrossRef]
- Samaras, L.; García-Barriocanal, E.; Sicilia, M.A. Sentiment Analysis of COVID-19 Cases in Greece Using Twitter Data. Expert. Syst. Appl. 2023, 230, 120577. [Google Scholar] [CrossRef]
- Giatsoglou, M.; Vozalis, M.G.; Diamantaras, K.; Vakali, A.; Sarigiannidis, G.; Chatzisavvas, K.C. Sentiment Analysis Leveraging Emotions and Word Embeddings. Expert. Syst. Appl. 2017, 69, 214–224. [Google Scholar] [CrossRef]
- Aivatoglou, G.; Fytili, A.; Arampatzis, G.; Zaikis, D.; Stylianou, N.; Vlahavas, I. End-to-End Aspect Extraction and Aspect-Based Sentiment Analysis Framework for Low-Resource Languages. In Lecture Notes in Networks and Systems, Proceedings of the Intelligent Systems and Applications, Amsterdam, The Netherlands, 7–8 September 2023; Springer: Cham, Switzerland, 2023; Volume 824, pp. 841–858. [Google Scholar]
- Fragkis, N. Skroutz Shops Greek Reviews. Available online: https://www.kaggle.com/datasets/nikosfragkis/skroutz-shop-reviews-sentiment-analysis (accessed on 13 April 2024).
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Cauteruccio, F.; Kou, Y. Investigating the Emotional Experiences in ESports Spectatorship: The Case of League of Legends. Inf. Process Manag. 2023, 60, 103516. [Google Scholar] [CrossRef]
- Tamer, M.; Khamis, M.A.; Yahia, A.; Khaled, S.A.; Ashraf, A.; Gomaa, W. Arab Reactions towards Russo-Ukrainian War. EPJ Data Sci. 2023, 12, 36. [Google Scholar] [CrossRef]
ML Model | Training | Testing | ||||||
---|---|---|---|---|---|---|---|---|
Accuracy | Precision | Recall | F1 Score | Accuracy | Precision | Recall | F1 Score | |
LR | 92.73 | 92.77 | 92.73 | 92.73 | 93.52 | 93.59 | 93.52 | 93.51 |
KNN | 81.43 | 83.11 | 81.43 | 81.22 | 80.93 | 83.22 | 80.93 | 80.55 |
DT | 83.53 | 83.56 | 83.38 | 83.32 | 83.68 | 83.70 | 83.68 | 83.67 |
MNB | 93.09 | 93.13 | 93.09 | 93.09 | 93.59 | 93.61 | 93.59 | 93.59 |
SVM | 90.63 | 90.67 | 90.63 | 90.63 | 91.61 | 91.69 | 91.61 | 91.60 |
RF | 88.65 | 88.76 | 88.82 | 88.70 | 89.32 | 89.38 | 89.32 | 89.32 |
AdaBoost | 89.35 | 89.43 | 89.35 | 89.35 | 90.77 | 90.83 | 90.77 | 90.76 |
SGB | 89.43 | 89.48 | 89.47 | 89.45 | 89.47 | 89.48 | 89.47 | 89.47 |
ML Model | Training | Testing | ||||||
---|---|---|---|---|---|---|---|---|
Accuracy | Precision | Recall | F1 Score | Accuracy | Precision | Recall | F1 Score | |
LR | 92.25 | 92.28 | 92.25 | 92.25 | 93.44 | 93.45 | 93.44 | 93.44 |
KNN | 88.34 | 88.48 | 88.34 | 88.33 | 88.33 | 88.35 | 88.33 | 88.33 |
DT | 82.79 | 82.80 | 82.29 | 82.77 | 82.07 | 82.08 | 82.07 | 82.07 |
MNB | 92.37 | 92.72 | 92.37 | 92.35 | 93.06 | 93.35 | 93.06 | 93.05 |
SVM | 93.19 | 93.20 | 93.19 | 93.19 | 94.05 | 94.06 | 94.05 | 94.05 |
RF | 88.74 | 88.88 | 88.84 | 88.92 | 89.09 | 89.10 | 89.09 | 89.09 |
AdaBoost | 89.30 | 89.32 | 89.30 | 89.30 | 89.63 | 89.64 | 89.63 | 89.62 |
SGB | 88.02 | 88.11 | 88.15 | 88.13 | 89.70 | 89.71 | 89.70 | 89.70 |
ML Model | Training | Testing | ||||||
---|---|---|---|---|---|---|---|---|
Accuracy | Precision | Recall | F1 Score | Accuracy | Precision | Recall | F1 Score | |
LR | 92.75 | 92.79 | 92.75 | 92.75 | 93.44 | 93.52 | 93.44 | 93.44 |
MNB | 93.36 | 93.40 | 93.36 | 93.36 | 93.52 | 93.54 | 93.52 | 93.52 |
SVM | 92.65 | 92.66 | 92.65 | 92.65 | 92.83 | 92.85 | 92.83 | 92.83 |
ML Model | Training | Testing | ||||||
---|---|---|---|---|---|---|---|---|
Accuracy | Precision | Recall | F1 Score | Accuracy | Precision | Recall | F1 Score | |
LR | 93.49 | 93.51 | 93.49 | 93.49 | 94.66 | 94.66 | 94.66 | 94.66 |
MNB | 92.65 | 92.96 | 92.65 | 92.64 | 93.36 | 93.63 | 93.36 | 93.36 |
SVM | 93.80 | 93.81 | 93.80 | 93.80 | 94.20 | 94.20 | 94.20 | 94.20 |
Model/ Neurons | Training | Testing | ||||||
---|---|---|---|---|---|---|---|---|
Accuracy | Precision | Recall | F1 Score | Accuracy | Precision | Recall | F1 Score | |
MLP/60 | 93.68 | 93.72 | 93.68 | 93.68 | 93.75 | 93.77 | 93.75 | 93.74 |
MLP/70 | 93.78 | 93.80 | 93.78 | 93.78 | 94.58 | 94.59 | 94.58 | 94.58 |
MLP/80 | 93.76 | 93.77 | 93.76 | 93.76 | 94.20 | 94.22 | 94.20 | 94.20 |
MLP/90 | 93.95 | 93.96 | 93.95 | 93.95 | 93.90 | 93.93 | 93.90 | 93.90 |
MLP/100 | 93.82 | 93.83 | 93.82 | 93.82 | 94.58 | 94.61 | 94.58 | 94.58 |
Model/ Neurons | Training | Testing | ||||||
---|---|---|---|---|---|---|---|---|
Accuracy | Precision | Recall | F1 Score | Accuracy | Precision | Recall | F1 Score | |
MLP/60 | 93.30 | 93.33 | 93.30 | 93.30 | 94.51 | 94.51 | 94.51 | 94.51 |
MLP/70 | 93.88 | 93.90 | 93.88 | 93.87 | 94.58 | 94.60 | 94.58 | 94.58 |
MLP/80 | 93.74 | 93.79 | 93.74 | 93.74 | 94.05 | 94.05 | 94.05 | 94.05 |
MLP/90 | 93.78 | 93.81 | 93.78 | 93.78 | 94.51 | 94.51 | 94.51 | 94.51 |
MLP/100 | 93.74 | 93.77 | 93.74 | 93.74 | 93.90 | 93.91 | 93.90 | 93.90 |
Epochs | Training | Testing | ||
---|---|---|---|---|
Loss | Accuracy (%) | Loss | Accuracy (%) | |
1 | 0.26 | 89.66 | 0.15 | 94.74 |
2 | 0.11 | 96.01 | 0.12 | 95.42 |
3 | 0.08 | 97.25 | 0.12 | 95.88 |
4 | 0.05 | 98.24 | 0.13 | 96.03 |
Model | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|
GPT-3.5-turbo | 93.13 | 93.98 | 93.13 | 93.30 |
GPT-4 | 94.81 | 95.38 | 94.81 | 94.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michailidis, P.D. A Comparative Study of Sentiment Classification Models for Greek Reviews. Big Data Cogn. Comput. 2024, 8, 107. https://doi.org/10.3390/bdcc8090107
Michailidis PD. A Comparative Study of Sentiment Classification Models for Greek Reviews. Big Data and Cognitive Computing. 2024; 8(9):107. https://doi.org/10.3390/bdcc8090107
Chicago/Turabian StyleMichailidis, Panagiotis D. 2024. "A Comparative Study of Sentiment Classification Models for Greek Reviews" Big Data and Cognitive Computing 8, no. 9: 107. https://doi.org/10.3390/bdcc8090107
APA StyleMichailidis, P. D. (2024). A Comparative Study of Sentiment Classification Models for Greek Reviews. Big Data and Cognitive Computing, 8(9), 107. https://doi.org/10.3390/bdcc8090107