Experimental Investigation of the Unsteady Stator/Rotor Wake Characteristics Downstream of an Axial Air Turbine
Abstract
:1. Introduction
2. Experimental Setup
2.1. Test Facility
2.2. Turbine Stage Configuration
2.3. Particle Image Velocimetry
3. Issues Related to the Data Quality
3.1. Troubles with Covering Glass
3.2. Check of the Statistical Quality
4. Results
4.1. Effect of Stator Wheel
4.2. Radial Development
4.3. Statistics
4.4. Size of Fluctuation Structures
4.5. Off-Design Regimes
5. Conclusions
- The wake system of the stator blades is still observable after passing the rotor wheel, as put into evidence in the plots of the ensemble averaged velocity.
- The turbulent kinetic energy is largest at the cross-section of the shear layers of both wake systems.
- Large structures of the wakes, as well as the upper part of the inertial range, are clearly identified, but the small dissipative scales are invisible with the current setup.
- The scale of fluctuations reflects the shear layer thickness at the higher radii under nominal conditions.
- Close to the end-wall, there are flow structures of a length-scale larger than the shear layers’ thickness. Therefore, the optimization of the turbine needs not only the optimization of individual blades, but also some modification of the hub geometry.
- The overload () regime displays a larger scale of fluctuations caused by the larger area of cross-sections of the stator and rotor wake systems.
- The underload regime () contains less turbulent kinetic energy, probably due to the smaller area of wake cross-sections, although the wakes themselves are wider as the angle of attack is not ideal for both off-design regimes. As the TKE is smaller, the wake pattern is not mixed and survives longer, which can have a negative effect on the next stage.
Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Symbols and Abbreviations
Symbol | Meaning |
nominal stage angle (relative to tangential direction). | |
c | isentropic stage velocity. |
DA | degree of anisotropy, . |
flatness i.e., fourth statistical moment of variable x, . | |
FoV | field of view. |
k | wavenumber, unit . |
isentropic Mach number. | |
PIV | Particle Image Velocimetry. |
measuring plane in axial×tangential direction; denotes the diameter, if it was a cylinder. | |
, | autocorrelation function of u or v velocity components respectively. |
rough estimation of the integral length-scale of u or v, | |
standard deviation of variable x, . | |
turn angle of the stator wheel. | |
TKE | turbulent kinetic energy. |
u | circumferential mid-span rotor velocity. |
u | axial velocity component (parallel with x-axis). |
v | tangential velocity component (parallel with y-axis). |
in-plane velocity magnitude, . | |
in-plane vorticity, . |
References
- Michelassi, V.; Wissink, J.; Rodi, W. Analysis of DNS and LES of Flow in a Low Pressure Turbine Cascade with Incoming Wakes and Comparison with Experiments. Flow Turbul. Combust. 2002, 69, 295–330. [Google Scholar] [CrossRef]
- Tropea, C.; Yarin, A.; Foss, J.F. Springer Handbook of Experimental Fluid Mechanics; Springer: Heidelberg, Germany, 2007; p. 1557. [Google Scholar]
- Zaccaria, M.A.; Lakshminarayana, B. Unsteady flow field due to nozzle wake interaction with the rotor in an axial flow turbine: Part ii-rotor exit flow field. J. Turbomach. 1997, 119, 214–224. [Google Scholar] [CrossRef] [Green Version]
- Chasoglou, A.; Mansour, M.; Kalfas, A.; Abhari, R. A Novel 4-sensor Fast-Response Aerodynamic Probe for Non-Isotropic Turbulence Measurement in Turbomachinery Flows. In Proceedings of the Shanghai 2017 Global Power and Propulsion Forum, Shanghai, China, 30 October–1 November 2017; pp. 1–10. [Google Scholar]
- Ruck, G.; Stetter, H. Unsteady Velocity- and Turbulence Measurements With a Fast Response Pressure Probe. Proc. ASME Turbo Expo 1990, 1. [Google Scholar] [CrossRef] [Green Version]
- Antoš, P.; Uruba, V.; Jonáš, P.; Procházka, P.; Skála, V.; Hoznedl, M.; Sedlák, K. Measurement of turbulence in LP part of the 1090 MW steam turbine. In Proceedings of the XXIV Biannual Symposium on Measuring Techniques in Turbomachinery, Transonic and Supersonic Flow in Cascades and Turbomachines, Prague, Czech Republic, 29–31 August 2018. MTT2418A31. [Google Scholar]
- Barna, G. A High-Speed Photographic System for Flow Visualization in a Steam Turbine; NASA Report; TM X-2763; NASA: Washington, DC, USA, 1973. [Google Scholar]
- Hála, J.; Luxa, M.; Šimurda, D.; Bobčík, M.; Novák, O.; Rudas, B.; Synáč, J. Optimization of Root Section for Ultra-long Steam Turbine Rotor Blade. J. Therm. Sci. 2018, 27, 95–102. [Google Scholar] [CrossRef]
- Porreca, L.; Hollenstein, M.; Kalfas, A.; Abharix, R. Turbulence Measurements and Analysis in a Multistage Axial Turbine. J. Propuls. Power 2007, 23, 227–234. [Google Scholar] [CrossRef]
- Porreca, L.; Yun, Y.I.; Kalfas, A.I.; Song, S.J.; Abhari, R.S. Investigation of 3D Unsteady Flows in a Two Stage Shrouded Axial Turbine Using Stereoscopic PIV and FRAP: Part I—Interstage Flow Interactions. In Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air, Barcelona, Spain, 8–11 May 2006; GT2006-90752. pp. 711–723. [Google Scholar]
- Lang, H.; Mø rck, T.; Woisetschläger, J. Stereoscopic particle image velocimetry in a transonic turbine stage. Exp. Fluids 2002, 32, 700–709. [Google Scholar] [CrossRef]
- Jones, R.R.; Pountney, O.J.; Cleton, B.L.; Wood, L.E.; Schreiner, B.D.J.; Figueiredo, A.J.C.; Scobie, J.A.; Cleaver, D.J.; Lock, G.D.; Sangan, C.M. An advanced single-stage turbine facility for investigating non-axisymmetric contoured endwalls in the presence of purge flow. In Proceedings of the ASME Turbo Expo 2019, Phoenix, AZ, USA, 17–21 June 2019; Volume GT2019. [Google Scholar] [CrossRef]
- Yun, Y.I.; Porreca, L.; Kalfas, A.I.; Song, S.J.; Abhari, R.S. Investigation of 3D unsteady flows in a two-stage shrouded axial turbine using stereoscopic PIV and FRAP—Part II: Kinematics of shroud cavity flow. In Proceedings of the ASME Turbo Expo, Barcelona, Spain, 8–11 May 2006; Part A. Volume 6, pp. 905–914. [Google Scholar] [CrossRef]
- Il Yun, Y.; Porreca, L.; Kalfas, A.I.; Song, S.J.; Abhari, R.S. Investigation of three-dimensional unsteady flows in a two-stage shrouded axial turbine using stereoscopic PIV—Kinematics of shroud cavity flow. J. Turbomach. 2008, 130, 011021. [Google Scholar] [CrossRef]
- Göttlich, E.; Woisetschläger, J.; Hampel, B.; Jericha, H.; Heitmeir, F. Experimental investigation of unsteady effects in a transonic turbine stage. VDI Berichte 2004, 1857, 109–117. [Google Scholar]
- Woisetschläger, J.; Pecnik, R.; Göttlich, E.; Schennach, O.; Marn, A.; Sanz, W.; Heitmeir, F. Experimental and numerical flow visualization in a transonic turbine. J. Vis. 2008, 11, 95–102. [Google Scholar] [CrossRef]
- Schennach, O.; Pecnik, R.; Paradiso, B.; Göttlich, E.; Marn, A.; Woisetschläger, J. The effect of vane clocking on the unsteady flowfield in a one and a half stage transonic turbine. Proc. ASME Turbo Expo 2007, 6, 793–802. [Google Scholar]
- Schennach, O.; Woisetschläger, J.; Marn, A.; Göttlich, E. Laser-doppler-velocimetry measurements in a one and a half stage transonic test turbine with different angular stator-stator positions. Exp. Fluids 2007, 43, 385–393. [Google Scholar] [CrossRef]
- Schennach, O.; Woisetschläger, J.; Fuchs, A.; Göttlich, E.; Marn, A.; Pecnik, R. Experimental investigations of clocking in a one-and-a-half-stage transonic turbine using laser doppler velocimetry and a fast response aerodynamic pressure probe. J. Turbomach. 2007, 129, 372–381. [Google Scholar] [CrossRef]
- Woisetschläger, J.; Lang, H.; Hampel, B.; Göttlich, E.; Heitmeir, F. Influence of blade passing on the stator wake in a transonic turbine stage investigated by particle image velocimetry and laser vibrometry. Proc. Inst. Mech. Eng. Part A J. Power Energy 2003, 217, 385–392. [Google Scholar] [CrossRef]
- Woisetschläger, J.; Mayrhofer, N.; Hampel, B.; Lang, H.; Sanz, W. Laser-optical investigation of turbine wake flow. Exp. Fluids 2003, 34, 371–378. [Google Scholar] [CrossRef]
- Němec, M. Turbínové Stupně IR_v2-1 a IR_v2-3; Technical Report R-6948; VZLÚ: Prague, Czech Republic, 2018. [Google Scholar]
- Straka, P. Software Pro výpočet Turbulentního Nestacionárního Proudění s Využitím Nelineárního Modelu Turbulence; Technical Report R-6381; VZLÚ: Prague, Czech Republic, 2016. [Google Scholar]
- Sieverding, C.; Manna, M. A Review on Turbine Trailing Edge Flow. Int. J. Turbomach. Propuls. Power 2020, 5, 10. [Google Scholar] [CrossRef]
- Hammer, F.; Sandham, N.D.; Sandberg, R.D. The Influence of Different Wake Profiles on Losses in a Low Pressure Turbine Cascade. Int. J. Turbomach. Propuls. Power 2018, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Jašíková, D.; Kotek, M.; Horálek, R.; Horčička, J.; Kopeckỳ, V. EHD sprays as a seeding agens for PIV system measurements. In Proceedings of the ILASS—Europe 2010, 23rd Annual Conference on Liquid Atomization and Spray Systems, Brno, Czech Republic, 6–8 September 2010; Volume 23. [Google Scholar]
- Uruba, V. Decomposition methods in turbulent research. EPJ Web Conf. 2012, 25, 01059. [Google Scholar] [CrossRef] [Green Version]
- Duda, D.; Jelínek, T.; Němec, M.; Uruba, V.; Yanovych, V.; Žitek, P. Particle image velocimetry measurement inside axial air test turbine—Effect of window. In Proceedings of the AIP Conference Proceedings, Pilsen, Czech Republic, 8–10 September 2020; Volume 2323. [Google Scholar] [CrossRef]
- Tabeling, P.; Zocchi, G.; Belin, F.; Maurer, J.; Willaime, H. Probability density functions, skewness, and flatness in large Reynolds number turbulence. Phys. Rev. E 1996, 53, 1613–1621. [Google Scholar] [CrossRef]
- Duda, D.; Yanovych, V.; Uruba, V. An Experimental Study of Turbulent Mixing in Channel Flow Past a Grid. Processes 2020, 8, 1355. [Google Scholar] [CrossRef]
- Choi, K.; Lumley, J.L. The return to isotropy of homogeneous turbulence. J. Fluid Meach. 2001, 436, 59–84. [Google Scholar] [CrossRef]
- Uruba, V. (An)isotropy analysis of turbulence. In Proceedings of the Topical Problems of Fluid Mechanics, Prague, Czech Republic, 21–26 February 2015; Šimurda, D., Bodnár, T., Eds.; 2015. Volume 2015, pp. 237–244. Available online: http://www2.it.cas.cz/fm/im/im/proceeding/2015/29 (accessed on 10 August 2020).
- Solís-Gallego, I.; Meana-Femández, A.; Femández Oro, J.M.F.; Argüelles Díaz, K.M.A.; Velarde-Suárez, S. Turbulence structure around an asymmetric high- lift airfoil for different incidence angles. J. Appl. Fluid Mech. 2017, 10, 1013–1027. [Google Scholar] [CrossRef]
- Romano, G. Large and small scales in a turbulent orifice round jet: Reynolds number effects and departures from isotropy. Int. J. Heat Fluid Flow 2020, 83, 108571. [Google Scholar] [CrossRef]
- Von Kármán, T. Aerodynamics; McGraw-Hill Paperbacks: Science, Mathematics and Engineering; McGraw-Hill: New York, NY, USA, 1963. [Google Scholar]
- Gao, J.; Guo, W.; Lvov, V.S.; Pomyalov, A.; Skrbek, L.; Varga, E.; Vinen, W.F. Decay of counterflow turbulence in superfluid 4He. JETP Lett. 2016, 103, 648–652. [Google Scholar] [CrossRef]
- Frisch, U.; Kolmogorov, A.N. Turbulence: The Legacy of AN Kolmogorov; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Mantia, M.L.; Švančara, P.; Duda, D.; Skrbek, L. Small-scale universality of particle dynamics in quantum turbulence. Phys. Rev. B 2016, 94, 184512. [Google Scholar] [CrossRef]
- Schulz-DuBois, E.O.; Rehberg, I. Structure Function in Lieu of Correlation Function. Appl. Phys. 1981, 24, 323–329. [Google Scholar] [CrossRef]
- Duda, D.; Uruba, V. PIV of air flow over a step and discussion of fluctuation decompositions. In Proceedings of the AIP Conference Proceedings, Štúrovo, Slovakia, 27–30 June 2018; Volume 2000, p. 020005. [Google Scholar] [CrossRef]
- Agrawal, A. Measurement of spectrum with particle image velocimetry. Exp. Fluids 2005, 39, 836–840. [Google Scholar] [CrossRef]
- Agrawal, A.; Prasad, A. Properties of vortices in the self-similar turbulent jet. Exp. Fluids 2002, 33, 565–577. [Google Scholar] [CrossRef]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000; p. 771. [Google Scholar]
- Aubry, N.; Guynnet, R.; Lima, R. Spatiotemporal analysis of complex signals: Theory and applications. J. Stat. Phys. 1991, 64, 683–739. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. Dissipation of Energy in the Locally Isotropic Turbulence. Proc. R. Soc. A Math. Phys. Eng. Sci. 1991, 434, 15–17. [Google Scholar] [CrossRef]
- Barenghi, C.F.; Sergeev, Y.A.; Baggaley, A.W. Regimes of turbulence without an energy cascade. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.; Sayde, C.; Li, Q.; Basara, J.; Selker, J.; Tanner, E.; Gentine, P. Failure of Taylor’s hypothesis in the atmospheric surface layer and its correction for eddy-covariance measurements. Geophys. Res. Lett. 2017, 44, 4287–4295. [Google Scholar] [CrossRef]
- Duda, D.; Uruba, V. Spatial Spectrum From Particle Image Velocimetry Data. ASME J. Nucl. Rad Sci. 2019, 5, 030912. [Google Scholar] [CrossRef]
- Ilieva, G.I. A deep insight to secondary flows. Defect Diffus. Forum 2017, 379, 83–107. [Google Scholar] [CrossRef]
- Kurian, T.; Fransson, J.H.M. Grid-generated turbulence revisited. Fluid Dyn. Res. 2009, 41, 021403. [Google Scholar] [CrossRef]
- Richardson, L.F. Weather Prediction by Numerical Process; Cambridge University Press: Cambridge, UK, 1922. [Google Scholar]
- Yang, X.; Lozano-Durán, A. A multifractal model for the momentum transfer process in wall-bounded flows. J. Fluid Mech. 2017, 824. [Google Scholar] [CrossRef]
- Regunath, G.S.; Zimmerman, W.B.; Tesař, V.; Hewakandamby, B.N. Experimental investigation of helicity in turbulent swirling jet using dual-plane dye laser PIV technique. Exp. Fluids 2008, 45, 973–986. [Google Scholar] [CrossRef] [Green Version]
- Sanders, D. CFD Modeling of Separation and Transitional Flow in Low Pressure Turbine Blades at Low Reynolds Number. Ph.D. Thesis, Virginia Polytechnic Institute, Blacksburg, VA, USA, 2009. [Google Scholar]
- McQuilling, M. Design and Validation of a High-Lift Low-Pressure Turbine Blade. Ph.D. Thesis, Wright State University, Dayton, OH, USA, 2007. [Google Scholar]
Unit | Stator | Rotor IRv2 | |||||
---|---|---|---|---|---|---|---|
N | 66 | 82 | |||||
L | 78.5 | 80 | |||||
440 | 440 | ||||||
hub | mid | tip | hub | mid | tip | ||
t | 20.9 | 24.7 | 28.4 | 16.9 | 19.9 | 23.0 | |
32.9 | 38.8 | 44.6 | 23.0 | 24.5 | 26.0 | ||
24.3 | 29.2 | 32.6 | 22.6 | 22.1 | 21.2 | ||
90.0 | 90.0 | 90.0 | 26.0 | 42.0 | 65.0 | ||
15.5 | 17.0 | 15.5 | 21.7 | 20.2 | 18.1 |
Plane | Diameter | High | FoV |
---|---|---|---|
445 | |||
460 | |||
480 | |||
520 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Share and Cite
Duda, D.; Jelínek, T.; Milčák, P.; Němec, M.; Uruba, V.; Yanovych, V.; Žitek, P. Experimental Investigation of the Unsteady Stator/Rotor Wake Characteristics Downstream of an Axial Air Turbine. Int. J. Turbomach. Propuls. Power 2021, 6, 22. https://doi.org/10.3390/ijtpp6030022
Duda D, Jelínek T, Milčák P, Němec M, Uruba V, Yanovych V, Žitek P. Experimental Investigation of the Unsteady Stator/Rotor Wake Characteristics Downstream of an Axial Air Turbine. International Journal of Turbomachinery, Propulsion and Power. 2021; 6(3):22. https://doi.org/10.3390/ijtpp6030022
Chicago/Turabian StyleDuda, Daniel, Tomáš Jelínek, Petr Milčák, Martin Němec, Václav Uruba, Vitalii Yanovych, and Pavel Žitek. 2021. "Experimental Investigation of the Unsteady Stator/Rotor Wake Characteristics Downstream of an Axial Air Turbine" International Journal of Turbomachinery, Propulsion and Power 6, no. 3: 22. https://doi.org/10.3390/ijtpp6030022
APA StyleDuda, D., Jelínek, T., Milčák, P., Němec, M., Uruba, V., Yanovych, V., & Žitek, P. (2021). Experimental Investigation of the Unsteady Stator/Rotor Wake Characteristics Downstream of an Axial Air Turbine. International Journal of Turbomachinery, Propulsion and Power, 6(3), 22. https://doi.org/10.3390/ijtpp6030022