The Predicted Potential Impact of COVID-19 Pandemic on Tuberculosis Epidemic in Tamil Nadu, South India
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Population
2.3. Study Design
2.4. Input Parameter
2.5. Data Collection
2.5.1. TB Prevalence
2.5.2. TB Incidence
2.5.3. COVID-19
2.5.4. Mortality
2.5.5. Mask Utilization
2.6. Data Analysis
2.7. SEIR Model for TB Prevalence
2.8. Impact of COVID-19 on Prevalence and Incidence
2.9. SEIR Model for TB Incidence
3. Results
3.1. SEIR Model Values for with and without the Impact of COVID-19
3.2. Prevalence of TB without the Impact of COVID-19
3.3. Prevalence of TB with the Impact of COVID-19
3.4. Incidence of TB without the Impact of COVID-19
3.5. Incidence of TB with the Impact of COVID-19
3.6. District-Wise Prevalence of TB without the Impact of COVID-19
3.7. District-Wise Prevalence of TB with the Impact of COVID-19
3.8. District-Wise Incidence of TB without the Impact of COVID-19
3.9. District-Wise Incidence of TB with the Impact of COVID-19
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheval, S.; Mihai Adamescu, C.; Georgiadis, T.; Herrnegger, M.; Piticar, A.; Legates, D.R. Observed and Potential Impacts of the COVID-19 Pandemic on the Environment. Int. J. Environ. Res. Public Health 2020, 17, 4140. [Google Scholar] [CrossRef]
- World Health Organization. Global Tuberculosis Report—2019. Geneva. Available online: https://iris.who.int/bitstream/handle/10665/329368/9789241565714-eng.pdf?sequence=19 (accessed on 26 April 2022).
- Raviglione, M.; Sulis, G. Tuberculosis 2015: Burden, challenges and strategy for control and elimination. Infect. Dis. Rep. 2016, 8, 2016. [Google Scholar] [CrossRef]
- Lönnroth, K.; Williams, B.G.; Cegielski, P.; Dye, C. A consistent log-linear relationship between tuberculosis incidence and body mass index. Int. J. Epidemiol. 2010, 39, 149–155. [Google Scholar] [CrossRef]
- Lee, Y.; Raviglione, M.C.; Flahault, A. Use of Digital Technology to Enhance Tuberculosis Control: Scoping Review. J. Med. Internet Res. 2020, 22, e15727. [Google Scholar] [CrossRef]
- World Health Organization. Global Tuberculosis Report 2021; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- World Health Organization Regional Office for Europe. Rapid Communication on the Role of the GeneXpertt® Platform for Rapid Molecular Testing for SARS-COV-2 in the WHO European Region (2020); WHO Regional Office for Europe: Copenhagen, Denmark, 2020. [Google Scholar]
- Adepoju, P. Tuberculosis and HIV responses threatened by COVID-19. Lancet HIV 2020, 7, e319–e320. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.; Mak, M.K. Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates. Appl. Math. Comput. 2014, 236, 184–194. [Google Scholar] [CrossRef]
- Saha, S.; Kumar, A.; Saurabh, K.; Shankar, S.H.; Kashyap, A.; Nischal, N.; Biswas, A.; Wig, N. Current status of treatment of latent tuberculosis infection in India. Indian J. Med. Sci. 2019, 71, 54–59. [Google Scholar] [CrossRef]
- Knomea Tamil Nadu. Birth-Rate. Available online: https://knoema.com/atlas/India/ranks/Birth-rate (accessed on 4 April 2022).
- ICMR-National Institute for Research in Tuberculosis (NIRT), Chennai. National TB Prevalence Survey (2019–2022). 2021. Available online: https://tbcindia.gov.in/WriteReadData/l892s/25032022161020NATBPSReport.pdf (accessed on 1 April 2021).
- Dhanaraj, B.; Papanna, M.K.; Adinarayanan, S.; Vedachalam, C.; Sundaram, V.; Shanmugam, S.; Sekar, G.; Menon, P.A.; Wares, F.; Swaminathan, S. Prevalence and risk factors for adult pulmonary tuberculosis in a metropolitan city of South India. PLoS ONE 2015, 10, e0124260. [Google Scholar] [CrossRef]
- Dolla, C.K.; Dhanaraj, B.; Chandrasekaran, P.; Selvaraj, S.; Menon, P.A.; Thiruvengadam, K.; Krishnan, R.; Mondal, R.; Malaisamy, M.; Marinalk, S.B.; et al. Prevalence of bacteriologically confirmed pulmonary tuberculosis and associated risk factors: A community survey in Thirvallur District, south India. PLoS ONE 2021, 16, e0247245. [Google Scholar] [CrossRef]
- Gopi, P.G.; Subramani, R.; Radhakrishna, S.; Kolappan, C.; Sadacharam, K.; Devi, T.S.; Frieden, T.R.; Narayanan, P.R. A baseline survey of the prevalence of tuberculosis in a community in south India at the commencement of a DOTS programme. Int. J. Tuberc. Lung Dis. 2003, 7, 1154–1162. [Google Scholar]
- Kolappan, C.; Subramani, R.; Radhakrishna, S.; Santha, T.; Wares, F.; Baskaran, D.; Selvakumar, N.; Narayanan, P.R. Trends in the prevalence of pulmonary tuberculosis over a period of seven and half years in a rural community in south India with DOTS. Indian J. Tuberc. 2013, 60, 168–176. [Google Scholar] [PubMed]
- Mazumdar, S.; Satyanarayana, S.; Pai, M. Self-reported tuberculosis in India: Evidence from NFHS-4. BMJ Global Health 2019, 4, e001371. [Google Scholar] [CrossRef] [PubMed]
- Jeyashree, K.; Thangaraj, J.; Rade, K.; Modi, B.; Selvaraju, S.; Velusamy, S.; Akhil, S.; Vijayageetha, M.; Rani, D.S.; Sabarinathan, R.; et al. Estimation of tuberculosis incidence at subnational level using three methods to monitor progress towards ending TB in India 2015–2020. BMJ Open 2022, 12, e060197. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, S.; Das, S.; Garg, R.; Hari, L.; Rao, V.B.; Frieden, T.R.; Narayanan, P.R. Molecular epidemiology of tuberculosis in a rural area of high prevalence in South India: Implications for disease control and prevention. J. Clin. Microbiol. 2002, 40, 4785–4788. [Google Scholar] [CrossRef] [PubMed]
- National Health Mission-TN. Stop Corona TN (Media Bulletin). National Health Mission-Tamil Nadu, Health and Family Welfare Department, Government of Tamil Nadu. Available online: https://stopcorona.tn.gov.in/ (accessed on 13 April 2022).
- Statista. Rural and Urban Death Rates of India by States. Available online: https://www.statista.com/statistics/616282/rural-death-rate-by-state-and-union-territory-india (accessed on 13 April 2022).
- Singh, M.; Mynak, M.; Kumar, L.; Mathew, J.; Jindal, S. Prevalence and risk factors for transmission of infection among children in household contact with adults having pulmonary tuberculosis. Arch. Dis. Child 2005, 90, 624–628. [Google Scholar] [CrossRef] [PubMed]
- Dharmadhikari, A.S.; Mphahlele, M.; Stoltz, A.; Venter, K.; Mathebula, R.; Masotla, T.; Lubbe, W.; Pagano, M.; First, M.; Jensen, P.A.; et al. Surgical face masks worn by patients with multidrug-resistant tuberculosis: Impact on infectivity of air on a hospital ward. Am. J. Respir. Crit. Care Med. 2012, 185, 1104–1109. [Google Scholar] [CrossRef]
- Aggarwal, A.N.; Agarwal, R.; Dhooria, S.; Prasad, K.T.; Sehgal, I.S.; Muthu, V. Impact of COVID-19 pandemic on tuberculosis notifications in India. Lung India 2022, 39, 89–91. [Google Scholar] [CrossRef]
- Zamparelli, S.S.; Mormile, M.; Zamparelli, A.S.; Guarino, A.; Parrella, R.; Bocchino, M. Clinical impact of COVID-19 on tuberculosis. Infez. Med. 2022, 30, 495–500. [Google Scholar]
- Tovar, M.; Aleta, A.; Sanz, J.; Moreno, Y. Modeling the impact of COVID-19 on future tuberculosis burden. Commun. Med. 2022, 2, 77. [Google Scholar] [CrossRef]
- World Health Organization. Tuberculosis Deaths and Disease Increase during the COVID-19 Pandemic. World Health Organization, Geneva 2022. Available online: https://www.who.int/news/item/27-10-2022-tuberculosis-deaths-and-disease-increase-during-the-covid-19-pandemic (accessed on 14 April 2022).
- Subramanian, M. Policy Note 2023–2024, Demand No. 19: Makkalai Thedi Maruthuvam; Health and Family Welfare Department, Government of Tamil Nadu: Chennai, India, 2023; pp. 334–338. Available online: https://cms.tn.gov.in/sites/default/files/documents/hfw_e_pn_2023_24.pdf (accessed on 14 April 2022).
- Dolla, C.; Padmapriyadarsini, C.; Pradeep Menon, A.; Muniyandi, M.; Adinarayanan, S.; Sekar, G.; Kavitha, D.; Tripathy, S.P.; Swaminathan, S. Tuberculosis among the homeless in Chennai city, South India. Trans. R. Soc. Trop. Med. Hyg. 2017, 111, 479–481. [Google Scholar] [CrossRef]
- Thomas, B.E.; Adinarayanan, S.; Manogaran, C.; Swaminathan, S. Pulmonary tuberculosis among tribals in India: A systematic review & meta-analysis. Indian J. Med. Res. 2015, 141, 614–623. [Google Scholar] [PubMed]
- Thomas, B.E.; Thiruvengadam, K.; Vedhachalam, C.; Rao, V.G.; Vijayachari, P.; Rajiv, Y.; V, R.; Bansal, A.K.; Indira Krishna, A.K.; Joseph, A.; et al. Prevalence of pulmonary tuberculosis among the tribal populations in India. PLoS ONE 2021, 16, e0251519. [Google Scholar] [CrossRef] [PubMed]
- Indira Krishnan, A.K.; Joseph, A. Prevalence of tuberculosis among tribes aged 15 and above in Tamil Nadu. A community based cross-sectional study. Indian J. Tuberc. 2020, 67, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Central TB Division. National Strategic Plan for Tuberculosis Elimination 2017–2025; Central TB Division, Ministry of Health with Family Welfare, Government of India: New Delhi, India, 2017. [Google Scholar]
- Bhargava, A.; Shewade, H.D. The potential impact of the COVID-19 response related lockdown on TB incidence and mortality in India. Indian J. Tuberc. 2020, 67, S139–S146. [Google Scholar] [CrossRef]
- Khanna, A.; Saha, R.; Ahmad, N. National TB elimination programme—What has changed. Indian J. Med. Microbiol. 2023, 42, 103–107. [Google Scholar] [CrossRef]
- Cilloni, L.; Fu, H.; Vesga, J.F.; Dowdy, D.; Pretorius, C.; Ahmedov, S.; Nair, S.A.; Mosneaga, A.; Masini, E.; Sahu, S.; et al. The potential impact of the COVID-19 pandemic on the tuberculosis epidemic a modelling analysis. EClinicalMedicine 2020, 28, 100603. [Google Scholar] [CrossRef]
Parameter | Model Parameter Name | Values | References |
---|---|---|---|
α | Uninfected to Latent Progression | 0.33 | 8 |
New susceptible | 0.0123 | 9 | |
β | Uninfected to Active infection | 0.00301 | 10 |
λ | Latent Progression to Active infection | 0.005 | 9 |
δ | Active infection to Treatment | 0.96 | 11 |
γ | Treatment to Active infection | 0.102 | 12 |
ε | Treatment to Recovered | 0.83 | 12 |
θ | Recovered to Uninfected | 0.99 | Assumption |
All-cause mortality | 0.009 | 10 | |
1 | TB mortality | 0.059 | 12 |
Lockdown | 0.005 | Assumption | |
1 | Mask Utilization | 0.005 | Assumption |
SEIR Model Values for without the Impact of COVID-19 | |||||||
Year | Population > 15 | Susceptible | LTBI | Active TB | Treatment | Recovery | Mortality |
2017 | 57,068,340 | 39,677,931 | 17,138,298 | 85,543 | 91,614 | 74,954 | 10,440 |
2018 | 57,342,263 | 40,097,166 | 16,993,397 | 84,842 | 91,262 | 75,596 | 10,390 |
2019 | 57,616,352 | 40,516,263 | 16,849,722 | 84,132 | 90,671 | 75,565 | 10,313 |
2020 | 57,890,625 | 40,934,751 | 16,707,262 | 83,423 | 89,980 | 75,209 | 10,231 |
2021 | 58,165,093 | 41,352,415 | 16,566,006 | 82,718 | 89,251 | 74,703 | 10,146 |
2022 | 58,439,764 | 41,769,162 | 16,425,945 | 82,019 | 88,510 | 74,129 | 10,061 |
2023 | 58,714,646 | 42,184,958 | 16,287,068 | 81326 | 87,767 | 73,528 | 9976 |
2024 | 58,989,745 | 42,599,798 | 16,149,365 | 80,638 | 87,027 | 72,917 | 9892 |
2025 | 59,265,069 | 43,013,688 | 16,012,827 | 79,956 | 86,292 | 72,305 | 9809 |
SEIR Model Values for with the Impact of COVID-19 | |||||||
Year | Population > 15 | Susceptible | LTBI | Active TB | Treatment | Recovery | Mortality |
2020 | 57,889,810 | 40,934,731 | 16,707,232 | 82,923 | 89,769 | 75,156 | 10,242 |
2021 | 58,163,505 | 41,352,253 | 16,565,917 | 82,063 | 88,783 | 74,490 | 10,080 |
2022 | 58,437,425 | 41,768,684 | 16,425,787 | 81,318 | 87,884 | 73,752 | 9983 |
2023 | 58,711,568 | 42,184,018 | 16,286,840 | 80,614 | 87,063 | 73,034 | 9893 |
2024 | 58,985,937 | 42,598,300 | 16,149,067 | 79,927 | 86,289 | 72,354 | 9807 |
2025 | 59,260,535 | 43,011,578 | 16,012,459 | 79,249 | 85,542 | 71,707 | 9723 |
Year | (Without COVID-19) | (With COVID-19) | Difference Rate (%) | ||
---|---|---|---|---|---|
Prevalence/100,000 Population | Reduction (%) | Prevalence/100,000 Population | Reduction (%) | ||
2020 | 289 (283–296) | 1.327 | 289 (283–294) | 1.629 | 0.298 |
2021 | 286 (279–292) | 1.329 | 284 (278–289) | 1.732 | 0.697 |
2022 | 282 (276–288) | 1.328 | 280 (274–285) | 1.458 | 0.826 |
2023 | 278 (272–285) | 1.327 | 276 (270–281) | 1.368 | 0.867 |
2024 | 275 (268–281) | 1.325 | 272 (267–278) | 1.338 | 0.880 |
2025 | 271 (265–277) | 1.323 | 269 (263–274) | 1.327 | 0.884 |
Year | (Without COVID-19) | (With COVID-19) | Difference Rate (%) | ||
---|---|---|---|---|---|
Incidence/100,000 Population | Reduction (%) | Incidence/100,000 Population | Reduction (%) | ||
2020 | 144 (141–147) | 1.312 | 143 (141–146) | 1.902 | 0.598 |
2021 | 142 (139–145) | 1.312 | 141 (139–144) | 1.503 | 0.790 |
2022 | 140 (137–143) | 1.311 | 139 (137–142) | 1.372 | 0.851 |
2023 | 139 (135–142) | 1.310 | 137 (135–140) | 1.329 | 0.870 |
2024 | 137 (134–140) | 1.308 | 136 (133–138) | 1.313 | 0.876 |
2025 | 135 (132–138) | 1.306 | 134 (131–136) | 1.307 | 0.877 |
S. No | District | Without Impact | With Impact | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | ||
1 | Ariyalur | 207 | 204 | 202 | 199 | 197 | 194 | 192 | 189 | 187 | 197 | 195 | 192 | 190 | 188 | 185 |
2 | Chennai | 323 | 319 | 315 | 311 | 307 | 303 | 299 | 295 | 291 | 308 | 304 | 300 | 296 | 293 | 289 |
3 | Coimbatore | 303 | 299 | 296 | 292 | 288 | 284 | 281 | 277 | 273 | 289 | 286 | 282 | 278 | 275 | 271 |
4 | Cuddalore | 287 | 284 | 280 | 276 | 273 | 269 | 266 | 262 | 259 | 274 | 270 | 267 | 264 | 260 | 257 |
5 | Dharmapuri | 235 | 232 | 229 | 226 | 223 | 220 | 218 | 215 | 212 | 224 | 221 | 219 | 216 | 213 | 210 |
6 | Dindigul | 259 | 256 | 253 | 249 | 246 | 243 | 240 | 237 | 234 | 247 | 244 | 241 | 238 | 235 | 232 |
7 | Erode | 263 | 260 | 257 | 253 | 250 | 247 | 244 | 240 | 237 | 251 | 248 | 245 | 241 | 238 | 235 |
8 | Kanchipuram | 311 | 307 | 303 | 300 | 296 | 292 | 288 | 284 | 281 | 297 | 293 | 289 | 285 | 282 | 278 |
9 | Kanniyakumari | 247 | 244 | 241 | 238 | 235 | 232 | 229 | 226 | 223 | 236 | 233 | 230 | 227 | 224 | 221 |
10 | Karur | 211 | 208 | 206 | 203 | 200 | 198 | 195 | 193 | 190 | 201 | 199 | 196 | 194 | 191 | 189 |
11 | Krishnagiri | 247 | 244 | 241 | 238 | 235 | 232 | 229 | 226 | 223 | 236 | 233 | 230 | 227 | 224 | 221 |
12 | Madurai | 299 | 296 | 292 | 288 | 284 | 281 | 277 | 273 | 270 | 285 | 282 | 278 | 275 | 271 | 267 |
13 | Namakkal | 243 | 240 | 237 | 234 | 231 | 228 | 225 | 222 | 219 | 228 | 225 | 222 | 219 | 217 | 214 |
14 | Nagapattinam | 239 | 236 | 233 | 230 | 227 | 224 | 221 | 219 | 216 | 232 | 229 | 226 | 223 | 220 | 217 |
15 | Permbalur | 203 | 200 | 198 | 195 | 193 | 190 | 188 | 185 | 183 | 194 | 191 | 189 | 186 | 184 | 182 |
16 | Pudukottai | 239 | 236 | 233 | 230 | 227 | 224 | 221 | 219 | 216 | 228 | 225 | 222 | 219 | 217 | 214 |
17 | Ramanathapuram | 223 | 220 | 217 | 215 | 212 | 209 | 206 | 204 | 201 | 213 | 210 | 207 | 205 | 202 | 200 |
18 | Salem | 303 | 299 | 296 | 292 | 288 | 284 | 281 | 277 | 273 | 289 | 286 | 282 | 278 | 275 | 271 |
19 | Sivaganga | 223 | 220 | 217 | 215 | 212 | 209 | 206 | 204 | 201 | 213 | 210 | 207 | 205 | 202 | 200 |
20 | Thanjavur | 267 | 264 | 260 | 257 | 254 | 251 | 247 | 244 | 241 | 255 | 252 | 248 | 245 | 242 | 239 |
21 | The Nilgiris | 207 | 204 | 202 | 199 | 197 | 194 | 192 | 189 | 187 | 186 | 182 | 179 | 175 | 172 | 168 |
22 | Theni | 219 | 216 | 213 | 211 | 208 | 205 | 203 | 200 | 198 | 209 | 206 | 204 | 201 | 198 | 196 |
23 | Tiruchy | 291 | 288 | 284 | 280 | 277 | 273 | 270 | 266 | 263 | 197 | 193 | 189 | 185 | 182 | 178 |
24 | Thiruvallur | 307 | 303 | 300 | 296 | 292 | 288 | 284 | 281 | 277 | 209 | 206 | 204 | 201 | 198 | 196 |
25 | Thiruvarur | 219 | 216 | 213 | 211 | 208 | 205 | 203 | 200 | 198 | 209 | 206 | 204 | 201 | 198 | 196 |
26 | Thoothukodi | 243 | 240 | 237 | 234 | 231 | 228 | 225 | 222 | 219 | 232 | 229 | 226 | 223 | 220 | 217 |
27 | Tirunelveli | 299 | 296 | 292 | 288 | 284 | 281 | 277 | 273 | 270 | 285 | 282 | 278 | 275 | 271 | 267 |
28 | Tiruppur | 283 | 280 | 276 | 273 | 269 | 266 | 262 | 259 | 255 | 270 | 267 | 263 | 260 | 257 | 253 |
29 | Thiruvanamalai | 275 | 272 | 268 | 265 | 261 | 258 | 255 | 251 | 248 | 263 | 259 | 256 | 253 | 249 | 246 |
30 | Vellore | 311 | 307 | 303 | 300 | 296 | 292 | 288 | 284 | 281 | 297 | 293 | 289 | 285 | 282 | 278 |
31 | Villupuram | 303 | 299 | 296 | 292 | 288 | 284 | 281 | 277 | 273 | 289 | 286 | 282 | 278 | 275 | 271 |
32 | Virudhunagar | 251 | 248 | 245 | 242 | 239 | 236 | 232 | 230 | 227 | 240 | 236 | 233 | 230 | 228 | 225 |
S. No | District | Without Impact | With Impact | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | ||
1 | Ariyalur | 103 | 102 | 100 | 99 | 98 | 97 | 95 | 94 | 93 | 98 | 97 | 96 | 95 | 93 | 92 |
2 | Chennai | 161 | 159 | 157 | 155 | 153 | 151 | 149 | 147 | 145 | 154 | 152 | 150 | 148 | 146 | 144 |
3 | Coimbatore | 151 | 149 | 147 | 145 | 143 | 142 | 140 | 138 | 136 | 144 | 142 | 140 | 139 | 137 | 135 |
4 | Cuddalore | 143 | 141 | 139 | 138 | 136 | 134 | 132 | 131 | 129 | 136 | 135 | 133 | 131 | 130 | 128 |
5 | Dharmapuri | 117 | 116 | 114 | 113 | 111 | 110 | 108 | 107 | 106 | 112 | 110 | 109 | 107 | 106 | 105 |
6 | Dindigul | 129 | 127 | 126 | 124 | 123 | 121 | 119 | 118 | 116 | 123 | 122 | 120 | 118 | 117 | 115 |
7 | Erode | 131 | 129 | 128 | 126 | 124 | 123 | 121 | 120 | 118 | 125 | 123 | 122 | 120 | 119 | 117 |
8 | Kanchipuram | 155 | 153 | 151 | 149 | 147 | 145 | 143 | 142 | 140 | 148 | 146 | 144 | 142 | 140 | 139 |
9 | Kanniyakumari | 123 | 121 | 120 | 118 | 117 | 115 | 114 | 112 | 111 | 117 | 116 | 114 | 113 | 111 | 110 |
10 | Krur | 105 | 104 | 102 | 101 | 100 | 99 | 97 | 96 | 95 | 100 | 99 | 98 | 96 | 95 | 94 |
11 | Krishnagiri | 123 | 121 | 120 | 118 | 117 | 115 | 114 | 112 | 111 | 117 | 116 | 114 | 113 | 111 | 110 |
12 | Madurai | 149 | 147 | 145 | 143 | 142 | 140 | 138 | 136 | 134 | 142 | 140 | 138 | 137 | 135 | 133 |
13 | Namakkal | 121 | 120 | 118 | 116 | 115 | 114 | 112 | 111 | 109 | 114 | 112 | 111 | 109 | 108 | 106 |
14 | Nagapattinam | 119 | 118 | 116 | 115 | 113 | 112 | 110 | 109 | 107 | 115 | 114 | 113 | 111 | 110 | 108 |
15 | Permbalur | 101 | 100 | 98 | 97 | 96 | 95 | 94 | 92 | 91 | 96 | 95 | 94 | 93 | 92 | 90 |
16 | Pudukottai | 119 | 118 | 116 | 115 | 113 | 112 | 110 | 109 | 107 | 114 | 112 | 111 | 109 | 108 | 106 |
17 | Ramanathapuram | 111 | 110 | 108 | 107 | 105 | 104 | 103 | 101 | 100 | 106 | 105 | 103 | 102 | 101 | 99 |
18 | Salem | 151 | 149 | 147 | 145 | 143 | 142 | 140 | 138 | 136 | 144 | 142 | 140 | 139 | 137 | 135 |
19 | Sivaganga | 111 | 110 | 108 | 107 | 105 | 104 | 103 | 101 | 100 | 106 | 105 | 103 | 102 | 101 | 99 |
20 | Thanjavur | 133 | 131 | 130 | 128 | 126 | 125 | 123 | 122 | 120 | 127 | 125 | 124 | 122 | 121 | 119 |
21 | The Nilgiris | 103 | 102 | 100 | 99 | 98 | 97 | 95 | 94 | 93 | 93 | 91 | 89 | 87 | 85 | 84 |
22 | Theni | 109 | 108 | 106 | 105 | 104 | 102 | 101 | 100 | 98 | 104 | 103 | 101 | 100 | 99 | 98 |
23 | Tiruchy | 145 | 143 | 141 | 140 | 138 | 136 | 134 | 132 | 131 | 98 | 96 | 94 | 92 | 90 | 89 |
24 | Thiruvallur | 153 | 151 | 149 | 147 | 145 | 143 | 142 | 140 | 138 | 104 | 103 | 101 | 100 | 99 | 98 |
25 | Thiruvarur | 109 | 108 | 106 | 105 | 104 | 102 | 101 | 100 | 98 | 104 | 103 | 101 | 100 | 99 | 98 |
26 | Thoothukodi | 121 | 120 | 118 | 116 | 115 | 114 | 112 | 111 | 109 | 115 | 114 | 113 | 111 | 110 | 108 |
27 | Tirunelveli | 149 | 147 | 145 | 143 | 142 | 140 | 138 | 136 | 134 | 142 | 140 | 138 | 137 | 135 | 133 |
28 | Tiruppur | 141 | 139 | 137 | 136 | 134 | 132 | 131 | 129 | 127 | 135 | 133 | 131 | 129 | 128 | 126 |
29 | Thiruvanamalai | 137 | 135 | 134 | 132 | 130 | 128 | 127 | 125 | 124 | 131 | 129 | 127 | 126 | 124 | 123 |
30 | Vellore | 155 | 153 | 151 | 149 | 147 | 145 | 143 | 142 | 140 | 148 | 146 | 144 | 142 | 140 | 139 |
31 | Villupuram | 151 | 149 | 147 | 145 | 143 | 142 | 140 | 138 | 136 | 144 | 142 | 140 | 139 | 137 | 135 |
32 | Virudhunagar | 125 | 123 | 122 | 120 | 119 | 117 | 116 | 114 | 113 | 119 | 118 | 116 | 115 | 113 | 112 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muniyandi, M.; Nagarajan, K.; Mathiyazhagan, K.; Giridharan, P.; Thiruvengadam, K.; Krishnan, R. The Predicted Potential Impact of COVID-19 Pandemic on Tuberculosis Epidemic in Tamil Nadu, South India. Trop. Med. Infect. Dis. 2024, 9, 12. https://doi.org/10.3390/tropicalmed9010012
Muniyandi M, Nagarajan K, Mathiyazhagan K, Giridharan P, Thiruvengadam K, Krishnan R. The Predicted Potential Impact of COVID-19 Pandemic on Tuberculosis Epidemic in Tamil Nadu, South India. Tropical Medicine and Infectious Disease. 2024; 9(1):12. https://doi.org/10.3390/tropicalmed9010012
Chicago/Turabian StyleMuniyandi, Malaisamy, Karikalan Nagarajan, Kavi Mathiyazhagan, Prathiksha Giridharan, Kannan Thiruvengadam, and Rajendran Krishnan. 2024. "The Predicted Potential Impact of COVID-19 Pandemic on Tuberculosis Epidemic in Tamil Nadu, South India" Tropical Medicine and Infectious Disease 9, no. 1: 12. https://doi.org/10.3390/tropicalmed9010012
APA StyleMuniyandi, M., Nagarajan, K., Mathiyazhagan, K., Giridharan, P., Thiruvengadam, K., & Krishnan, R. (2024). The Predicted Potential Impact of COVID-19 Pandemic on Tuberculosis Epidemic in Tamil Nadu, South India. Tropical Medicine and Infectious Disease, 9(1), 12. https://doi.org/10.3390/tropicalmed9010012