Impact of COVID-19 Vaccination in Thailand: Averted Deaths and Severe Infections Across Age Groups
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Vaccination Rollout Dynamics
2.3. Transmission Model
2.4. Transmission Model Fitting
2.5. Quantifying the Impact of Vaccination on Averting COVID-19 Mortality and Severe Infection
3. Results
3.1. Baseline Model Fitting and Counterfactual Scenario
3.2. Vaccination and Averted Deaths in Thailand
3.3. Prevented Deaths and Reduced Severity Across Age Groups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kucharski, A.J.; Russell, T.W.; Diamond, C.; Liu, Y.; Edmunds, J.; Funk, S.; Eggo, R.M.; Sun, F.; Jit, M.; Munday, J.D. Early dynamics of transmission and control of COVID-19: A mathematical modelling study. Lancet Infect. Dis. 2020, 20, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Flaxman, S.; Mishra, S.; Gandy, A.; Unwin, H.J.T.; Mellan, T.A.; Coupland, H.; Whittaker, C.; Zhu, H.; Berah, T.; Eaton, J.W. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature 2020, 584, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Perra, N. Non-pharmaceutical interventions during the COVID-19 pandemic: A review. Phys. Rep. 2021, 913, 1–52. [Google Scholar] [CrossRef]
- Mendez-Brito, A.; El Bcheraoui, C.; Pozo-Martin, F. Systematic review of empirical studies comparing the effectiveness of non-pharmaceutical interventions against COVID-19. J. Infect. 2021, 83, 281–293. [Google Scholar] [CrossRef]
- Hossain, M.M.; Sultana, A.; Purohit, N. Mental health outcomes of quarantine and isolation for infection prevention: A systematic umbrella review of the global evidence. Epidemiol. Health 2020, 42, e2020038. [Google Scholar] [CrossRef]
- Jain, A.; Bodicherla, K.P.; Raza, Q.; Sahu, K.K. Impact on mental health by “Living in Isolation and Quarantine” during COVID-19 pandemic. J. Fam. Med. Prim. Care 2020, 9, 5415. [Google Scholar] [CrossRef]
- Barnsley, G.; Mesa, D.O.; Hogan, A.B.; Winskill, P.; Torkelson, A.A.; Walker, D.G.; Ghani, A.C.; Watson, O.J. Impact of the 100 days mission for vaccines on COVID-19: A mathematical modelling study. Lancet Glob. Health 2024, 12, e1764–e1774. [Google Scholar] [CrossRef]
- Bubar, K.M.; Reinholt, K.; Kissler, S.M.; Lipsitch, M.; Cobey, S.; Grad, Y.H.; Larremore, D.B. Model-informed COVID-19 vaccine prioritization strategies by age and serostatus. Science 2021, 371, 916–921. [Google Scholar] [CrossRef]
- Baraniuk, C. COVID-19: How the UK vaccine rollout delivered success, so far. BMJ 2021, 372, n421. [Google Scholar] [CrossRef]
- Anupong, S.; Chantanasaro, T.; Wilasang, C.; Jitsuk, N.C.; Sararat, C.; Sornbundit, K.; Pattanasiri, B.; Wannigama, D.L.; Amarasiri, M.; Chadsuthi, S.; et al. Modeling vaccination strategies with limited early COVID-19 vaccine access in low-and middle-income countries: A case study of Thailand. Infect. Dis. Model. 2023, 8, 1177–1189. [Google Scholar] [CrossRef] [PubMed]
- Chookajorn, T.; Kochakarn, T.; Wilasang, C.; Kotanan, N.; Modchang, C. Southeast Asia is an emerging hotspot for COVID-19. Nat. Med. 2021, 27, 1495–1496. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.; Hill, E.M.; Dyson, L.; Tildesley, M.J.; Keeling, M.J. Retrospectively modeling the effects of increased global vaccine sharing on the COVID-19 pandemic. Nat. Med. 2022, 28, 2416–2423. [Google Scholar] [CrossRef] [PubMed]
- Lopez Bernal, J.; Andrews, N.; Gower, C.; Gallagher, E.; Simmons, R.; Thelwall, S.; Stowe, J.; Tessier, E.; Groves, N.; Dabrera, G. Effectiveness of Covid-19 vaccines against the B. 1.617. 2 (Delta) variant. N. Engl. J. Med. 2021, 385, 585–594. [Google Scholar] [CrossRef]
- Hall, V.J.; Foulkes, S.; Saei, A.; Andrews, N.; Oguti, B.; Charlett, A.; Wellington, E.; Stowe, J.; Gillson, N.; Atti, A. COVID-19 vaccine coverage in health-care workers in England and effectiveness of BNT162b2 mRNA vaccine against infection (SIREN): A prospective, multicentre, cohort study. Lancet 2021, 397, 1725–1735. [Google Scholar] [CrossRef]
- Haas, E.J.; Angulo, F.J.; McLaughlin, J.M.; Anis, E.; Singer, S.R.; Khan, F.; Brooks, N.; Smaja, M.; Mircus, G.; Pan, K. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: An observational study using national surveillance data. Lancet 2021, 397, 1819–1829. [Google Scholar] [CrossRef]
- Wilasang, C.; Jitsuk, N.C.; Sararat, C.; Modchang, C. Reconstruction of the transmission dynamics of the first COVID-19 epidemic wave in Thailand. Sci. Rep. 2022, 12, 2002. [Google Scholar] [CrossRef]
- Puenpa, J.; Rattanakomol, P.; Saengdao, N.; Chansaenroj, J.; Yorsaeng, R.; Suwannakarn, K.; Thanasitthichai, S.; Vongpunsawad, S.; Poovorawan, Y. Molecular characterisation and tracking of severe acute respiratory syndrome coronavirus 2 in Thailand, 2020–2022. Arch. Virol. 2023, 168, 26. [Google Scholar] [CrossRef]
- Wilasang, C.; Modchang, C.; Lincharoen, T.; Chadsuthi, S. Estimation of excess all-cause mortality due to COVID-19 in Thailand. Trop. Med. Infect. Dis. 2022, 7, 116. [Google Scholar] [CrossRef]
- Anupong, S.; Chadsuthi, S.; Hongsing, P.; Hurst, C.; Phattharapornjaroen, P.; SM, A.H.R.; Fernandez, S.; Huang, A.T.; Vatanaprasan, P.; Saethang, T.; et al. Exploring indoor and outdoor dust as a potential tool for detection and monitoring of COVID-19 transmission. Iscience 2024, 27, 109043. [Google Scholar] [CrossRef]
- Nittayasoot, N.; Suphanchaimat, R.; Thammawijaya, P.; Jiraphongsa, C.; Siraprapasiri, T.; Ploddi, K.; Pittayawonganon, C.; Mahasirimongkol, S.; Tharmaphornpilas, P. Real-World Effectiveness of COVID-19 vaccines against severe outcomes during the period of omicron predominance in Thailand: A test-negative nationwide case–control study. Vaccines 2022, 10, 2123. [Google Scholar] [CrossRef] [PubMed]
- Suphanchaimat, R.; Nittayasoot, N.; Jiraphongsa, C.; Thammawijaya, P.; Bumrungwong, P.; Tulyathan, A.; Cheewaruangroj, N.; Pittayawonganon, C.; Tharmaphornpilas, P. Real-world effectiveness of mix-and-match vaccine regimens against SARS-CoV-2 Delta variant in Thailand: A nationwide test-negative matched case-control study. Vaccines 2022, 10, 1080. [Google Scholar] [CrossRef] [PubMed]
- Watson, O.J.; Barnsley, G.; Toor, J.; Hogan, A.B.; Winskill, P.; Ghani, A.C. Global impact of the first year of COVID-19 vaccination: A mathematical modelling study. Lancet Infect. Dis. 2022, 22, 1293–1302. [Google Scholar] [CrossRef] [PubMed]
- Kayano, T.; Ko, Y.; Otani, K.; Kobayashi, T.; Suzuki, M.; Nishiura, H. Evaluating the COVID-19 vaccination program in Japan, 2021 using the counterfactual reproduction number. Sci. Rep. 2023, 13, 17762. [Google Scholar] [CrossRef]
- PopulationPyramid.net. Population Pyramids of the World from 1950 to 2100. Available online: https://www.populationpyramid.net/thailand/2020/ (accessed on 2 August 2023).
- Intawong, K.; Chariyalertsak, S.; Chalom, K.; Wonghirundecha, T.; Kowatcharakul, W.; Thongprachum, A.; Chotirosniramit, N.; Teacharak, W.; Waneesorn, J.; Iamsirithaworn, S. Effectiveness of heterologous third and fourth dose COVID-19 vaccine schedules for SARS-CoV-2 infection during delta and omicron predominance in Thailand: A test-negative, case-control study. Lancet Reg. Health-Southeast Asia 2023, 10, 100121. [Google Scholar] [CrossRef]
- Hogan, A.B.; Winskill, P.; Watson, O.J.; Walker, P.G.; Whittaker, C.; Baguelin, M.; Brazeau, N.F.; Charles, G.D.; Gaythorpe, K.A.; Hamlet, A. Within-country age-based prioritisation, global allocation, and public health impact of a vaccine against SARS-CoV-2: A mathematical modelling analysis. Vaccine 2021, 39, 2995–3006. [Google Scholar] [CrossRef]
- Walker, P.G.; Whittaker, C.; Watson, O.J.; Baguelin, M.; Winskill, P.; Hamlet, A.; Djafaara, B.A.; Cucunubá, Z.; Olivera Mesa, D.; Green, W. The impact of COVID-19 and strategies for mitigation and suppression in low-and middle-income countries. Science 2020, 369, 413–422. [Google Scholar] [CrossRef]
- National Statistical Office of Thailand. The Number of Hospital Beds Available in Public and Private Hospitals. Available online: https://data.go.th/dataset/ns_05_20802 (accessed on 8 October 2023).
- Marshall, A.I.; Archer, R.; Witthayapipopsakul, W.; Sirison, K.; Chotchoungchatchai, S.; Sriakkpokin, P.; Srisookwatana, O.; Teerawattananon, Y.; Tangcharoensathien, V. Developing a Thai national critical care allocation guideline during the COVID-19 pandemic: A rapid review and stakeholder consultation. Health Res. Policy Syst. 2021, 19, 47. [Google Scholar] [CrossRef]
- Cole, S.R.; Chu, H.; Greenland, S. Maximum likelihood, profile likelihood, and penalized likelihood: A primer. Am. J. Epidemiol. 2014, 179, 252–260. [Google Scholar] [CrossRef]
- Wagenmakers, E.-J.; Marsman, M.; Jamil, T.; Ly, A.; Verhagen, J.; Love, J.; Selker, R.; Gronau, Q.F.; Šmíra, M.; Epskamp, S.; et al. Bayesian inference for psychology. Part I: Theoretical advantages and practical ramifications. Psychon. Bull. Rev. 2018, 25, 35–57. [Google Scholar] [CrossRef]
- Harville, D.A. Bayesian inference for variance components using only error contrasts. Biometrika 1974, 61, 383–385. [Google Scholar] [CrossRef]
- Chadsuthi, S.; Althouse, B.; Iamsirithaworn, S.; Triampo, W.; Grantz, K.; Cummings, D. Travel distance and human movement predict paths of emergence and spatial spread of chikungunya in Thailand. Epidemiol. Infect. 2018, 146, 1654–1662. [Google Scholar] [CrossRef] [PubMed]
- Chadsuthi, S.; Chalvet-Monfray, K.; Wiratsudakul, A.; Modchang, C. The effects of flooding and weather conditions on leptospirosis transmission in Thailand. Sci. Rep. 2021, 11, 1486. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M. Empirical Likelihood Method in Survival Analysis; CRC Press: Boca Raton, FL, USA, 2015; Volume 79. [Google Scholar]
- Wannigama, D.L.; Amarasiri, M.; Hongsing, P.; Hurst, C.; Modchang, C.; Chadsuthi, S.; Anupong, S.; Phattharapornjaroen, P.; SM, A.H.R.; Fernandez, S. COVID-19 monitoring with sparse sampling of sewered and non-sewered wastewater in urban and rural communities. Iscience 2023, 26, 107019. [Google Scholar] [CrossRef]
- O’Driscoll, M.; Ribeiro Dos Santos, G.; Wang, L.; Cummings, D.A.; Azman, A.S.; Paireau, J.; Fontanet, A.; Cauchemez, S.; Salje, H. Age-specific mortality and immunity patterns of SARS-CoV-2. Nature 2021, 590, 140–145. [Google Scholar] [CrossRef]
Parameters | Values | Descriptions/References |
---|---|---|
Time-varying reproduction number (Rt) | See Table S1 | |
Transmission rate | - | Calculated from Rt |
Mean latent period | 4.6 days | [27] |
Mean duration of mild infection | 2.1 days | [27] |
Mean duration of severe infection prior to hospitalization | 4.5 days | [27] |
Mean duration of hospitalization for non-severe cases if survive | 9.0 days | [27] |
Mean duration of hospitalization for non-severe cases if die | 9.0 days | [27] |
Mean duration in ICU if survive | 14.8 days | [27] |
Mean duration in ICU if die | 11.1 days | [27] |
Mean duration in recovery after ICU | 3.0 days | [27] |
Mean vaccine efficacy against infection | 60% | [27] |
Mean vaccine efficacy against disease | 70% | [27] |
Mean duration of naturally acquired immunity | 365 days | [27] |
Vaccine duration of protection | 446 days | Estimated from [23] |
Probability of death if require critical care but do not receive it | 90.5% (range 85%–95%) | [28] |
Probability of death if require hospitalization but no hospital beds are available | 60% (range 50–70%) | [28] |
Number of hospital beds in Thailand | 158,326 | [29] |
Number of ICU beds with ventilators in Thailand | 13,184 | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilasang, C.; Suttirat, P.; Wannigama, D.L.; Amarasiri, M.; Chadsuthi, S.; Modchang, C. Impact of COVID-19 Vaccination in Thailand: Averted Deaths and Severe Infections Across Age Groups. Trop. Med. Infect. Dis. 2024, 9, 286. https://doi.org/10.3390/tropicalmed9120286
Wilasang C, Suttirat P, Wannigama DL, Amarasiri M, Chadsuthi S, Modchang C. Impact of COVID-19 Vaccination in Thailand: Averted Deaths and Severe Infections Across Age Groups. Tropical Medicine and Infectious Disease. 2024; 9(12):286. https://doi.org/10.3390/tropicalmed9120286
Chicago/Turabian StyleWilasang, Chaiwat, Pikkanet Suttirat, Dhammika Leshan Wannigama, Mohan Amarasiri, Sudarat Chadsuthi, and Charin Modchang. 2024. "Impact of COVID-19 Vaccination in Thailand: Averted Deaths and Severe Infections Across Age Groups" Tropical Medicine and Infectious Disease 9, no. 12: 286. https://doi.org/10.3390/tropicalmed9120286
APA StyleWilasang, C., Suttirat, P., Wannigama, D. L., Amarasiri, M., Chadsuthi, S., & Modchang, C. (2024). Impact of COVID-19 Vaccination in Thailand: Averted Deaths and Severe Infections Across Age Groups. Tropical Medicine and Infectious Disease, 9(12), 286. https://doi.org/10.3390/tropicalmed9120286