Next Article in Journal
Recreating the Relationship between Subjective Wellbeing and Personality Using Machine Learning: An Investigation into Facebook Online Behaviours
Previous Article in Journal
Productivity Benchmarking Using Analytic Network Process (ANP) and Data Envelopment Analysis (DEA)
Article Menu
Issue 3 (September) cover image

Export Article

Open AccessArticle
Big Data Cogn. Comput. 2018, 2(3), 28;

Analysis of Nonlinear Bypass Route Computation for Wired and Wireless Network Cooperation Recovery System

Neko 9 Laboratories, Tokyo 140-0001, Japan
Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
Author to whom correspondence should be addressed.
Received: 23 July 2018 / Revised: 24 August 2018 / Accepted: 28 August 2018 / Published: 3 September 2018
Full-Text   |   PDF [829 KB, uploaded 3 September 2018]   |  


It is a significant issue for network carriers to immediately restore telecommunication services when a disaster occurs. A wired and wireless network cooperation (NeCo) system was proposed to address this problem. The goal of the NeCo system is quick and high-throughput recovery of telecommunication services in the disaster area using single-hop wireless links backhauled by wired networks. It establishes wireless bypass routes between widely deployed leaf nodes to relay packets to and from dead nodes whose normal wired communication channels are disrupted. In the previous study, the optimal routes for wireless links were calculated to maximize the expected physical layer throughput by solving a binary integer programming problem. However, the routing method did not consider throughput reduction caused by sharing of wireless resources among dead nodes. Therefore, this paper proposes a nonlinear bypass route computation method considering the wireless resource sharing among dead nodes for the NeCo system. Monte Carlo base approach is applied since the nonlinear programming problem is difficult to solve. The performance of the proposed routing method is evaluated with computer simulations and it was confirmed that bandwidth division loss can be avoided with the proposed method. View Full-Text
Keywords: communication networks; system recovery; disaster; throughput communication networks; system recovery; disaster; throughput

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Nakayama, Y.; Maruta, K. Analysis of Nonlinear Bypass Route Computation for Wired and Wireless Network Cooperation Recovery System. Big Data Cogn. Comput. 2018, 2, 28.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Metrics

Article Access Statistics



[Return to top]
Big Data Cogn. Comput. EISSN 2504-2289 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top