Deep-Learning-Driven Turbidity Level Classification
Abstract
1. Introduction
2. Comprehensive Framework for High-Quality Data Collection
3. Classification Schema for the NTU
3.1. Preliminary Case Study: Controlled Examination
Algorithm 1 Iterative hyperparameter optimization for the CNN using multiple trials. |
Require: N (number of trials), M (number of epochs), H (hyperparameter space), D (training data), V (validation data) Ensure: Optimized CNN model
|
3.2. Application of NTU Classification to Aquatic Body Environments
4. Critical Discussion and Comparative Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cotruvo, J. Drinking Water Quality and Contaminants Guidebook; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Water, Sanitation, Hygiene and Health (WSH). A Global Overview of National Regulations and Standards for Drinking-Water Quality, 2nd ed.; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Dorevitch, S.; DeFlorio-Barker, S.; Jones, R.M.; Liu, L. Water quality as a predictor of gastrointestinal illness following incidental contact water recreation. Water Res. 2015, 83, 94–103. [Google Scholar] [CrossRef]
- Zaman, M.; Shahid, S.A.; Heng, L. Irrigation Water Quality. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Springer: Berlin/Heidelberg, Germany, 2018; pp. 113–131. [Google Scholar] [CrossRef]
- Malakar, A.; Snow, D.D.; Ray, C. Irrigation Water Quality—A Contemporary Perspective. Water 2019, 11, 1482. [Google Scholar] [CrossRef]
- Ahmad, T.; Aadil, R.M.; Ahmed, H.; Rahman, U.u.; Soares, B.C.V.; Souza, S.L.Q.; Pimentel, T.C.; Scudino, H.; Guimarães, J.T.; Esmerino, E.A.; et al. Treatment and utilization of dairy industrial waste: A review. Trends Food Sci. Technol. 2019, 88, 361–372. [Google Scholar] [CrossRef]
- Boyd, C.E. Water Quality: An Introduction; Springer International Publishing: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Abrahams, M.V.; Kattenfeld, M.G. The role of turbidity as a constraint on predator-prey interactions in aquatic environments. Behav. Ecol. Sociobiol. 1997, 40, 169–174. [Google Scholar] [CrossRef]
- Utne-Palm, A. Visual feeding of fish in a turbid environment: Physical and behavioural aspects. Mar. Freshw. Behav. Physiol. 2002, 35, 111–128. [Google Scholar] [CrossRef]
- Chivers, D.P.; Al-Batati, F.; Brown, G.E.; Ferrari, M.C.O. The effect of turbidity on recognition and generalization of predators and non-predators in aquatic ecosystems. Ecol. Evol. 2012, 3, 268–277. [Google Scholar] [CrossRef]
- Shukla, G.; Kumar, A.; Bhanti, M.; Joseph, P.E.; Taneja, A. Organochlorine pesticide contamination of ground water in the city of Hyderabad. Environ. Int. 2006, 32, 244–277. [Google Scholar] [CrossRef]
- Nicolopoulou-Stamati1, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Front. Public Health 2016, 4, 148. [Google Scholar] [CrossRef]
- Ghazi, R.M.; Yusoff, N.R.N.; Halim, N.S.A.; Wahab, I.R.A.; Latif, N.A.; Hasmoni, S.H.; Zaini, M.A.A.; Zakaria, Z.A. Health effects of herbicides and its current removal strategies. Bioengineered 2023, 14, 2259526. [Google Scholar] [CrossRef]
- Ahmad, M.F.; Ahmad, F.A.; Alsayegh, A.A.; Zeyaullah, M.; AlShahrani, A.M.; Muzammil, K.; Saati, A.A.; Wahab, S.; Elbendary, E.Y.; Kambal, N.; et al. Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon 2024, 10, e29128. [Google Scholar] [CrossRef]
- Lin, J.; Ganesh, A. Water quality indicators: Bacteria, coliphages, enteric viruses. Int. J. Environ. Health Res. 2013, 23, 484–506. [Google Scholar] [CrossRef] [PubMed]
- Bin Omar, A.F.; Bin MatJafri, M.Z. Turbidimeter Design and Analysis: A Review on Optical Fiber Sensors for the Measurement of Water Turbidity. Sensors 2009, 9, 8311–8335. [Google Scholar] [CrossRef] [PubMed]
- Extance, P.; Pitt, G.D. Intelligent Turbidity Monitoring. Meas. Control 1984, 17, 343–349. [Google Scholar] [CrossRef]
- Gregory, J. Particles in Water: Properties and Processes; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Eaton, A.D.; Clesceri, L.S.; Rice, E.W.; Greenberg, A.E. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Library Association: Chicago, IL, USA, 2000; Volume 37, p. 2792. [Google Scholar] [CrossRef]
- Kitchener, B.G.B.; Wainwright, J.; Parsons, A.J. A review of the principles of turbidity measurement. Prog. Phys. Geogr. Earth Environ. 2017, 41, 620–642. [Google Scholar] [CrossRef]
- Rangers, W. Turbidity (NTU). Available online: https://www.waterboards.ca.gov/water_issues/programs/swamp/docs/cwt/guidance/3150en.pdf (accessed on 19 June 2024).
- Parra, L.; Ahmad, A.; Sendra, S.; Lloret, J.; Lorenz, P. Combination of Machine Learning and RGB Sensors to Quantify and Classify Water Turbidity. Chemosensors 2024, 12, 34. [Google Scholar] [CrossRef]
- Wan, S.; Yeh, M.-L.; Ma, H.-L.; Chou, T.-Y. The Robust Study of Deep Learning Recursive Neural Network for Predicting of Turbidity of Water. Water 2022, 14, 761. [Google Scholar] [CrossRef]
- Ma, Y.; Song, K.; Wen, Z.; Liu, G.; Shang, Y.; Lyu, L.; Du, J.; Yang, Q.; Li, S.; Tao, H.; et al. Remote Sensing of Turbidity for Lakes in Northeast China Using Sentinel-2 Images with Machine Learning Algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9132–9146. [Google Scholar] [CrossRef]
- Zheng, J.; Yang, G.; Huang, Y.; Liu, L.; Hong, G.; Qiu, Z.; Liu, S. Research of Water Body Turbidity Classification Model for Aquiculture Based on Transfer Learning. J. Phys. Conf. Ser. 2021, 1757, 012004. [Google Scholar] [CrossRef]
- Gu, K.; Liu, J.; Shi, S.; Xie, S.; Shi, T.; Qiao, J. Self-Organizing Multichannel Deep Learning System for River Turbidity Monitoring. IEEE Trans. Instrum. Meas. 2022, 71, 9510713. [Google Scholar] [CrossRef]
- Lopez-Betancur, D.; Moreno, I.; Guerrero-Mendez, C.; Saucedo-Anaya, T.; González, E.; Bautista-Capetillo, C.; González-Trinidad, J. Convolutional Neural Network for Measurement of Suspended Solids and Turbidity. Appl. Sci. 2022, 12, 6079. [Google Scholar] [CrossRef]
- Feizi, H.; Sattari, M.T.; Mosaferi, M.; Apaydin, H. An image-based deep learning model for water turbidity estimation in laboratory conditions. Int. J. Environ. Sci. Technol. 2022, 20, 149–160. [Google Scholar] [CrossRef]
- Model 2100P ISO; Portable Turbidimeter. Instrument Manual. Hach Company: Loveland, CO, USA, 2004.
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Trejo-Zúñiga, I.; Moreno, M.; Santana-Cruz, R.F.; Meléndez-Vázquez, F. Deep Learning-Driven of Turbidity Levels Dataset; European Organization for Nuclear Research: Geneve, Switzerland, 2024. [Google Scholar] [CrossRef]
- Technical Report: NMX-AA-038-SCFI-2001 Análisis de Agua-Determinación de Turbiedad en Aguas Naturales, Residuales y Residuales Tratadas-Método de Prueba; Secretaría de Economía: Ciudad de México, Mexico, 2001.
Class Number | NTU Range | Turbidity Level |
---|---|---|
1 | 200–320 | Low |
2 | 320–440 | Moderate |
3 | 440–560 | Intermediate |
4 | 560–680 | High |
5 | 680–800 | Very high |
Class 1 | Class 2 | Class 3 | Class 4 | Class 5 |
---|---|---|---|---|
Aspect | CNN | Machine Learning | Deep Learning |
---|---|---|---|
Feature extraction | Automatic, highly effective | Manual, requires domain knowledge | Automatic, effective |
Handles high-dimensional data | Excels, especially with images | Not well | Very well |
Complexity | High for image tasks | Moderate | High |
Training time | Long, but worth it | Short | Long |
Performance | Excellent for images | Good | Excellent |
Applications | Image/video processing | Various tasks | Wide range |
Generalization | Excellent with enough data | Good | Very good |
Adaptability | Needs retraining | Easily adaptable | Adaptable |
Robustness | High | Moderate | Moderate |
Predicted Class | |||||
---|---|---|---|---|---|
Real Class | 1 | 2 | 3 | 4 | 5 |
1 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 |
3 | 0.00 | 0.05 | 0.93 | 0.02 | 0.00 |
4 | 0.00 | 0.00 | 0.13 | 0.85 | 0.02 |
5 | 0.00 | 0.00 | 0.00 | 0.03 | 0.97 |
Predicted Class | ||
---|---|---|
Real Class | 1 | 2 |
1 | 50.0 | 10.0 |
2 | 00.0 | 00.0 |
Class 1—Laboratory Samples | Class 1—In Situ Samples |
---|---|
Proposal Dataset + CNN | Dataset + CNN from [28] | ||||||
---|---|---|---|---|---|---|---|
Epoch | Time [s] | Accuracy Train | Accuracy Test | Epoch | Time [s] | Accuracy Train | Accuracy Test |
20 | 22 | 0.97 | 0.93 | - | - | - | - |
30 | 42 | 1.00 | 0.97 | - | - | - | - |
50 | 40 | 1.00 | 0.93 | 50 | 59 | 0.88 | 0.87 |
100 | 60 | 1.00 | 0.96 | 100 | 119 | 0.92 | 0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trejo-Zúñiga, I.; Moreno, M.; Santana-Cruz, R.F.; Meléndez-Vázquez, F. Deep-Learning-Driven Turbidity Level Classification. Big Data Cogn. Comput. 2024, 8, 89. https://doi.org/10.3390/bdcc8080089
Trejo-Zúñiga I, Moreno M, Santana-Cruz RF, Meléndez-Vázquez F. Deep-Learning-Driven Turbidity Level Classification. Big Data and Cognitive Computing. 2024; 8(8):89. https://doi.org/10.3390/bdcc8080089
Chicago/Turabian StyleTrejo-Zúñiga, Iván, Martin Moreno, Rene Francisco Santana-Cruz, and Fidel Meléndez-Vázquez. 2024. "Deep-Learning-Driven Turbidity Level Classification" Big Data and Cognitive Computing 8, no. 8: 89. https://doi.org/10.3390/bdcc8080089
APA StyleTrejo-Zúñiga, I., Moreno, M., Santana-Cruz, R. F., & Meléndez-Vázquez, F. (2024). Deep-Learning-Driven Turbidity Level Classification. Big Data and Cognitive Computing, 8(8), 89. https://doi.org/10.3390/bdcc8080089