A Coandă-Surface-Assisted Ejector as a Turbine Tip Leakage Mitigator
Abstract
1. Introduction
2. Ejector-Based Tip Leakage Mitigation Concept
3. Ejector-Based Tip Leakage Mitigator Designs
4. Computational Model of AFTRF
- ○
- ○
- ○
- ○
5. Baseline Flat Tip Computations
6. Results and Discussion of Coandă Ejector-Based Designs
7. Comparison of 11 Tip Leakage Mitigator Design Cases
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
| Baseline area for FOM calculation | |
| Test area for FOM calculation | |
| Area of turbine blade tip | |
| AFTRF | Axial Flow Turbine Research Facility |
| Blade axial chord | |
| D-ECI5n | Dual Ejector Coandă-I5n |
| D-ECI5n-HS | Dual Ejector Coandă-I5n Hybrid Squealer |
| DTP | Dynamic total pressure |
| E3 | Energy Efficient Engine |
| EB | Ejector Baseline |
| EB5 | Ejector Baseline-5 |
| EC | Ejector Coandă |
| ECI | Ejector Coandă-I |
| ECI5 | Ejector Coandă-I5 |
| ECIn | Ejector Coandă-In |
| ECI5n | Ejector Coandă-I5n |
| ECIn-HS | Ejector Coandă-In Hybrid Squealer |
| ECI5n-HS | Ejector Coandă-I5n Hybrid Squealer |
| ECI5n-HES | Ejector Coandă-I5n Hybrid Ejection Squealer |
| ECI5n-OHES | Ejector Coandă-I5n Optimized Hybrid Ejection Squealer |
| FT | Flat Tip |
| FOMTip | Total pressure-based tip figure of merit |
| h | blade height |
| HP | High pressure |
| LE | Leading edge |
| Tip gap mass flow rate | |
| Reference tip gap mass flow rate | |
| N | Turbine rotational speed |
| NGV | Nozzle guide vane |
| Total Pressure | |
| Ambient pressure | |
| PS | Pressure side |
| RPM | Revolutions per minute |
| r | Radial component |
| SS | Suction side |
| SLA | Stereolithography |
| SQT | Squealer Tip |
| TKE | Turbulent Kinetic Energy |
| t | Effective tip clearance |
| Total temperature | |
| TE | Trailing edge |
| T-ECI5n | Triple Ejector Coandă-I5n |
| TLI | Tip Leakage Interrupter |
| Velocity vector | |
| x | Axial component |
| SUBSCRIPTS | |
| 1, 2, 3 | Stage inlet, intra-space, rotor exit |
| GREEK | |
| Specific heat capacity ratio | |
| Total-to-total isentropic efficiency | |
| Density | |
| θ | Tangential direction |
| Angular velocity |
Appendix A. Coordinates of Tip Airfoil Section of AFTRF at Penn State
| x-Coordinate [mm] | y-Coordinate [mm] | x-Coordinate [mm] | y-Coordinate [mm] |
| −1.512 | 1.906 | 29.33 | −23.823 |
| −4.31 | 4.462 | 30.965 | −28.265 |
| −7.173 | 6.741 | 32.506 | −32.569 |
| −10.096 | 8.716 | 33.952 | −36.731 |
| −13.076 | 10.349 | 35.318 | −40.749 |
| −16.089 | 11.609 | 36.606 | −44.62 |
| −19.099 | 12.49 | 37.823 | −48.344 |
| −22.058 | 13.015 | 38.971 | −51.919 |
| −24.794 | 13.232 | 40.005 | −55.187 |
| −27.277 | 13.263 | 40.931 | −58.146 |
| −29.497 | 13.188 | 41.752 | −60.797 |
| −31.452 | 13.056 | 42.47 | −63.137 |
| −33.145 | 12.919 | 43.089 | −65.167 |
| −34.58 | 12.833 | 43.61 | −66.885 |
| −35.808 | 12.826 | 44.053 | −68.353 |
| −36.838 | 12.905 | 44.43 | −69.587 |
| −37.673 | 13.059 | 44.744 | −70.605 |
| −38.322 | 13.261 | 44.968 | −71.42 |
| −38.792 | 13.489 | 45.062 | −72.063 |
| −39.115 | 13.711 | 44.966 | −72.539 |
| −39.358 | 13.93 | 44.739 | −72.878 |
| −39.526 | 14.13 | 44.492 | −73.091 |
| −39.637 | 14.292 | 44.274 | −73.203 |
| −39.752 | 14.508 | 44.086 | −73.258 |
| −39.869 | 14.813 | 43.827 | −73.292 |
| −39.953 | 15.212 | 43.503 | −73.251 |
| −39.982 | 15.701 | 43.16 | −73.102 |
| −39.921 | 16.351 | 42.808 | −72.725 |
| −39.721 | 17.175 | 42.452 | −72.129 |
| −39.355 | 18.171 | 42.085 | −71.364 |
| −38.784 | 19.327 | 41.697 | −70.593 |
| −38.004 | 20.649 | 41.105 | −69.326 |
| −36.987 | 22.128 | 40.48 | −68.032 |
| −35.701 | 23.816 | 39.741 | −66.503 |
| −34.102 | 25.67 | 38.886 | −64.739 |
| −32.14 | 27.632 | 37.915 | −62.741 |
| −29.729 | 29.584 | 36.828 | −60.509 |
| −26.81 | 31.38 | 35.617 | −58.044 |
| −23.339 | 32.808 | 34.294 | −55.348 |
| −19.512 | 33.645 | 32.901 | −52.538 |
| −15.434 | 33.811 | 31.44 | −49.616 |
| −11.229 | 33.241 | 29.908 | −46.584 |
| −7.031 | 31.901 | 28.301 | −43.443 |
| −2.982 | 29.781 | 26.616 | −40.196 |
| 0.816 | 26.956 | 24.845 | −36.845 |
| 4.341 | 23.558 | 22.986 | −33.394 |
| 7.508 | 19.823 | 21.092 | −29.692 |
| 10.379 | 15.856 | 19.159 | −26.552 |
| 13.025 | 11.736 | 17.176 | −23.17 |
| 15.479 | 7.499 | 15.139 | −19.889 |
| 17.772 | 3.172 | 13.038 | −16.508 |
| 19.925 | −1.226 | 10.878 | −13.241 |
| 21.923 | −5.674 | 8.623 | −10.034 |
| 23.922 | −10.166 | 6.276 | −6.894 |
| 25.791 | −14.692 | 3.813 | −3.844 |
| 27.59 | −19.246 | 1.224 | −0.9 |
References
- Bunker, R.S. Axial Turbine Blade Tips: Function, Design, and Durability. AIAA J. Propuls. Power 2006, 22, 271–285. [Google Scholar] [CrossRef]
- Denton, J.D. The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines. ASME J. Turbomach. 1993, 115, 621–656. [Google Scholar] [CrossRef]
- Han, J.-C.; Dutta, S.; Ekkad, S. Gas Turbine Heat Transfer and Cooling Technology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Sunden, B.; Xie, G. Gas Turbine Blade Tip Heat Transfer and Cooling: A Literature Survey. Heat Transf. Eng. 2010, 37, 527–554. [Google Scholar] [CrossRef]
- Kim, Y.W.; Metzger, D.E. Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models. ASME J. Turbomach. 1995, 117, 12–21. [Google Scholar] [CrossRef]
- Da Silva, L.M.; Tomita, J.T. A Study of the Heat Transfer in Winglet and Squealer Rotor Tip Configurations for a Non-Cooled HPT Blade Based on CFD Calculations. In Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, San Antonio, TX, USA, 3–7 June 2013. [Google Scholar] [CrossRef]
- Vass, P.; Arts, T. Numerical Investigation of High-pressure Turbine Blade Tip Flows: Analysis of Aerodynamics. Proc. Inst. Mech. Eng. Part A J. Power Energy 2011, 225, 940–953. [Google Scholar] [CrossRef]
- Ameri, A.A.; Steinthorsson, E.; Rigby, D.L. Effect of Squealer Tip on Rotor Heat Transfer and Efficiency. J. Turbomach. 1998, 120, 753–759. [Google Scholar] [CrossRef]
- Camci, C.; Dey, D.; Kavurmacioglu, L. Aerodynamics of Tip Leakage Flows Near Partial Squealer Rims in an Axial Flow Turbine Stage. ASME J. Turbomach. 2005, 127, 14–24. [Google Scholar] [CrossRef]
- Azad, G.S.; Han, J.-C.; Bunker, R.S.; Lee, C.P. Effect of Squealer Geometry Arrangement on a Gas Turbine Blade Tip Heat Transfer. J. Heat Transf. 2002, 124, 452–459. [Google Scholar] [CrossRef]
- Key, N.L.; Arts, T. Comparison of Turbine Tip Leakage Flow for Flat Tip and Squealer Tip Geometries at High-Speed Conditions. J. Turbomach. 2004, 128, 213–220. [Google Scholar] [CrossRef]
- Lee, S.E.; Lee, S.W.; Kwak, H.S. Tip Leakage Aerodynamics Over Stepped Squealer Tips in a Turbine Cascade. Exp. Therm. Fluid Sci. 2011, 35, 135–145. [Google Scholar] [CrossRef]
- Dey, D. Tip Desensitization in an Axial Flow Turbine. Ph.D. Thesis, The Pennsylvania State University, University Park, PA, USA, 2001. [Google Scholar]
- Lee, S.W.; Kim, S.U. Tip Gap Height Effects on the Aerodynamic Performance of a Cavity Squealer Tip in a Turbine Cascade in Comparison with Plane Tip Results: Part 1—Tip Gap Flow Structure. Exp. Fluids 2010, 49, 1039–1051. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, T.-L.; Zhang, M.; Zhang, M.-C. Numerical and Experimental Investigation of Aerodynamic Performance for a Straight Turbine Cascade with a Novel Partial Shroud. J. Fluids Eng. 2015, 138, 031206. [Google Scholar] [CrossRef]
- Lee, S.W.; Cheon, J.H.; Zhang, Q. The Effect of Full Coverage Winglets on Tip Leakage Aerodynamics Over the Plane Tip in a Turbine Cascade. Int. J. Heat Fluid Flow 2014, 45, 23–32. [Google Scholar] [CrossRef]
- Zhou, C.; Zhong, F. A Novel Suction-Side Winglet Design Philosophy for High-Pressure Turbine Rotor Tips. J. Turbomach. 2017, 139, 111002. [Google Scholar] [CrossRef]
- Zhou, K.; Zhou, C. Aerodynamic Effects of an Incoming Vortex on Turbines with Different Tip Geometries. J. Turbomach. 2021, 143, 081009. [Google Scholar] [CrossRef]
- Cheon, J.H.; Lee, S.W. Tip Leakage Aerodynamics Over the Cavity Squealer Tip Equipped with Full Coverage Winglets in a Turbine Cascade. Int. J. Heat Fluid Flow 2015, 56, 60–70. [Google Scholar] [CrossRef]
- Joo, J.S.; Lee, S.W. Heat/mass Transfer Over the Cavity Squealer Tip Equipped with a Full Coverage Winglet in a Turbine Cascade: Part 1—Data on the Winglet Top Surface. Int. J. Heat Mass Transf. 2017, 108, 1255–1263. [Google Scholar] [CrossRef]
- Lee, S.W.; Joo, J.S. Heat/Mass Transfer Over the Cavity Squealer Tip Equipped with a Full Coverage Winglet in a Turbine Cascade: Part 2—Data on the Cavity Floor. Int. J. Heat Mass Transf. 2017, 108, 1264–1272. [Google Scholar] [CrossRef]
- Coull, J.D.; Atkins, N.R.; Hodson, H.P. High Efficiency Cavity Winglets for High Pressure Turbines. In Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Düsseldorf, Germany, 16–20 June 2014. [Google Scholar] [CrossRef]
- Zhong, F.; Zhou, C. Effects of Tip Gap Size on the Aerodynamic Performance of a Cavity-Winglet Tip in a Turbine Cascade. J. Turbomach. 2017, 139, 101009. [Google Scholar] [CrossRef]
- Harvey, N.W.; Ramsden, K. A Computational Study of a Novel Turbine Rotor Partial Shroud. J. Turbomach. 2000, 123, 534–543. [Google Scholar] [CrossRef]
- Fu, Y.; Chen, F.; Liu, H.; Song, Y. Experimental and Numerical Study of Honeycomb Tip on Suppressing Tip Leakage Flow in Turbine Cascade. J. Turbomach. 2018, 140, 061006. [Google Scholar] [CrossRef]
- Du, K.; Li, Z.; Li, J.; Sunden, B. Influences of a Multi-Cavity Tip on the Blade Tip and the over Tip Casing Aerothermal Performance in a High Pressure Turbine Cascade. Appl. Therm. Eng. 2019, 147, 347–360. [Google Scholar] [CrossRef]
- Andichamy, V.C.; Khokhar, G.T.; Camci, C. An Experimental Study of Using Vortex Generators As Tip Leakage Flow Interrupters in an Axial Flow Turbine Stage. presented at the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Oslo, Norway, 11–15 June 2018. [Google Scholar] [CrossRef]
- Andichamy, V.C. An Investigation Using Tip Leakage Interrupter and Blade Slit to Mitigate Aerodynamic Losses in Axial Turbine Stage. Ph.D. Thesis, The Pennsylvania State University, University Park, PA, USA, 2019. [Google Scholar]
- Kavurmacioglu, L.A.; Senel, C.B.; Maral, H.; Camci, C. Casing Grooves to Improve Aerodynamic Performance of a Hp Turbine Blade. Aerosp. Sci. Technol. 2018, 76, 194–203. [Google Scholar] [CrossRef]
- Zheng, Y.; Jin, X.; Yang, H.; Gao, Q.; Xu, K. Effects of Circumferential Nonuniform Tip Clearance on Flow Field and Performance of a Transonic Turbine. In Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, Virtual Event, 21–25 September 2020. [Google Scholar] [CrossRef]
- Gao, J.; Zheng, Q.; Li, Y.; Yue, G. Effect of Axially Non-uniform Rotor Tip Clearance on Aerodynamic Performance of an Unshrouded Axial Turbine. Proc. Inst. Mech. Eng. Part A 2012, 226, 231–244. [Google Scholar] [CrossRef]
- Chen, S.; Meng, Q.; Li, W.; Zhou, Z.; Wang, S. Experimental Study on Axially Non-uniform Clearances in a Linear Turbine Cascade with a Cavity Squealer Tip. Proc. Inst. Mech. Eng. Part G 2019, 233, 1645–1655. [Google Scholar] [CrossRef]
- Rao, N.M.; Camci, C. Axial Turbine Tip Desensitization by Injection from a Tip Trench: Part 1—Effect of Injection Mass Flow Rate. In Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air, Vienna, Austria, 14–17 June 2004. [Google Scholar] [CrossRef]
- Rao, N.M.; Camci, C. Axial Turbine Tip Desensitization by Injection From a Tip Trench: Part 2—Leakage Flow Sensitivity to Injection Location. In Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air, Vienna, Austria, 14–17 June 2004. [Google Scholar] [CrossRef]
- Chen, G.; Dawes, W.; Hodson, H. Numerical and Experimental Investigation of Turbine Tip Gap Flow. In Proceedings of the 29th Joint Propulsion Conference and Exhibit, American Institute of Aeronautics and Astronautics, Monterey, CA, USA, 28–30 June 1993. [Google Scholar] [CrossRef]
- Volino, R.J. Control of Tip Leakage in a High-Pressure Turbine Cascade Using Tip Blowing. J. Turbomach. 2017, 139, 061008. [Google Scholar] [CrossRef]
- Tao, Z.; Li, W.; Guo, Z.; Chen, Y.; Song, L.; Li, J. Aerothermal optimization of a turbine rotor tip configuration based on free-form deformation approach. Int. J. Heat Fluid Flow 2024, 110, 109644. [Google Scholar] [CrossRef]
- De Maesschalck, C.; Lavagnoli, S.; Paniagua, G. Blade Tip Carving Effects on the Aerothermal Performance of a Transonic Turbine. J. Turbomach. 2014, 137, 021005. [Google Scholar] [CrossRef]
- Cernat, B.C.; Pátý, M.; De Maesschalck, C.; Lavagnoli, S. Experimental and Numerical Investigation of Optimized Blade Tip Shapes—Part I: Turbine Rainbow Rotor Testing and Numerical Methods. J. Turbomach. 2018, 141, 011006. [Google Scholar] [CrossRef]
- Maral, H.; Alpman, E.; Kavurmacıoğlu, L.; Camci, C. A Genetic Algorithm Based Aerothermal Optimization of Tip Carving for an Axial Turbine Blade. Int. J. Heat Mass Transf. 2019, 143, 118419. [Google Scholar] [CrossRef]
- Qin, T.-J.; Tong, Z.-X.; Li, D.; He, Y.-L.; Hung, T.-C. Aerothermal Performance of Cavity Tip with Flow Structure Effects in a Transonic High-pressure Turbine Blade. Energy 2024, 291, 130411. [Google Scholar] [CrossRef]
- Power, B.D. High Vacuum Pumping Equipment; Chapman & Hall: London, UK, 1966. [Google Scholar]
- Timko, L.P. Energy Efficient Engine High Pressure Turbine Component Test Performance Report. NASA-CR-168289, 1 January 1984. Available online: https://ntrs.nasa.gov/citations/19900019237 (accessed on 18 September 2025).
- Henri, C. Device for Deflecting a Stream of Elastic Fluid Projected into an Elastic Fluid. US2052869A, 1 September 1936. Available online: https://patents.google.com/patent/US2052869A/en (accessed on 18 September 2025).
- Von Glahn, U.H. Use of the Coandă Effect for Jet Deflection and Vertical Lift with Multiple-Flat-Plate and Curved-Plate Deflection Surfaces. Sep. 1958. Available online: https://ntrs.nasa.gov/api/citations/19930085305/downloads/19930085305.pdf (accessed on 18 September 2025).
- Khokhar, G.T. An Aerothermal Study of Ejector-Based, Coandă-Surface-Driven, Gas Turbine Tip Leakage Mitigation Schemes: A Computational and Experimental Approach. Ph.D. Thesis, The Pennsylvania State University, University Park, PA, USA, 2022. [Google Scholar]
- Doshi, M. Computational Prediction of a Large-scale Hp Turbine Flow Against Measured Aerodynamic Data. Master Thesis, The Pennsylvania State University, University Park, PA, USA, 2018. [Google Scholar]
- Lakshminarayana, B.; Camci, C.; Halliwell, I.; Zaccaria, M. Design and Development of a Turbine Research Facility to Study Rotor-Stator Interaction Effects. Int. J. Turbo Jet Engines 1996, 13, 155–172. [Google Scholar] [CrossRef]
- Turgut, Ö.H.; Camci, C. Factors Influencing Computational Predictability of Aerodynamic Losses in a Turbine Nozzle Guide Vane Flow. J. Fluids Eng. 2016, 138, 051103. [Google Scholar] [CrossRef]
- Zaccaria, M.A. An Experimental Investigation into the Steady and Unsteady Flow Field in an Axial Flow Turbine. Ph.D. Thesis, The Pennsylvania State University, University Park, PA, USA, 1994. [Google Scholar]
- Town, J. An Investigation of Rim Seal/Disk Cavity Flow and Its Interaction with High Pressure Turbine Rotor Flows. Ph.D. Thesis, The Pennsylvania State University, University Park, PA, USA, 2015. [Google Scholar]
- Taylor, J.R. Propagation of Uncertainties; University Science Books: Sausalito, CA, USA, 1997. [Google Scholar]







































| Inlet Total Temperature (K) | 289 |
| Inlet Total Pressure (KPa) | 101.36 |
| Mass Flow Rate (kg/s) | 11.4 |
| Rotational Speed (RPM) | 1333 |
| /) | 1.0778 |
| /) | 0.981 |
| – | 56.04 |
| Power (KW) | 60.6 |
| Rotor hub tip ratio | 0.7269 |
| Tip radius (m) | 0.4582 |
| Blade height h (m) | 0.1229 |
| Tip relative Mach number | 0.24 (max) |
| Nozzle guide vane | |
| Number | 23 |
| Mid-span axial chord (m) | 0.1123 |
| Turning angle (deg) | 70 |
| Reynolds number based on inlet velocity | |
| Rotor-stator axial spacing at hub (mm) | 36.32 |
| Rotor blade | |
| Number | 29 |
| Mid-span axial chord (m) | 0.0929 |
| Turning at tip angle (deg) Turning angle at hub (deg) | 94.42 125.69 |
| Tip clearance t/h | 0.8% |
| Reynolds number based on inlet velocity |
| Concept | Tip Gap Mass Flow Rate |
Percent Change from Baseline FT | Total-to-Total Isentropic Efficiency | (from Baseline FT) | FOMTip |
|---|---|---|---|---|---|
| Flat Tip (FT) | 8.38 g/s | 0.00% | 89.44% | 0.00% | 0.00% |
| Ejector Baseline (EB) | 7.96 g/s | −5.01% | 89.69% | 0.25% | 3.41% |
| Ejector Coandă (EC) | 7.68 g/s | −8.35% | 89.66% | 0.22% | 5.48% |
| Ejector Coandă-I (ECI) | 7.66 g/s | −8.59% | 89.69% | 0.25% | 5.99% |
| Ejector Coandă-I5 (ECI5) | 7.61 g/s | −9.91% | 89.71% | 0.27% | 6.04% |
| Ejector Coandă-I5n (ECI5n) | 7.41 g/s | −11.58% | 89.74% | 0.30% | 8.90% |
| Ejector Coandă-I5n Hybrid Squealer (ECI5n-HS) | 7.35 g/s | −12.29% | 89.87% | 0.43% | 10.05% |
| Ejector Coandă-I5n Hybrid Ejection Squealer (ECI5n-HES) | 7.18 g/s | −14.32% | 89.90% | 0.46% | 11.16% |
| Ejector Coandă-I5n Optimized Hybrid Ejection Squealer (ECI5n-OHES) | 7.14 g/s | −14.80% | 89.93% | 0.49% | 11.18% |
| Dual Ejector Coandă-I5n (D-ECI5n) | 7.24 g/s | −13.60% | 89.85% | 0.41% | 9.68% |
| Dual Ejector Coandă-I5n Hybrid Squealer (D-ECI5n-HS) | 7.21 g/s | −13.96% | 89.87% | 0.43% | 10.65% |
| Triple Ejector Coandă-I5n (T-ECI5n) | 7.19 g/s | −14.20% | 89.90% | 0.46% | 10.52% |
| Ejector Baseline-5 (EB5) | 7.91 g/s | −5.61% | 89.60% | 0.16% | 3.61% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the EUROTURBO. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Share and Cite
Khokhar, G.T.; Camci, C. A Coandă-Surface-Assisted Ejector as a Turbine Tip Leakage Mitigator. Int. J. Turbomach. Propuls. Power 2025, 10, 51. https://doi.org/10.3390/ijtpp10040051
Khokhar GT, Camci C. A Coandă-Surface-Assisted Ejector as a Turbine Tip Leakage Mitigator. International Journal of Turbomachinery, Propulsion and Power. 2025; 10(4):51. https://doi.org/10.3390/ijtpp10040051
Chicago/Turabian StyleKhokhar, Gohar T., and Cengiz Camci. 2025. "A Coandă-Surface-Assisted Ejector as a Turbine Tip Leakage Mitigator" International Journal of Turbomachinery, Propulsion and Power 10, no. 4: 51. https://doi.org/10.3390/ijtpp10040051
APA StyleKhokhar, G. T., & Camci, C. (2025). A Coandă-Surface-Assisted Ejector as a Turbine Tip Leakage Mitigator. International Journal of Turbomachinery, Propulsion and Power, 10(4), 51. https://doi.org/10.3390/ijtpp10040051

