Impact of Artificial Intelligence on COVID-19 Pandemic: A Survey of Image Processing, Tracking of Disease, Prediction of Outcomes, and Computational Medicine
Abstract
:1. Introduction
Motivation and Literature Gap
2. Comparative Discussion of Related Surveys
2.1. Spread of COVID-19
2.2. Diagnostics in COVID-19
3. Impact of AI on Repressing COVID-19
3.1. Medical Image Processing
3.1.1. The Role of CT Scan for COVID-19 Patients Screening
3.1.2. Diagnosis Using Radiology Images
3.1.3. Disease Tracking
3.1.4. Prediction of the Infected Patient
3.2. Disease Tracking and Treatment
3.2.1. Prediction in COVID-19
3.2.2. Discovery of a Drug for COVID-19
4. Research Challenges and Open Issues
- Insufficient Data for Machine Training
- High Computational Expenses
- Scarce Data
- Security and Privacy
- Interoperability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Available online: https://covid19.who.int/ (accessed on 9 December 2022).
- Salgotra, R.; Rahimi, I.; Gandomi, A.H. Artificial Intelligence for Fighting the COVID-19 Pandemic. In Humanity Driven AI; Springer: Cham, Switzerland, 2022; pp. 165–177. [Google Scholar]
- Ruiz Estrada, M.A. The uses of drones in case of massive Epidemics contagious diseases relief humanitarian aid: Wuhan-COVID-19 crisis. SSRN Electron. J. 2020. [Google Scholar] [CrossRef]
- Jokisch, O.; Siegert, I.; Loesch, E. Speech communication at the presence of unmanned aerial vehicles. In Proceedings of the 46th Annual German Conference on Acoustics (DAGA 2020), Hannover, Germany, 16–19 March 2020. [Google Scholar]
- Alalawi, H.; Alsuwat, M.; Alhakami, H. A Survey of the Application of Artifical Intellegence on COVID-19 Diagnosis and Prediction. Eng. Technol. Appl. Sci. Res. 2021, 11, 7824–7835. [Google Scholar] [CrossRef]
- Mahanty, C.; Kumar, R.; Asteris, P.G.; Gandomi, A.H. COVID-19 Patient Detection Based on Fusion of Transfer Learning and Fuzzy Ensemble Models Using CXR Images. Appl. Sci. 2021, 11, 11423. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Waurn, G.; Campus, P. Artificial intelligence in the battle against Coronavirus ( COVID-19): A survey and future research directions. arXiv 2020, arXiv:2008.07343. [Google Scholar]
- El Homsi, M.; Chung, M.; Bernheim, A.; Jacobi, A.; King, M.J.; Lewis, S.; Taouli, B. Review of Chest CT Manifestations of COVID-19 Infection. Eur. J. Radiol. Open 2020, 7, 100239. [Google Scholar] [CrossRef]
- Maghdid, H.S.; Ghafoor, K.Z.; Sadiq, A.S.; Curran, K.; Rabie, K. A novel AI-enabled framework to diagnose coronavirus COVID-19 using smartphone embedded sensors: Design study. arXiv 2020, arXiv:2003.07434. [Google Scholar]
- Wang, C.J.; Ng, C.Y.; Brook, R.H. Response to COVID-19 in Taiwan: Big data analytics, new technology, and proactive testing. JAMA 2020, 323, 1341–1342. [Google Scholar] [CrossRef]
- techUK. Available online: https://www.techuk.org/resource/how-taiwan-used-tech-to-fight-covid-19.html#:~:text=Taiwan%20has%20also%20used%20AI,risk%20of%20contracting%20COVID%2D19 (accessed on 19 December 2022).
- Hota, L.; Dash, P.K.; Sahoo, K.S.; Gandomi, A.H. Air Quality Index Analysis of Indian Cities During COVID-19 Using Machine Learning Models: A Comparative Study. In Proceedings of the 2021 8th International Conference on Soft Computing & Machine Intelligence (ISCMI), Cairo, Egypt, 26–27 November 2021; pp. 27–31. [Google Scholar]
- Bullock, J.; Alexandra, L.; Pham, K.H.; Lam, C.S.N.; Luengo-Oroz, M. Mapping the landscape of artificial intelligence applications against COVID-19. arXiv 2020, arXiv:2003.11336. [Google Scholar] [CrossRef]
- Rahmatizadeh, S.; Valizadeh-Haghi, S.; Dabbagh, A. The role of Artificial Intelligence in Management of Critical COVID-19 patients. J. Cell. Mol. Anesth. 2020, 5, 16–22. [Google Scholar]
- Fayyoumi, E.; Idwan, S.; AboShindi, H. Machine Learning and Statistical Modelling for Prediction of Novel COVID-19 Patients Case Study: Jordan. Mach. Learn. 2020, 11. [Google Scholar] [CrossRef]
- Naudé, W. Artificial Intelligence against COVID-19: An Early Review; Institute of Labor Economics: Bonn, Germany, 2020. [Google Scholar]
- Kumar, A.; Gupta, P.K.; Srivastava, A. A review of modern technologies for tackling COVID-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 569–573. [Google Scholar] [CrossRef]
- Calandra, D.; Favareto, M. Artificial Intelligence to fight COVID-19 outbreak impact: An overview. Eur. J. Soc. Impact Circ. Econ. 2020, 1, 84–104. [Google Scholar]
- Piccialli, F.; Di Cola, V.S.; Giampaolo, F.; Cuomo, S. The role of artificial intelligence in fighting the COVID-19 pandemic. Inf. Syst. Front. 2021, 23, 1467–1497. [Google Scholar] [CrossRef]
- Sharifi, A.; Ahmadi, M.; Ala, A. The impact of artificial intelligence and digital style on industry and energy post-COVID-19 pandemic. Environ. Sci. Pollut. Res. 2021, 28, 46964–46984. [Google Scholar] [CrossRef]
- Hassan, A.; Prasad, D.; Rani, S.; Alhassan, M. Gauging the Impact of Artificial Intelligence and Mathematical Modeling in Response to the COVID-19 Pandemic: A Systematic Review. BioMed Res. Int. 2022, 2022, 7731618. [Google Scholar] [CrossRef]
- Pham, Q.V.; Nguyen, D.C.; Huynh-The, T.; Hwang, W.J.; Pathirana, P.N. Artificial intelligence (AI) and big data for coronavirus (COVID-19) pandemic: A survey on the state-of-the-arts. IEEE Access 2020, 8, 130820–130839. [Google Scholar] [CrossRef]
- Rasheed, J.; Jamil, A.; Hameed, A.A.; Al-Turjman, F.; Rasheed, A. COVID-19 in the Age of Artificial Intelligence: A Comprehensive Review. Interdiscip. Sci. Comput. Life Sci. 2021, 13, 153–175. [Google Scholar] [CrossRef]
- Bansal, A.; Padappayil, R.P.; Garg, C.; Singal, A.; Gupta, M.; Klein, A. Utility of artificial intelligence amidst the COVID-19 pandemic: A review. J. Med. Syst. 2020, 44, 1–6. [Google Scholar] [CrossRef]
- Rahimi, I.; Gandomi, A.H.; Asteris, P.G.; Chen, F. Analysis and prediction of COVID-19 Using SIR, SEIQR, and machine learning models: Australia, Italy, and UK Cases. Information 2021, 12, 109. [Google Scholar] [CrossRef]
- Kumar, S.; Raut, R.D.; Narkhede, B.E. A proposed collaborative framework by using artificial intelligence-internet of things (AI-IoT) in COVID-19 pandemic situation for healthcare workers. Int. J. Healthc. Manag. 2020, 13, 337–345. [Google Scholar] [CrossRef]
- Richardson, P.; Griffin, I.; Tucker, C.; Smith, D.; Oechsle, O.; Phelan, A.; Rawling, M.; Savory, E.; Stebbing, J. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 2020, 395, e30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, A.A.; Bouachir, O.; Al-Turjman, F.; Aloqaily, M. AI techniques for COVID-19. IEEE Access 2020, 8, 128776–128795. [Google Scholar] [CrossRef] [PubMed]
- Swapnarekha, H.; Behera, H.S.; Nayak, J.; Naik, B. Role of intelligent computing in COVID-19 prognosis: A state-of-the-art review. Chaos Solitons Fractals 2020, 138, 109947. [Google Scholar] [CrossRef] [PubMed]
- Nemati, E.; Rahman, M.M.; Nathan, V.; Vatanparvar, K.; Kuang, J. Poster abstract: A comprehensive approach for cough type detection. In Proceedings of the 4th IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Arlington, VA, USA, 25–27 September 2019; pp. 15–16. [Google Scholar]
- Jamshidi, M.B.; Roshani, S.; Talla, J.; Lalbakhsh, A.; Peroutka, Z.; Roshani, S.; Sabet, A.; Dehghani, M.; Lotfi, S.; Hadjilooei, F.; et al. A Review on Potentials of Artificial Intelligence Approaches to Forecasting COVID-19 Spreading. AI 2022, 3, 493–511. [Google Scholar] [CrossRef]
- Salgotra, R.; Gandomi, M.; Gandomi, A.H. Evolutionary modelling of the COVID-19 pandemic in fifteen most affected countries. Chaos Solitons Fractals 2020, 140, 110118. [Google Scholar] [CrossRef]
- Shinde, G.R.; Kalamkar, A.B.; Mahalle, P.N.; Dey, N.; Chaki, J.; Ssanien, A.E. Forecasting models for coronavirus disease (COVID-19): A survey of the state-of-the-art. SN Comput. Sci. 2020, 1, 1–15. [Google Scholar] [CrossRef]
- Albahri, O.S.; Zaidan, A.A.; Albahri, A.S.; Zaidan, B.B.; Abdulkareem, K.H.; Al-Qaysi, Z.T.; Alamoodi, A.H.; Aleesa, A.M.; Chyad, M.A.; Alesa, R.M.; et al. Systematic review of artificial intelligence techniques in the detection and classification of COVID-19 medical images in terms of evaluation and benchmarking: Taxonomy analysis, challenges, future solutions and methodological aspects. J. Infect. Public Health 2020, 13, 1381–1396. [Google Scholar] [CrossRef]
- Ahmad, F.; Almuayqil, S.N.; Mamoona, H.; Shahid, N.; Wasim Ahmad, K.; Kashaf, J. Prediction of COVID-19 cases using machine learning for effective public health management. Comput. Mater. Contin. 2020, 66, 2265–2282. [Google Scholar] [CrossRef]
- Monshi, M.M.A.; Poon, J.; Chung, V. Deep learning in generating radiology reports: A survey. Artif. Intell. Med. 2020, 106, 101878. [Google Scholar] [CrossRef]
- Jalaber, C.; Lapotre, T.; Morcet-Delattre, T.; Ribet, F.; Jouneau, S.; Lederlin, M. Chest CT in COVID-19 pneumonia: A review of current knowledge. Diagn. Interv. Imaging 2020, 101, 431–437. [Google Scholar] [CrossRef]
- Shaikh, F.; Andersen, M.B.; Sohail, M.R.; Mulero, F.; Awan, O.; Dupont-Roettger, D.; Kubassova, O.; Dehmeshki, J.; Bisdas, S. Current landscape of imaging and the potential role for artificial intelligence in the management of COVID-19. Curr. Probl. Diagn. Radiol. 2021, 50, 430–435. [Google Scholar] [CrossRef]
- Dong, J.; Wu, H.; Zhou, D.; Li, K.; Zhang, Y.; Ji, H.; Tong, Z.; Lou, S.; Liu, Z. Application of big data and artificial intelligence in COVID-19 prevention, diagnosis, treatment and management decisions in China. J. Med. Syst. 2021, 45, 1–11. [Google Scholar] [CrossRef]
- Asteris, P.G.; Gavriilaki, E.; Touloumenidou, T.; Koravou, E.E.; Koutra, M.; Papayanni, P.G.; Anagnostopoulos, A. Genetic Prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks. J. Cell. Mol. Med. 2022, 26, 1445–1455. [Google Scholar] [CrossRef]
- Shi, F.; Wang, J.; Shi, J.; Wu, Z.; Wang, Q.; Tang, Z.; He, K.; Shi, Y.; Shen, D. Review of artificial intelligence techniques in imaging data acquisition, segmentation, and diagnosis for COVID-19. IEEE Rev. Biomed. Eng. 2020, 14, 4–15. [Google Scholar] [CrossRef]
- Merkoçi, A.; Li, C.Z.; Lechuga, L.M.; Ozcan, A. COVID-19 biosensing technologies. Biosens. Bioelectron. 2021, 178, 113046. [Google Scholar] [CrossRef]
- Maheshwari, V.; Mahmood, M.R.; Sravanthi, S.; Arivazhagan, N.; ParimalaGandhi, A.; Srihari, K.; Sagayaraj, R.; Udayakumar, E.; Natarajan, Y.; Bachanna, P.; et al. Nanotechnology-Based Sensitive Biosensors for COVID-19 Prediction Using Fuzzy Logic Control. J. Nanomater. 2021, 2021, 3383146. [Google Scholar] [CrossRef]
- Salgotra, R.; Gandomi, M.; Gandomi, A.H. Time series analysis and forecast of the COVID-19 pandemic in India using genetic programming. Chaos Solitons Fractals 2020, 138, 109945. [Google Scholar] [CrossRef]
- Wang, S.; Kang, B.; Ma, J.; Zeng, X.; Xiao, M.; Guo, J.; Cai, M.; Yang, J.; Li, Y.; Meng, X.; et al. A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19). Eur. Radiol. 2021, 31, 6096–6104. [Google Scholar] [CrossRef]
- Jin, W.; Stokes, J.M.; Eastman, R.T.; Itkin, Z.; Zakharov, A.V.; Collins, J.J.; Jaakkola, T.S.; Barzilay, R. Deep learning identifies synergistic drug combinations for treating COVID-19. Proc. Natl. Acad. Sci. USA 2021, 118, e2105070118. [Google Scholar] [CrossRef]
- Xu, X.; Jiang, X.; Ma, C.; Du, P.; Li, X.; Lv, S.; Yu, L.; Ni, Q.; Chen, Y.; Su, J.; et al. Deep learning system to screen coronavirus disease 2019 pneumonia. Engineering 2020, 6, 1122–1129. [Google Scholar] [CrossRef]
- Li, L.; Qin, L.; Xu, Z.; Yin, Y.; Wang, X.; Kong, B.; Bai, J.; Lu, Y.; Fang, Z.; Song, Q.; et al. Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT. Radiology 2020, 200905. [Google Scholar] [CrossRef]
- Wang, L.; Wong, A. COVID-net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest radiography images. Sci. Rep. 2020, 10, 19549. [Google Scholar] [CrossRef] [PubMed]
- Emery, S.L.; Erdman, D.D.; Bowen, M.D.; Newton, B.R.; Winchell, M.; Meyer, F.; Tong, S.; Cook, T.; Holloway, P.; McCaustland, K.A.; et al. Real-time reverse transcription-polymerase Chain reaction assay for SARS-associated Coronavirus. Emerg. Infect. Dis. 2004, 10, 311–316. [Google Scholar] [CrossRef]
- Baz, A.; Alhakami, H. Fuzzy based decision-making approach for evaluating the severity of COVID-19 pandemic in cities of kingdom of saudi arabia. Comput. Mater. Contin. 2021, 66, 1155–1174. [Google Scholar] [CrossRef]
- Khan, M.A. An automated and fast system to identify COVID-19 from X-ray radiograph of the chest using image processing and machine learning. Int. J. Imaging Syst. Technol. 2021, 31, 499–508. [Google Scholar] [CrossRef]
- Binsawad, M.; Albahar, M.; Sawad, A.B. VGG-CovidNet: Bi-branched dilated convolutional neural network for chest X-ray-based COVID-19 predictions. Comput. Mater. Contin. 2021, 68, 2791–2806. [Google Scholar] [CrossRef]
- Narin, A.; Kaya, C.; Pamuk, Z. Automatic detection of coronavirus disease (COVID-19) using x-ray images and deep convolutional neural networks. Pattern Anal. Appl. 2021, 24, 1207–1220. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, M.; Li, Q.; Zhang, X.-P.; Zhai, G.; Yao, N. Abnormal respiratory patterns classifier may contribute to large-scale screening of people infected with COVID-19 in an accurate and unobtrusive manner. E3S Web Conf. 2021, 271, 01039. [Google Scholar]
- Yan, L.; Zhang, H.; Goncalves, J.; Xiao, Y.; Wang, M.; Guo, Y.; Sun, C.; Tang, X.; Jin, L.; Zhang, M.; et al. A machine learning-based model for survival prediction in patients with severe COVID-19 infection. medRxiv Prepr. 2020. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.; Jiang, Z.; Yu, Q.; Liu, C.; Huang, Y.; Jiang, Z.; Shao, C.; Zhang, H.; Ma, B.; Wang, Y.; et al. Machine Learning based CT radiomics model for predicting hospital stay in patients with pneumonia associated with SARS-CoV-2 infection: A multicentre study. Ann. Transl. Med. 2020, 8, 859. [Google Scholar] [CrossRef]
- Yousri, D.; Abd Elaziz, M.; Abualigah, L.; Oliva, D.; Al-Qaness, M.A.; Ewees, A.A. COVID-19 X-ray images classification based on enhanced fractional-order cuckoo search optimizer using heavy-tailed distributions. Appl. Soft Comput. 2021, 101, 107052. [Google Scholar] [CrossRef]
- Mousavi, M.; Salgotra, R.; Holloway, D.; Gandomi, A.H. COVID-19 time series forecast using transmission rate and meteorological parameters as features. IEEE Comput. Intell. Mag. 2020, 15, 34–50. [Google Scholar] [CrossRef]
- Sumari, P.; Syed, S.J.; Abualigah, L. A Novel Deep Learning Pipeline Architecture based on CNN to Detect COVID-19 in Chest X-ray Images. Turk. J. Comput. Math. Educ. (TURCOMAT) 2021, 12, 2001–2011. [Google Scholar]
- Jumper, J.; Hassabis, D.; Kholi, P. Alpha Fold Using AI for Scientific Discovery What Is the Protein Folding Problem? Why Is Protein Folding Important? 2018. Available online: https://deepmind.com/blog/article/alphafold-casp13 (accessed on 4 April 2018).
- Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. In Proceedings of the ICLR 2016, San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Zhavoronkov, A.; Aladinskiy, V.; Zhebrak, A.; Zagribelnyy, B.; Terentiev, V.; Bezrukov, D.S.; Polykovskiy, D.; Shayakhmetov, R.; Filimonov, A.; Orekhov, P.; et al. Potential COVID-2019 3C-like protease inhibitors designed using generative deep learning approaches. Chem. Biol. 2020. [Google Scholar] [CrossRef]
- Makhzani, A.; Shlens, J.; Jaitly, N.; Goodfellow, I.; Frey, B. Adversarial autoencoders. arXiv 2015, arXiv:1511.05644. [Google Scholar]
- Maddah, E.; Beigzadeh, B. Use of a smartphone thermometer to monitor thermal conductivity changes in diabetic foot ulcers: A pilot study. J. Wound Care 2020, 29, 61–66. [Google Scholar] [CrossRef]
- Facebook. Available online: https://www.facebook.com/ads/library/?active_status=all&ad_type=all&country=GB&impression_search_field=has_impressions_lifetime (accessed on 24 April 2020).
- Allam, Z.; Jones, D.S. On the Coronavirus (COVID-19) outbreak and the smart city network: Universal data sharing standards coupled with artificial intelligence (AI) to benefit urban health monitoring and management. Healthcare 2020, 8, 46. [Google Scholar] [CrossRef]
- Available online: https://economictimes.indiatimes.com/tech/software/how-to-use-aarogya-setu-app-and-find-out-if-you-have-covid-19-symptoms/articleshow/75023152.cms (accessed on 24 April 2020).
- Chen, J.; See, K.C. Artificial intelligence for COVID-19: Rapid review. J. Med. Internet Res. 2020, 22, e21476. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A.; Sumari, P.; Gandomi, A.H. A novel evolutionary arithmetic optimization algorithm for multilevel thresholding segmentation of COVID-19 ct images. Processes 2021, 9, 1155. [Google Scholar] [CrossRef]
- Rahimi, I.; Chen, F.; Gandomi, A.H. A review on COVID-19 forecasting models. Neural Comput. Appl. 2021, 1–11. [Google Scholar] [CrossRef]
- Baz, M.; Khatri, S.; Baz, A.; Alhakami, H.; Agrawal, A.; Khan, R.A. Blockchain and artificial intelligence applications to defeat COVID-19 pandemic. Comput. Syst. Sci. Eng. 2022, 40, 691–702. [Google Scholar] [CrossRef]
- Malpani Dhoot, N.; Goenka, U.; Ghosh, S.; Jajodia, S.; Chand, R.; Majumdar, S.; Ramasubban, S. Assigning computed tomography involvement score in COVID-19 patients: Prognosis prediction and impact on management. BJR Open 2020, 2, 20200024. [Google Scholar] [CrossRef] [PubMed]
- Maghraby, A.; ALsakiti, F.; Alsubhi, A.; Alghamdi, R. Software to Assist a Health Practitioner in Caring of COVID-19 Home Isolated Patients. In Proceedings of the 2021 National Computing Colleges Conference (NCCC), Taif, Saudi Arabia, 27–28 March 2021; pp. 1–4. [Google Scholar]
- Bai, X.; Wang, H.; Ma, L.; Xu, Y.; Gan, J.; Fan, Z.; Yang, F.; Ma, K.; Yang, J.; Bai, S.; et al. Advancing COVID-19 diagnosis with privacy-preserving collaboration in artificial intelligence. Nat. Mach. Intell. 2021, 3, 1081–1089. [Google Scholar] [CrossRef]
- Cao, Y.; Xu, Z.; Feng, J.; Jin, C.; Han, X.; Wu, H.; Shi, H. Longitudinal assessment of COVID-19 using a deep learning–based quantitative CT pipeline: Illustration of two cases. Radiol. Cardiothorac. Imaging 2020, 2, e200082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, C.; Chen, W.; Cao, Y.; Xu, Z.; Zhang, X.; Deng, L. Development and evaluation of an AI system for COVID-19 diagnosis. Nat. Commun. 2020, 11, 5088. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Han, R.; Ai, T.; Yu, P.; Kang, H.; Tao, Q.; Xial, L. Serial quantitative chest CT assessment of COVID-19: Deep-learning approach. Radiol. Cardiothorac. Imaging 2020, 2, e200075. [Google Scholar] [CrossRef] [Green Version]
- Ai, T.; Yang, Z.; Xia, L. Correlation of chest CT and RT-PCR testing in coronavirus disease. Radiology 2019, 296, E32–E40. [Google Scholar] [CrossRef]
- Alafif, T.; Tehame, A.M.; Bajaba, S.; Barnawi, A.; Zia, S. Machine and deep learning towards COVID-19 diagnosis and treatment: Survey, challenges, and future directions. Int. J. Environ. Res. Public Health 2021, 18, 1117. [Google Scholar] [CrossRef]
- Lalmuanawma, S.; Hussain, J.; Chhakchhuak, L. Applications of machine learning and artificial intelligence for COVID-19 (SARS-CoV-2) pandemic: A review. Chaos Solitons Fractals 2020, 139, 110059. [Google Scholar] [CrossRef]
- Rao, A.; Vazquez, J.A. VazquezIdentification of COVID-19 can be quicker through artificial intelligence framework using a mobile phone-based survey in the populations when cities/towns are under quarantine. Infect. Control Hosp. Epidemiol. 2020, 41, 826–830. [Google Scholar]
- Hamzah, F.A.B.; Lau, C.H.; Nazri, H.; Ligot, D.; Lee, G.; Bin Mohd Shaib, M.K.; Binti Zaidon, U.H.; Abdullah, A. Worldwide COVID-19 outbreak data analysis and Prediction. Bull. World Health Organ. 2020. [Google Scholar] [CrossRef]
- gleamviz. Available online: http://www.gleamviz.org/ (accessed on 19 December 2022).
- Metabiota. Available online: https://www.metabiota.com/ (accessed on 24 April 2020).
- Epidemictracker. Available online: https://www.epidemictracker.com (accessed on 24 April 2020).
- Shuja, J.; Alanazi, E.; Alasmary, W.; Alashaikh, A. COVID-19 open source data sets: A comprehensive survey. Appl. Intell. 2021, 51, 1296–1325. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Shehab, M.; Abualigah, L.; Shambour, Q.; Abu-Hashem, M.A.; Shambour MK, Y.; Alsalibi, A.I.; Gandomi, A.H. Machine learning in medical applications: A review of state-of-the-art methods. Comput. Biol. Med. 2022, 145, 105458. [Google Scholar] [CrossRef]
- Ferguson, N.M.; Laydon, D.; Nedjati-Gilani, G.; Imai, N.; Ainslie, K.; Baguelin, M.; Bhatia, S.; Boonyasiri, A.; Cucunubá, Z.; Cuomo-Dannenburg, G.; et al. Impact of Non-Pharmaceutical Interventions (NPIs) to Reduce COVID-19 Mortality and Healthcare Demand; Imperial College London: London, UK, 2020; pp. 3–20. [Google Scholar]
- GJoynt, M.; Wu, W.K. Understanding COVID-19: What does viral RNA load really mean? Lancet Infect. Dis. 2020, 3099, 19–20. [Google Scholar]
- Atawneh, S.H.; Ghaleb, O.A.; Hussein, A.M.; Al-Madi, M.; Shehabat, B. A Time Series Forecasting for the Cumulative Confirmed and Critical Cases of the COVID-19 Pandemic in Saudi Arabia using Autoregressive Integrated Moving Average (ARIMA) Model. J. Comput. Sci. 2020, 16, 1278–1290. [Google Scholar] [CrossRef]
- Busse, L.W.; Chow, J.H.; McCurdy, M.T.; Khanna, A.K. COVID-19 and the RAAS—A potential role for angiotensin II? Crit. Care 2020, 24, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Zarocostas, J. How to fight an infodemic. Lancet 2020, 395, 676. [Google Scholar] [CrossRef]
- Rodriguez, C.R.; Luque, D.; La Rosa, C.; Esenarro, D.; Pandey, B. Deep learning applied to capacity control in commercial establishments in times of COVID-19. In Proceedings of the 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN), Nainital, India, 25–26 September 2020; pp. 423–428. [Google Scholar]
- Sharma, N.; Sharma, R.; Jindal, N. Machine Learning and Deep Learning Applications-A Vision. Glob. Transit. Proc. 2021, 2, 24–28. [Google Scholar] [CrossRef]
- Mbunge, E.; Akinnuwesi, B.; Fashoto, S.G.; Metfula, A.S.; Mashwama, P. A critical review of emerging technologies for tackling COVID-19 pandemic. Hum. Behav. Emerg. Technol. 2021, 3, 25–39. [Google Scholar] [CrossRef]
- Liang, S.H.; Saeedi, S.; Ojagh, S.; Honarparvar, S.; Kiaei, S.; Mohammadi Jahromi, M.; Squires, J. An Interoperable Architecture for the Internet of COVID-19 Things (IoCT) Using Open Geospatial Standards—Case Study: Workplace Reopening. Sensors 2021, 21, 50. [Google Scholar] [CrossRef]
- Biswas, S.; Li, F.; Latif, Z.; Sharif, K.; Bairagi, A.K.; Mohanty, S.P. GlobeChain: An Interoperable Blockchain for Global Sharing of Healthcare Data-A COVID-19 Perspective. IEEE Consum. Electron. Mag. 2021. [Google Scholar] [CrossRef]
Country | Authors(s) | AI Technique | Data Size | Correctness Level |
---|---|---|---|---|
China | [45] | Improved inception transfer-training system | 740 viral pneumonia samples and 325 COVID-19 samples, totaling 1065 CT image data | The sensitivity test result is 0.67 The specificity test result is 0.83 The correctness test result is 79.3% |
[46] | Two-dimensional Deep CNN | The sample size for non-positive cases is 1385, with 970 CT capacity, of which 496 patients have been diagnosed with COVID-19 | The specificity test result is 95.47%, The sensitivity test result is 94.06% AUC test result is 97.91% The correctness test result is 94.98% | |
[47] | It is based on a three-dimensional DL system | An aggregate of 618 CT specimens was gathered of which 219 are from 110 infected persons | The correctness test result is 86.7% | |
[48] | COVID-19 prediction using neural network called COVNet | An aggregate of 4356 chest CT examinations, which are from 3322 infected persons | The correctness test result is 95% | |
Canada (Toronto) | [49] | A deep CNN dubbed COVID-Net: | From 13,645 infected persons, the total of 16,756 CXR images were collected. | The correctness test result is 92.4% |
Hong Kong and Thailand | [50] | The RT-PCR assay is real-time | From 246 infected people, 340 clinical samples were collected | From each reaction or response, more than 10 genomic copies, which is the Potential detection limit |
Universal | [11] | The CXR image from 50 uninfected patients and 50 infected patients with the COVID-19 virus. | Inception ResNet V2 InceptionV3 and ResNet50 | The inception-ResNet at V2 is 87%, the ResNet at 50 is 98%, and the inception at V3 is 97%. |
Saudi Arabia | [51] | COVID-19 detection fuzzy analytic hierarchy process (AHP) | Saudi open data | High efficacy |
[52] | Deep learning-based convolutional CNN | Dataset of 340 DX-ray radiographs, 170 images of each Healthy and Positive COVID-19 class. | High precision with maximum accuracy of up to 94.12% | |
[53] | A dilated CNN and branching design model, and VGG-16 technique | Dataset contains from 13,975 CXR images | Accuracy = 96.5% Sensitivity = 96% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almotairi, K.H.; Hussein, A.M.; Abualigah, L.; Abujayyab, S.K.M.; Mahmoud, E.H.; Ghanem, B.O.; Gandomi, A.H. Impact of Artificial Intelligence on COVID-19 Pandemic: A Survey of Image Processing, Tracking of Disease, Prediction of Outcomes, and Computational Medicine. Big Data Cogn. Comput. 2023, 7, 11. https://doi.org/10.3390/bdcc7010011
Almotairi KH, Hussein AM, Abualigah L, Abujayyab SKM, Mahmoud EH, Ghanem BO, Gandomi AH. Impact of Artificial Intelligence on COVID-19 Pandemic: A Survey of Image Processing, Tracking of Disease, Prediction of Outcomes, and Computational Medicine. Big Data and Cognitive Computing. 2023; 7(1):11. https://doi.org/10.3390/bdcc7010011
Chicago/Turabian StyleAlmotairi, Khaled H., Ahmad MohdAziz Hussein, Laith Abualigah, Sohaib K. M. Abujayyab, Emad Hamdi Mahmoud, Bassam Omar Ghanem, and Amir H. Gandomi. 2023. "Impact of Artificial Intelligence on COVID-19 Pandemic: A Survey of Image Processing, Tracking of Disease, Prediction of Outcomes, and Computational Medicine" Big Data and Cognitive Computing 7, no. 1: 11. https://doi.org/10.3390/bdcc7010011
APA StyleAlmotairi, K. H., Hussein, A. M., Abualigah, L., Abujayyab, S. K. M., Mahmoud, E. H., Ghanem, B. O., & Gandomi, A. H. (2023). Impact of Artificial Intelligence on COVID-19 Pandemic: A Survey of Image Processing, Tracking of Disease, Prediction of Outcomes, and Computational Medicine. Big Data and Cognitive Computing, 7(1), 11. https://doi.org/10.3390/bdcc7010011