The Predicted Potential Impact of COVID-19 Pandemic on Tuberculosis Epidemic in Tamil Nadu, South India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Population
2.3. Study Design
2.4. Input Parameter
2.5. Data Collection
2.5.1. TB Prevalence
2.5.2. TB Incidence
2.5.3. COVID-19
2.5.4. Mortality
2.5.5. Mask Utilization
2.6. Data Analysis
2.7. SEIR Model for TB Prevalence
2.8. Impact of COVID-19 on Prevalence and Incidence
2.9. SEIR Model for TB Incidence
3. Results
3.1. SEIR Model Values for with and without the Impact of COVID-19
3.2. Prevalence of TB without the Impact of COVID-19
3.3. Prevalence of TB with the Impact of COVID-19
3.4. Incidence of TB without the Impact of COVID-19
3.5. Incidence of TB with the Impact of COVID-19
3.6. District-Wise Prevalence of TB without the Impact of COVID-19
3.7. District-Wise Prevalence of TB with the Impact of COVID-19
3.8. District-Wise Incidence of TB without the Impact of COVID-19
3.9. District-Wise Incidence of TB with the Impact of COVID-19
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheval, S.; Mihai Adamescu, C.; Georgiadis, T.; Herrnegger, M.; Piticar, A.; Legates, D.R. Observed and Potential Impacts of the COVID-19 Pandemic on the Environment. Int. J. Environ. Res. Public Health 2020, 17, 4140. [Google Scholar] [CrossRef]
- World Health Organization. Global Tuberculosis Report—2019. Geneva. Available online: https://iris.who.int/bitstream/handle/10665/329368/9789241565714-eng.pdf?sequence=19 (accessed on 26 April 2022).
- Raviglione, M.; Sulis, G. Tuberculosis 2015: Burden, challenges and strategy for control and elimination. Infect. Dis. Rep. 2016, 8, 2016. [Google Scholar] [CrossRef]
- Lönnroth, K.; Williams, B.G.; Cegielski, P.; Dye, C. A consistent log-linear relationship between tuberculosis incidence and body mass index. Int. J. Epidemiol. 2010, 39, 149–155. [Google Scholar] [CrossRef]
- Lee, Y.; Raviglione, M.C.; Flahault, A. Use of Digital Technology to Enhance Tuberculosis Control: Scoping Review. J. Med. Internet Res. 2020, 22, e15727. [Google Scholar] [CrossRef]
- World Health Organization. Global Tuberculosis Report 2021; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- World Health Organization Regional Office for Europe. Rapid Communication on the Role of the GeneXpertt® Platform for Rapid Molecular Testing for SARS-COV-2 in the WHO European Region (2020); WHO Regional Office for Europe: Copenhagen, Denmark, 2020. [Google Scholar]
- Adepoju, P. Tuberculosis and HIV responses threatened by COVID-19. Lancet HIV 2020, 7, e319–e320. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.; Mak, M.K. Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates. Appl. Math. Comput. 2014, 236, 184–194. [Google Scholar] [CrossRef]
- Saha, S.; Kumar, A.; Saurabh, K.; Shankar, S.H.; Kashyap, A.; Nischal, N.; Biswas, A.; Wig, N. Current status of treatment of latent tuberculosis infection in India. Indian J. Med. Sci. 2019, 71, 54–59. [Google Scholar] [CrossRef]
- Knomea Tamil Nadu. Birth-Rate. Available online: https://knoema.com/atlas/India/ranks/Birth-rate (accessed on 4 April 2022).
- ICMR-National Institute for Research in Tuberculosis (NIRT), Chennai. National TB Prevalence Survey (2019–2022). 2021. Available online: https://tbcindia.gov.in/WriteReadData/l892s/25032022161020NATBPSReport.pdf (accessed on 1 April 2021).
- Dhanaraj, B.; Papanna, M.K.; Adinarayanan, S.; Vedachalam, C.; Sundaram, V.; Shanmugam, S.; Sekar, G.; Menon, P.A.; Wares, F.; Swaminathan, S. Prevalence and risk factors for adult pulmonary tuberculosis in a metropolitan city of South India. PLoS ONE 2015, 10, e0124260. [Google Scholar] [CrossRef]
- Dolla, C.K.; Dhanaraj, B.; Chandrasekaran, P.; Selvaraj, S.; Menon, P.A.; Thiruvengadam, K.; Krishnan, R.; Mondal, R.; Malaisamy, M.; Marinalk, S.B.; et al. Prevalence of bacteriologically confirmed pulmonary tuberculosis and associated risk factors: A community survey in Thirvallur District, south India. PLoS ONE 2021, 16, e0247245. [Google Scholar] [CrossRef]
- Gopi, P.G.; Subramani, R.; Radhakrishna, S.; Kolappan, C.; Sadacharam, K.; Devi, T.S.; Frieden, T.R.; Narayanan, P.R. A baseline survey of the prevalence of tuberculosis in a community in south India at the commencement of a DOTS programme. Int. J. Tuberc. Lung Dis. 2003, 7, 1154–1162. [Google Scholar]
- Kolappan, C.; Subramani, R.; Radhakrishna, S.; Santha, T.; Wares, F.; Baskaran, D.; Selvakumar, N.; Narayanan, P.R. Trends in the prevalence of pulmonary tuberculosis over a period of seven and half years in a rural community in south India with DOTS. Indian J. Tuberc. 2013, 60, 168–176. [Google Scholar] [PubMed]
- Mazumdar, S.; Satyanarayana, S.; Pai, M. Self-reported tuberculosis in India: Evidence from NFHS-4. BMJ Global Health 2019, 4, e001371. [Google Scholar] [CrossRef] [PubMed]
- Jeyashree, K.; Thangaraj, J.; Rade, K.; Modi, B.; Selvaraju, S.; Velusamy, S.; Akhil, S.; Vijayageetha, M.; Rani, D.S.; Sabarinathan, R.; et al. Estimation of tuberculosis incidence at subnational level using three methods to monitor progress towards ending TB in India 2015–2020. BMJ Open 2022, 12, e060197. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, S.; Das, S.; Garg, R.; Hari, L.; Rao, V.B.; Frieden, T.R.; Narayanan, P.R. Molecular epidemiology of tuberculosis in a rural area of high prevalence in South India: Implications for disease control and prevention. J. Clin. Microbiol. 2002, 40, 4785–4788. [Google Scholar] [CrossRef] [PubMed]
- National Health Mission-TN. Stop Corona TN (Media Bulletin). National Health Mission-Tamil Nadu, Health and Family Welfare Department, Government of Tamil Nadu. Available online: https://stopcorona.tn.gov.in/ (accessed on 13 April 2022).
- Statista. Rural and Urban Death Rates of India by States. Available online: https://www.statista.com/statistics/616282/rural-death-rate-by-state-and-union-territory-india (accessed on 13 April 2022).
- Singh, M.; Mynak, M.; Kumar, L.; Mathew, J.; Jindal, S. Prevalence and risk factors for transmission of infection among children in household contact with adults having pulmonary tuberculosis. Arch. Dis. Child 2005, 90, 624–628. [Google Scholar] [CrossRef] [PubMed]
- Dharmadhikari, A.S.; Mphahlele, M.; Stoltz, A.; Venter, K.; Mathebula, R.; Masotla, T.; Lubbe, W.; Pagano, M.; First, M.; Jensen, P.A.; et al. Surgical face masks worn by patients with multidrug-resistant tuberculosis: Impact on infectivity of air on a hospital ward. Am. J. Respir. Crit. Care Med. 2012, 185, 1104–1109. [Google Scholar] [CrossRef]
- Aggarwal, A.N.; Agarwal, R.; Dhooria, S.; Prasad, K.T.; Sehgal, I.S.; Muthu, V. Impact of COVID-19 pandemic on tuberculosis notifications in India. Lung India 2022, 39, 89–91. [Google Scholar] [CrossRef]
- Zamparelli, S.S.; Mormile, M.; Zamparelli, A.S.; Guarino, A.; Parrella, R.; Bocchino, M. Clinical impact of COVID-19 on tuberculosis. Infez. Med. 2022, 30, 495–500. [Google Scholar]
- Tovar, M.; Aleta, A.; Sanz, J.; Moreno, Y. Modeling the impact of COVID-19 on future tuberculosis burden. Commun. Med. 2022, 2, 77. [Google Scholar] [CrossRef]
- World Health Organization. Tuberculosis Deaths and Disease Increase during the COVID-19 Pandemic. World Health Organization, Geneva 2022. Available online: https://www.who.int/news/item/27-10-2022-tuberculosis-deaths-and-disease-increase-during-the-covid-19-pandemic (accessed on 14 April 2022).
- Subramanian, M. Policy Note 2023–2024, Demand No. 19: Makkalai Thedi Maruthuvam; Health and Family Welfare Department, Government of Tamil Nadu: Chennai, India, 2023; pp. 334–338. Available online: https://cms.tn.gov.in/sites/default/files/documents/hfw_e_pn_2023_24.pdf (accessed on 14 April 2022).
- Dolla, C.; Padmapriyadarsini, C.; Pradeep Menon, A.; Muniyandi, M.; Adinarayanan, S.; Sekar, G.; Kavitha, D.; Tripathy, S.P.; Swaminathan, S. Tuberculosis among the homeless in Chennai city, South India. Trans. R. Soc. Trop. Med. Hyg. 2017, 111, 479–481. [Google Scholar] [CrossRef]
- Thomas, B.E.; Adinarayanan, S.; Manogaran, C.; Swaminathan, S. Pulmonary tuberculosis among tribals in India: A systematic review & meta-analysis. Indian J. Med. Res. 2015, 141, 614–623. [Google Scholar] [PubMed]
- Thomas, B.E.; Thiruvengadam, K.; Vedhachalam, C.; Rao, V.G.; Vijayachari, P.; Rajiv, Y.; V, R.; Bansal, A.K.; Indira Krishna, A.K.; Joseph, A.; et al. Prevalence of pulmonary tuberculosis among the tribal populations in India. PLoS ONE 2021, 16, e0251519. [Google Scholar] [CrossRef] [PubMed]
- Indira Krishnan, A.K.; Joseph, A. Prevalence of tuberculosis among tribes aged 15 and above in Tamil Nadu. A community based cross-sectional study. Indian J. Tuberc. 2020, 67, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Central TB Division. National Strategic Plan for Tuberculosis Elimination 2017–2025; Central TB Division, Ministry of Health with Family Welfare, Government of India: New Delhi, India, 2017. [Google Scholar]
- Bhargava, A.; Shewade, H.D. The potential impact of the COVID-19 response related lockdown on TB incidence and mortality in India. Indian J. Tuberc. 2020, 67, S139–S146. [Google Scholar] [CrossRef]
- Khanna, A.; Saha, R.; Ahmad, N. National TB elimination programme—What has changed. Indian J. Med. Microbiol. 2023, 42, 103–107. [Google Scholar] [CrossRef]
- Cilloni, L.; Fu, H.; Vesga, J.F.; Dowdy, D.; Pretorius, C.; Ahmedov, S.; Nair, S.A.; Mosneaga, A.; Masini, E.; Sahu, S.; et al. The potential impact of the COVID-19 pandemic on the tuberculosis epidemic a modelling analysis. EClinicalMedicine 2020, 28, 100603. [Google Scholar] [CrossRef]
Parameter | Model Parameter Name | Values | References |
---|---|---|---|
α | Uninfected to Latent Progression | 0.33 | 8 |
New susceptible | 0.0123 | 9 | |
β | Uninfected to Active infection | 0.00301 | 10 |
λ | Latent Progression to Active infection | 0.005 | 9 |
δ | Active infection to Treatment | 0.96 | 11 |
γ | Treatment to Active infection | 0.102 | 12 |
ε | Treatment to Recovered | 0.83 | 12 |
θ | Recovered to Uninfected | 0.99 | Assumption |
All-cause mortality | 0.009 | 10 | |
1 | TB mortality | 0.059 | 12 |
Lockdown | 0.005 | Assumption | |
1 | Mask Utilization | 0.005 | Assumption |
SEIR Model Values for without the Impact of COVID-19 | |||||||
Year | Population > 15 | Susceptible | LTBI | Active TB | Treatment | Recovery | Mortality |
2017 | 57,068,340 | 39,677,931 | 17,138,298 | 85,543 | 91,614 | 74,954 | 10,440 |
2018 | 57,342,263 | 40,097,166 | 16,993,397 | 84,842 | 91,262 | 75,596 | 10,390 |
2019 | 57,616,352 | 40,516,263 | 16,849,722 | 84,132 | 90,671 | 75,565 | 10,313 |
2020 | 57,890,625 | 40,934,751 | 16,707,262 | 83,423 | 89,980 | 75,209 | 10,231 |
2021 | 58,165,093 | 41,352,415 | 16,566,006 | 82,718 | 89,251 | 74,703 | 10,146 |
2022 | 58,439,764 | 41,769,162 | 16,425,945 | 82,019 | 88,510 | 74,129 | 10,061 |
2023 | 58,714,646 | 42,184,958 | 16,287,068 | 81326 | 87,767 | 73,528 | 9976 |
2024 | 58,989,745 | 42,599,798 | 16,149,365 | 80,638 | 87,027 | 72,917 | 9892 |
2025 | 59,265,069 | 43,013,688 | 16,012,827 | 79,956 | 86,292 | 72,305 | 9809 |
SEIR Model Values for with the Impact of COVID-19 | |||||||
Year | Population > 15 | Susceptible | LTBI | Active TB | Treatment | Recovery | Mortality |
2020 | 57,889,810 | 40,934,731 | 16,707,232 | 82,923 | 89,769 | 75,156 | 10,242 |
2021 | 58,163,505 | 41,352,253 | 16,565,917 | 82,063 | 88,783 | 74,490 | 10,080 |
2022 | 58,437,425 | 41,768,684 | 16,425,787 | 81,318 | 87,884 | 73,752 | 9983 |
2023 | 58,711,568 | 42,184,018 | 16,286,840 | 80,614 | 87,063 | 73,034 | 9893 |
2024 | 58,985,937 | 42,598,300 | 16,149,067 | 79,927 | 86,289 | 72,354 | 9807 |
2025 | 59,260,535 | 43,011,578 | 16,012,459 | 79,249 | 85,542 | 71,707 | 9723 |
Year | (Without COVID-19) | (With COVID-19) | Difference Rate (%) | ||
---|---|---|---|---|---|
Prevalence/100,000 Population | Reduction (%) | Prevalence/100,000 Population | Reduction (%) | ||
2020 | 289 (283–296) | 1.327 | 289 (283–294) | 1.629 | 0.298 |
2021 | 286 (279–292) | 1.329 | 284 (278–289) | 1.732 | 0.697 |
2022 | 282 (276–288) | 1.328 | 280 (274–285) | 1.458 | 0.826 |
2023 | 278 (272–285) | 1.327 | 276 (270–281) | 1.368 | 0.867 |
2024 | 275 (268–281) | 1.325 | 272 (267–278) | 1.338 | 0.880 |
2025 | 271 (265–277) | 1.323 | 269 (263–274) | 1.327 | 0.884 |
Year | (Without COVID-19) | (With COVID-19) | Difference Rate (%) | ||
---|---|---|---|---|---|
Incidence/100,000 Population | Reduction (%) | Incidence/100,000 Population | Reduction (%) | ||
2020 | 144 (141–147) | 1.312 | 143 (141–146) | 1.902 | 0.598 |
2021 | 142 (139–145) | 1.312 | 141 (139–144) | 1.503 | 0.790 |
2022 | 140 (137–143) | 1.311 | 139 (137–142) | 1.372 | 0.851 |
2023 | 139 (135–142) | 1.310 | 137 (135–140) | 1.329 | 0.870 |
2024 | 137 (134–140) | 1.308 | 136 (133–138) | 1.313 | 0.876 |
2025 | 135 (132–138) | 1.306 | 134 (131–136) | 1.307 | 0.877 |
S. No | District | Without Impact | With Impact | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | ||
1 | Ariyalur | 207 | 204 | 202 | 199 | 197 | 194 | 192 | 189 | 187 | 197 | 195 | 192 | 190 | 188 | 185 |
2 | Chennai | 323 | 319 | 315 | 311 | 307 | 303 | 299 | 295 | 291 | 308 | 304 | 300 | 296 | 293 | 289 |
3 | Coimbatore | 303 | 299 | 296 | 292 | 288 | 284 | 281 | 277 | 273 | 289 | 286 | 282 | 278 | 275 | 271 |
4 | Cuddalore | 287 | 284 | 280 | 276 | 273 | 269 | 266 | 262 | 259 | 274 | 270 | 267 | 264 | 260 | 257 |
5 | Dharmapuri | 235 | 232 | 229 | 226 | 223 | 220 | 218 | 215 | 212 | 224 | 221 | 219 | 216 | 213 | 210 |
6 | Dindigul | 259 | 256 | 253 | 249 | 246 | 243 | 240 | 237 | 234 | 247 | 244 | 241 | 238 | 235 | 232 |
7 | Erode | 263 | 260 | 257 | 253 | 250 | 247 | 244 | 240 | 237 | 251 | 248 | 245 | 241 | 238 | 235 |
8 | Kanchipuram | 311 | 307 | 303 | 300 | 296 | 292 | 288 | 284 | 281 | 297 | 293 | 289 | 285 | 282 | 278 |
9 | Kanniyakumari | 247 | 244 | 241 | 238 | 235 | 232 | 229 | 226 | 223 | 236 | 233 | 230 | 227 | 224 | 221 |
10 | Karur | 211 | 208 | 206 | 203 | 200 | 198 | 195 | 193 | 190 | 201 | 199 | 196 | 194 | 191 | 189 |
11 | Krishnagiri | 247 | 244 | 241 | 238 | 235 | 232 | 229 | 226 | 223 | 236 | 233 | 230 | 227 | 224 | 221 |
12 | Madurai | 299 | 296 | 292 | 288 | 284 | 281 | 277 | 273 | 270 | 285 | 282 | 278 | 275 | 271 | 267 |
13 | Namakkal | 243 | 240 | 237 | 234 | 231 | 228 | 225 | 222 | 219 | 228 | 225 | 222 | 219 | 217 | 214 |
14 | Nagapattinam | 239 | 236 | 233 | 230 | 227 | 224 | 221 | 219 | 216 | 232 | 229 | 226 | 223 | 220 | 217 |
15 | Permbalur | 203 | 200 | 198 | 195 | 193 | 190 | 188 | 185 | 183 | 194 | 191 | 189 | 186 | 184 | 182 |
16 | Pudukottai | 239 | 236 | 233 | 230 | 227 | 224 | 221 | 219 | 216 | 228 | 225 | 222 | 219 | 217 | 214 |
17 | Ramanathapuram | 223 | 220 | 217 | 215 | 212 | 209 | 206 | 204 | 201 | 213 | 210 | 207 | 205 | 202 | 200 |
18 | Salem | 303 | 299 | 296 | 292 | 288 | 284 | 281 | 277 | 273 | 289 | 286 | 282 | 278 | 275 | 271 |
19 | Sivaganga | 223 | 220 | 217 | 215 | 212 | 209 | 206 | 204 | 201 | 213 | 210 | 207 | 205 | 202 | 200 |
20 | Thanjavur | 267 | 264 | 260 | 257 | 254 | 251 | 247 | 244 | 241 | 255 | 252 | 248 | 245 | 242 | 239 |
21 | The Nilgiris | 207 | 204 | 202 | 199 | 197 | 194 | 192 | 189 | 187 | 186 | 182 | 179 | 175 | 172 | 168 |
22 | Theni | 219 | 216 | 213 | 211 | 208 | 205 | 203 | 200 | 198 | 209 | 206 | 204 | 201 | 198 | 196 |
23 | Tiruchy | 291 | 288 | 284 | 280 | 277 | 273 | 270 | 266 | 263 | 197 | 193 | 189 | 185 | 182 | 178 |
24 | Thiruvallur | 307 | 303 | 300 | 296 | 292 | 288 | 284 | 281 | 277 | 209 | 206 | 204 | 201 | 198 | 196 |
25 | Thiruvarur | 219 | 216 | 213 | 211 | 208 | 205 | 203 | 200 | 198 | 209 | 206 | 204 | 201 | 198 | 196 |
26 | Thoothukodi | 243 | 240 | 237 | 234 | 231 | 228 | 225 | 222 | 219 | 232 | 229 | 226 | 223 | 220 | 217 |
27 | Tirunelveli | 299 | 296 | 292 | 288 | 284 | 281 | 277 | 273 | 270 | 285 | 282 | 278 | 275 | 271 | 267 |
28 | Tiruppur | 283 | 280 | 276 | 273 | 269 | 266 | 262 | 259 | 255 | 270 | 267 | 263 | 260 | 257 | 253 |
29 | Thiruvanamalai | 275 | 272 | 268 | 265 | 261 | 258 | 255 | 251 | 248 | 263 | 259 | 256 | 253 | 249 | 246 |
30 | Vellore | 311 | 307 | 303 | 300 | 296 | 292 | 288 | 284 | 281 | 297 | 293 | 289 | 285 | 282 | 278 |
31 | Villupuram | 303 | 299 | 296 | 292 | 288 | 284 | 281 | 277 | 273 | 289 | 286 | 282 | 278 | 275 | 271 |
32 | Virudhunagar | 251 | 248 | 245 | 242 | 239 | 236 | 232 | 230 | 227 | 240 | 236 | 233 | 230 | 228 | 225 |
S. No | District | Without Impact | With Impact | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | ||
1 | Ariyalur | 103 | 102 | 100 | 99 | 98 | 97 | 95 | 94 | 93 | 98 | 97 | 96 | 95 | 93 | 92 |
2 | Chennai | 161 | 159 | 157 | 155 | 153 | 151 | 149 | 147 | 145 | 154 | 152 | 150 | 148 | 146 | 144 |
3 | Coimbatore | 151 | 149 | 147 | 145 | 143 | 142 | 140 | 138 | 136 | 144 | 142 | 140 | 139 | 137 | 135 |
4 | Cuddalore | 143 | 141 | 139 | 138 | 136 | 134 | 132 | 131 | 129 | 136 | 135 | 133 | 131 | 130 | 128 |
5 | Dharmapuri | 117 | 116 | 114 | 113 | 111 | 110 | 108 | 107 | 106 | 112 | 110 | 109 | 107 | 106 | 105 |
6 | Dindigul | 129 | 127 | 126 | 124 | 123 | 121 | 119 | 118 | 116 | 123 | 122 | 120 | 118 | 117 | 115 |
7 | Erode | 131 | 129 | 128 | 126 | 124 | 123 | 121 | 120 | 118 | 125 | 123 | 122 | 120 | 119 | 117 |
8 | Kanchipuram | 155 | 153 | 151 | 149 | 147 | 145 | 143 | 142 | 140 | 148 | 146 | 144 | 142 | 140 | 139 |
9 | Kanniyakumari | 123 | 121 | 120 | 118 | 117 | 115 | 114 | 112 | 111 | 117 | 116 | 114 | 113 | 111 | 110 |
10 | Krur | 105 | 104 | 102 | 101 | 100 | 99 | 97 | 96 | 95 | 100 | 99 | 98 | 96 | 95 | 94 |
11 | Krishnagiri | 123 | 121 | 120 | 118 | 117 | 115 | 114 | 112 | 111 | 117 | 116 | 114 | 113 | 111 | 110 |
12 | Madurai | 149 | 147 | 145 | 143 | 142 | 140 | 138 | 136 | 134 | 142 | 140 | 138 | 137 | 135 | 133 |
13 | Namakkal | 121 | 120 | 118 | 116 | 115 | 114 | 112 | 111 | 109 | 114 | 112 | 111 | 109 | 108 | 106 |
14 | Nagapattinam | 119 | 118 | 116 | 115 | 113 | 112 | 110 | 109 | 107 | 115 | 114 | 113 | 111 | 110 | 108 |
15 | Permbalur | 101 | 100 | 98 | 97 | 96 | 95 | 94 | 92 | 91 | 96 | 95 | 94 | 93 | 92 | 90 |
16 | Pudukottai | 119 | 118 | 116 | 115 | 113 | 112 | 110 | 109 | 107 | 114 | 112 | 111 | 109 | 108 | 106 |
17 | Ramanathapuram | 111 | 110 | 108 | 107 | 105 | 104 | 103 | 101 | 100 | 106 | 105 | 103 | 102 | 101 | 99 |
18 | Salem | 151 | 149 | 147 | 145 | 143 | 142 | 140 | 138 | 136 | 144 | 142 | 140 | 139 | 137 | 135 |
19 | Sivaganga | 111 | 110 | 108 | 107 | 105 | 104 | 103 | 101 | 100 | 106 | 105 | 103 | 102 | 101 | 99 |
20 | Thanjavur | 133 | 131 | 130 | 128 | 126 | 125 | 123 | 122 | 120 | 127 | 125 | 124 | 122 | 121 | 119 |
21 | The Nilgiris | 103 | 102 | 100 | 99 | 98 | 97 | 95 | 94 | 93 | 93 | 91 | 89 | 87 | 85 | 84 |
22 | Theni | 109 | 108 | 106 | 105 | 104 | 102 | 101 | 100 | 98 | 104 | 103 | 101 | 100 | 99 | 98 |
23 | Tiruchy | 145 | 143 | 141 | 140 | 138 | 136 | 134 | 132 | 131 | 98 | 96 | 94 | 92 | 90 | 89 |
24 | Thiruvallur | 153 | 151 | 149 | 147 | 145 | 143 | 142 | 140 | 138 | 104 | 103 | 101 | 100 | 99 | 98 |
25 | Thiruvarur | 109 | 108 | 106 | 105 | 104 | 102 | 101 | 100 | 98 | 104 | 103 | 101 | 100 | 99 | 98 |
26 | Thoothukodi | 121 | 120 | 118 | 116 | 115 | 114 | 112 | 111 | 109 | 115 | 114 | 113 | 111 | 110 | 108 |
27 | Tirunelveli | 149 | 147 | 145 | 143 | 142 | 140 | 138 | 136 | 134 | 142 | 140 | 138 | 137 | 135 | 133 |
28 | Tiruppur | 141 | 139 | 137 | 136 | 134 | 132 | 131 | 129 | 127 | 135 | 133 | 131 | 129 | 128 | 126 |
29 | Thiruvanamalai | 137 | 135 | 134 | 132 | 130 | 128 | 127 | 125 | 124 | 131 | 129 | 127 | 126 | 124 | 123 |
30 | Vellore | 155 | 153 | 151 | 149 | 147 | 145 | 143 | 142 | 140 | 148 | 146 | 144 | 142 | 140 | 139 |
31 | Villupuram | 151 | 149 | 147 | 145 | 143 | 142 | 140 | 138 | 136 | 144 | 142 | 140 | 139 | 137 | 135 |
32 | Virudhunagar | 125 | 123 | 122 | 120 | 119 | 117 | 116 | 114 | 113 | 119 | 118 | 116 | 115 | 113 | 112 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muniyandi, M.; Nagarajan, K.; Mathiyazhagan, K.; Giridharan, P.; Thiruvengadam, K.; Krishnan, R. The Predicted Potential Impact of COVID-19 Pandemic on Tuberculosis Epidemic in Tamil Nadu, South India. Trop. Med. Infect. Dis. 2024, 9, 12. https://doi.org/10.3390/tropicalmed9010012
Muniyandi M, Nagarajan K, Mathiyazhagan K, Giridharan P, Thiruvengadam K, Krishnan R. The Predicted Potential Impact of COVID-19 Pandemic on Tuberculosis Epidemic in Tamil Nadu, South India. Tropical Medicine and Infectious Disease. 2024; 9(1):12. https://doi.org/10.3390/tropicalmed9010012
Chicago/Turabian StyleMuniyandi, Malaisamy, Karikalan Nagarajan, Kavi Mathiyazhagan, Prathiksha Giridharan, Kannan Thiruvengadam, and Rajendran Krishnan. 2024. "The Predicted Potential Impact of COVID-19 Pandemic on Tuberculosis Epidemic in Tamil Nadu, South India" Tropical Medicine and Infectious Disease 9, no. 1: 12. https://doi.org/10.3390/tropicalmed9010012