#
Reducing Secondary Flow Losses in Low-Pressure Turbines: The “Snaked” Blade^{ †}

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. The “Snaked” Blade Concept

## 3. Design of a “Snaked” Blade

^{+}of the first grid points from the wall is always kept around 1. The capability of the present numerical setup in assessing secondary flows for LPT blades has been recently discussed by [18,19,20]. These previous works show numerical accuracy comparing RANS results with both measurements and high fidelity data, showing the reliability of the present approach in predicting secondary flow vortex pattern and the associated secondary losses.

#### 3.1. Results of the Optimization

#### 3.2. Design Assessment: Impact of Numerical Modelling

#### 3.3. Accounting for the Cavity Purge Flows

## 4. Experimental Validation

#### 4.1. Linear Stage Environment

#### 4.2. Performance at Varying Inlet BLs

## 5. Design of a Whole LPT Module

## 6. Conclusions

## 7. Patents

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Abbreviations

BL | Boundary Layer |

CFD | Computational Fluid Dynamics |

LPT | Low Pressure Turbine |

RANS | Reynolds Averaged Navier-Stokes (equations) |

RMS | Root Mean Square |

TE | Trailing Edge |

## References

- Bertini, F.; GE Avio, S.r.L. Method for Making a Shaped Turbine Aerofoil. U.S. Patent 9,506,348, 29 November 2016. [Google Scholar]
- Curtis, E.M.; Hodson, H.P.; Banieghbal, M.R.; Denton, J.D.; Howell, R.J.; Harvey, N.W. Development of blade profiles for low pressure turbine applications. ASME J. Turbomach.
**1997**, 119, 531–538. [Google Scholar] [CrossRef] - Hodson, H.P.; Howell, R.J. The role of transition in high-lift low-pressure turbines for aeroengines. Prog. Aerosp. Sci.
**2005**, 41, 419–454. [Google Scholar] [CrossRef] - Prümper, H. Application of boundary fences in turbomachinery. AGARD-AG
**1972**, 164, 315–331. [Google Scholar] - Chung, J.T.; Simon, T.W. Effectiveness of the gas turbine endwall fences in secondary flow control at elevated freestream turbulence levels. In Proceedings of the ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition, Cincinnati, OH, USA, 24–27 May 1993. ASME Paper 93–GT–051. [Google Scholar]
- Sauer, H.; Müller, R.; Vogeler, K. Reduction of secondary flow losses in turbine cascades by leading edge modifications at the endwall. ASME J. Turbomach.
**2000**, 123, 207–213. [Google Scholar] [CrossRef] - Lyall, M.E.; King, P.I.; Clark, J.P.; Sondergaard, R. Endwall loss reduction of high lift low pressure turbine airfoils using profile contouring—Part I: Airfoil design. ASME J. Turbomach.
**2014**, 136, 081005. [Google Scholar] [CrossRef] - Rose, M. Non-axisymmetric endwall profiling in the HP NGV’s of an axial flow gas turbine. In Proceedings of the ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition, Cincinnati, Hague, The Netherlands, 13–16 June 1994. ASME Paper 94–GT–249. [Google Scholar]
- Praisner, T.J.; Allen-Bradley, E.; Grover, E.A.; Knezevici, D.C.; Sjolander, S.A. Application of nonaxisymmetric endwall contouring to conventional and high-lift turbine airfoils. ASME J. Turbomach.
**2013**, 135, 061006. [Google Scholar] [CrossRef] - Kadhim, H.T.K.; Rona, A. Perspectives on the treatment of secondary flows in axial turbines. Energy Procedia
**2017**, 142, 1179–1184. [Google Scholar] [CrossRef] - Sieverding, C.H. Recent progress in the understanding of basic aspects of secondary flows in turbine blade passages. ASME J. Turbomach.
**1985**, 107, 248–257. [Google Scholar] [CrossRef] - Langston, L.S. Secondary flows in axial turbines—A review. Annals. N. Y. Acad. Sci.
**2001**, 934, 11–26. [Google Scholar] [CrossRef] - Pritchard, L.J. An eleven parameter axial turbine airfoil geometry model. In Proceedings of the Gas Turbine Conference and Exhibit, Houston, TX, USA, 18–21 March 1985. ASME Paper 85–GT–219. [Google Scholar]
- Bertini, F.; Ampellio, E.; Marconcini, M.; Giovannini, M. A critical numerical review of loss correlation models and Smith diagram for modern low pressure turbine stages. In Proceedings of the ASME Turbo Expo, San Antonio, TX, USA, 3–7 June 2013. ASME Paper GT2013–94849. [Google Scholar]
- Bertini, F.; Credi, M.; Marconcini, M.; Giovannini, M. A path towards the aerodynamic robust design of low pressure turbines. ASME J. Turbomach.
**2013**, 135, 021018. [Google Scholar] [CrossRef] - Arnone, A. Viscous analysis of three-dimensional rotor flow using a multigrid method. ASME J. Turbomach.
**1994**, 116, 435–445. [Google Scholar] [CrossRef] - Wilcox, D.C. Turbulence Modeling for CFD, 2nd ed.; DCW Industries Inc.: La Cañada, CA, USA, 1998; ISBN 1-928729-10-X. [Google Scholar]
- Giovannini, M.; Rubechini, F.; Marconcini, M.; Simoni, D.; Yepmo, V.; Bertini, F. Secondary flows in LPT cascades: Numerical and experimental investigation of the impact of the inner part of the boundary layer. ASME J. Turbomach.
**2018**, 140, 111002. [Google Scholar] [CrossRef] - Pichler, R.; Zhao, Y.; Sandberg, R.; Michelassi, V.; Pacciani, R.; Marconcini, M.; Arnone, A. LES and RANS analysis of the end-wall flow in a linear LPT cascade with variable inlet conditions, Part I: Flow and secondary vorticity fields. In Proceedings of the ASME Turbo Expo, Oslo, Norway, 11–15 June 2018. ASME Paper GT2018–76233. [Google Scholar] [CrossRef]
- Marconcini, M.; Pacciani, R.; Arnone, A.; Michelassi, V.; Pichler, R.; Zhao, Y.; Sandberg, R. LES and RANS analysis of the end-wall flow in a linear LPT cascade with variable inlet conditions, Part II: Loss generation. ASME J. Turbomach.
**2019**, 141, 051004. [Google Scholar] [CrossRef] - Rubechini, F.; Schneider, A.; Arnone, A.; Cecchi, S.; Malavasi, F. A redesign strategy to improve the efficiency of a 17-stage steam turbine. ASME J. Turbomach.
**2012**, 134, 031021. [Google Scholar] [CrossRef] - Langtry, R.B.; Menter, F.R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J.
**2009**, 47, 2894–2906. [Google Scholar] [CrossRef] - Pacciani, R.; Marconcini, M.; Arnone, A.; Bertini, F. Predicting high-lift low-pressure turbine cascades flow using transition-sensitive turbulence closures. ASME J. Turbomach.
**2014**, 136, 051007. [Google Scholar] [CrossRef] - Giovannini, M.; Marconcini, M.; Arnone, A.; Bertini, F. Evaluation of unsteady computational fluid dynamics models applied to the analysis of a transonic high-pressure turbine stage. IMechE Part A J. Power Energy
**2014**, 228, 813–824. [Google Scholar] [CrossRef] - Cumpsty, N.A.; Horlock, J.H. Averaging nonuniform flow for a purpose. ASME J. Turbomach.
**2006**, 128, 120–129. [Google Scholar] [CrossRef] - Rubechini, F.; Marconcini, M.; Arnone, A.; Cecchi, S.; Daccà, F. Some aspects of CFD modeling in the analysis of a low-pressure steam turbine. In Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea, and Air, Montreal, QC, Canada, 14–17 May 2007; ASME Paper GT2007–27235. pp. 519–526. [Google Scholar]
- Simoni, D.; Berrino, M.; Ubaldi, M.; Zunino, P.; Bertini, F. Off-design performance of a highly loaded LP turbine cascade under steady and unsteady incoming flow conditions. ASME J. Turbomach.
**2015**, 137, 071009. [Google Scholar] [CrossRef]

**Figure 5.**Results of the “snaked” blade design: (

**a**) optimization clouds; (

**b**) morphing parameter distribution along the span; (

**c**) swirl angle distribution for the original and the optimized stator; (

**d**) spanwise distribution of the rotor total pressure loss coefficient.

**Figure 7.**Performance of the “snaked” blade at varying Reynolds number: (

**a**) stage efficiency; (

**b**) vane losses.

**Figure 8.**Boundary layer (BL) streamlines on the blade suction side at Re = 100,000 (

**a**) orig blade; (

**b**) snaked blade.

**Figure 12.**Results of the design campaign with cavity purge flows included: (

**a**) swirl angle distribution at stator exit; (

**b**) morphing parameter distribution along the span; (

**c**) optimization clouds.

**Figure 14.**Comparison between numerical and experimental results: (

**a**) pitch-wise averaged swirl angle distribution; (

**b**) pitch-wise averaged total pressure loss coefficient ; (

**c**) 2D contour-plots of total pressure losses downstream of the snaked blade.

**Figure 17.**“Snaked” blade robustness: measured and computed spanwise distributions of the exit blade-to-blade angle at varying inlet conditions

Steady | $\mathsf{\Delta}{\mathit{Y}}_{\mathit{stator}}$ | $\mathsf{\Delta}{\mathit{\eta}}_{\mathit{stage}}$ |
---|---|---|

$k-\omega $ fully turb | 0.08 | 0.30 |

$k-\omega $ low-Re | 0.09 | 0.32 |

$k-\omega $$\gamma -{\tilde{Re}}_{\theta t}$ | 0.09 | 0.30 |

Unsteady | $\mathsf{\Delta}{\mathit{Y}}_{\mathit{stator}}$ | $\mathsf{\Delta}{\mathit{\eta}}_{\mathit{stage}}$ |

$k-\omega $ low-Re | 0.04 | 0.45 |

Unsteady $\mathit{\gamma}-{\tilde{\mathit{Re}}}_{\mathit{\theta}\mathit{t}}$ | |
---|---|

$\mathsf{\Delta}{Y}_{stator}$ | $\mathsf{\Delta}{\eta}_{stage}$ |

0.08 | 0.38 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

## Share and Cite

**MDPI and ACS Style**

Giovannini, M.; Rubechini, F.; Marconcini, M.; Arnone, A.; Bertini, F.
Reducing Secondary Flow Losses in Low-Pressure Turbines: The “Snaked” Blade. *Int. J. Turbomach. Propuls. Power* **2019**, *4*, 28.
https://doi.org/10.3390/ijtpp4030028

**AMA Style**

Giovannini M, Rubechini F, Marconcini M, Arnone A, Bertini F.
Reducing Secondary Flow Losses in Low-Pressure Turbines: The “Snaked” Blade. *International Journal of Turbomachinery, Propulsion and Power*. 2019; 4(3):28.
https://doi.org/10.3390/ijtpp4030028

**Chicago/Turabian Style**

Giovannini, Matteo, Filippo Rubechini, Michele Marconcini, Andrea Arnone, and Francesco Bertini.
2019. "Reducing Secondary Flow Losses in Low-Pressure Turbines: The “Snaked” Blade" *International Journal of Turbomachinery, Propulsion and Power* 4, no. 3: 28.
https://doi.org/10.3390/ijtpp4030028