Subcutaneous, Oral, and Intranasal Immunization of BALB/c Mice with Leishmania infantum K39 Antigen Induces Non-Protective Humoral Immune Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. rK39-HFBI Protein Expression and Purification
2.2. Mice Immunization
2.3. ELISA for Analysis of the Antibody Production Kinetics
2.4. Leishmania Infantum Infection
2.5. Parasite Burden
2.6. Statistical Analysis
2.7. Ethical Statements
3. Results
3.1. Antibody Production Kinetics
3.2. Parasite Burden
4. Discussion
- The use of a semi-purified fraction of the antigen produced in plants;
- The use of the K39 antigen fused to the partner protein HFBI;
- The use of Quillaja saponaria saponins as an adjuvant.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodrigues, V.; Cordeiro-Da-Silva, A.; Laforge, M.; Silvestre, R.; Estaquier, J. Regulation of immunity during visceral Leishmania infection. Parasites Vectors 2016, 9, 118. [Google Scholar] [CrossRef]
- Kumar, R.; Chauhan, S.B.; Ng, S.S.; Sundar, S.; Engwerda, C.R. Immune Checkpoint Targets for Host-Directed Therapy to Prevent and Treat Leishmaniasis. Front. Immunol. 2017, 8, 1492. [Google Scholar] [CrossRef] [PubMed]
- Ready, P.D. Epidemiology of visceral leishmaniasis. Clin. Epidemiol. 2014, 6, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Alves, F.; Bilbe, G.; Blesson, S.; Goyal, V.; Monnerat, S.; Mowbray, C.; Ouattara, G.M.; Pécoul, B.; Rijal, S.; Rode, J.; et al. Recent Development of Visceral Leishmaniasis Treatments: Successes, Pitfalls, and Perspectives. Clin. Microbiol. Rev. 2018, 31, e00048-18. [Google Scholar] [CrossRef]
- van Griensven, J.; Diro, E. Visceral Leishmaniasis: Recent Advances in Diagnostics and Treatment Regimens. Infect. Dis. Clin. N. Am. 2019, 33, 79–99. [Google Scholar] [CrossRef]
- World Health Organization. Global Leishmaniasis Surveillance, 2017–2018, and First Report on 5 Additional Indicators. Wkly. Epidemiol. Rec. 2020, 95, 265–279. [Google Scholar]
- World Health Organization. Ending the Neglect to Attain the Sustainable Development Goals: A Road Map for Neglected Tropical Diseases 2021–2030; World Health Organization: Geneva, Switzerland, 2020; ISBN 978-92-4-001035-2. [Google Scholar]
- Alvar, J.; Boer, M.D.; Dagne, D.A. Towards the elimination of visceral leishmaniasis as a public health problem in east Africa: Reflections on an enhanced control strategy and a call for action. Lancet Glob. Health 2021, 9, e1763–e1769. [Google Scholar] [CrossRef]
- Elmahallawy, E.K.; Alkhaldi, A.A.M.; Saleh, A.A. Host immune response against leishmaniasis and parasite persistence strategies: A review and assessment of recent research. BioMed. Pharmacother. 2021, 139, 111671. [Google Scholar] [CrossRef]
- Hosein, S.; Blake, D.P.; Solano-Gallego, L. Insights on adaptive and innate immunity in canine leishmaniosis. Parasitology 2017, 144, 95–115. [Google Scholar] [CrossRef]
- Silva-Barrios, S.; Stäger, S. Hypergammaglobulinemia sustains the development of regulatory responses during chronic Leishmania donovani infection in mice. Eur. J. Immunol. 2019, 49, 1082–1091. [Google Scholar] [CrossRef]
- Scarpini, S.; Dondi, A.; Totaro, C.; Biagi, C.; Melchionda, F.; Zama, D.; Pierantoni, L.; Gennari, M.; Campagna, C.; Prete, A.; et al. Visceral Leishmaniasis: Epidemiology, Diagnosis, and Treatment Regimens in Different Geographical Areas with a Focus on Pediatrics. Microorganisms 2022, 10, 1887. [Google Scholar] [CrossRef] [PubMed]
- Gerald, N.J.; Coppens, I.; Dwyer, D.M. Molecular dissection and expression of the LdK39 kinesin in the human pathogen, Leishmania donovani. Mol. Microbiol. 2007, 63, 962–979. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, W.F.; Viana, A.G.; Cunha, J.L.R.; Rosa, L.M.; Bueno, L.L.; Bartholomeu, D.C.; Cardoso, M.S.; Fujiwara, R.T. The increased presence of repetitive motifs in the KDDR-plus recombinant protein, a kinesin-derived antigen from Leishmania infantum, improves the diagnostic performance of serological tests for human and canine visceral leishmaniasis. PLOS Neglected Trop. Dis. 2021, 15, e0009759. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.B.; Santos, E.N.F.N.; Araújo, L.S.; Bezerra, A.S.; Marques, L.C.; Florean, E.O.P.T.; van Tilburg, M.F.; Guedes, M.I.F. Plant Expression of Hydrophobin Fused K39 Antigen for Visceral Leishmaniasis Immunodiagnosis. Front. Plant Sci. 2021, 12, 674015. [Google Scholar] [CrossRef]
- Wang, P. Natural and Synthetic Saponins as Vaccine Adjuvants. Vaccines 2021, 9, 222. [Google Scholar] [CrossRef]
- Del Giudice, G.; Pizza, M.; Rappuoli, R. Mucosal Delivery of Vaccines. Methods 1999, 19, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Allahverdiyev, A.M.; Bagirova, M.; Elcicek, S.; Koc, R.C.; Oztel, O.N. Effect of Human Urine on Cell Cycle and Infectivity of Leismania Species Promastigotes In Vitro. Am. J. Trop. Med. Hyg. 2011, 85, 639–643. [Google Scholar] [CrossRef]
- Rolão, N.; Melo, C.; Campino, L. Influence of the inoculation route in BALB/c mice infected by Leishmania infantum. Acta Trop. 2004, 90, 123–126. [Google Scholar] [CrossRef]
- Weirather, J.L.; Jeronimo, S.M.B.; Gautam, S.; Sundar, S.; Kang, M.; Kurtz, M.A.; Haque, R.; Schriefer, A.; Talhari, S.; Carvalho, E.M.; et al. Serial Quantitative PCR Assay for Detection, Species Discrimination, and Quantification of Leishmania Spp. in Human Samples. J. Clin. Microbiol. 2011, 49, 3892–3904. [Google Scholar] [CrossRef]
- Jara, M.; Adaui, V.; Valencia, B.M.; Martinez, D.; Alba, M.; Castrillon, C.; Cruz, M.; Cruz, I.; Van der Auwera, G.; Llanos-Cuentas, A.; et al. Real-Time PCR Assay for Detection and Quantification of Leishmania (Viannia) Organisms in Skin and Mucosal Lesions: Exploratory Study of Parasite Load and Clinical Parameters. J. Clin. Microbiol. 2013, 51, 1826–1833. [Google Scholar] [CrossRef]
- Collins, A.M. IgG subclass co-expression brings harmony to the quartet model of murine IgG function. Immunol. Cell Biol. 2016, 94, 949–954. [Google Scholar] [CrossRef]
- Ura, T.; Takeuchi, M.; Kawagoe, T.; Mizuki, N.; Okuda, K.; Shimada, M. Current Vaccine Platforms in Enhancing T-Cell Response. Vaccines 2022, 10, 1367. [Google Scholar] [CrossRef]
- Garde, E.; Ramírez, L.; Corvo, L.; Solana, J.C.; Martín, M.E.; González, V.M.; Gómez-Nieto, C.; Barral, A.; Barral-Netto, M.; Requena, J.M.; et al. Analysis of the Antigenic and Prophylactic Properties of the Leishmania Translation Initiation Factors eIF2 and eIF2B in Natural and Experimental Leishmaniasis. Front. Cell. Infect. Microbiol. 2018, 8, 112. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.R.; Lorena, V.M.B.; Verçosa, A.F.A.; Silva, E.D.; Ferreira, A.G.; Montarroyos, U.R.; Silva, A.P.G.; Gomes, Y.M. Antibody isotype responses in Balb/c mice immunized with the cytoplasmic repetitive antigen and flagellar repetitive antigen of Trypanosoma cruzi. Mem. Do Inst. Oswaldo Cruz 2003, 98, 823–825. [Google Scholar] [CrossRef]
- Mills, C.D.; Kincaid, K.; Alt, J.M.; Heilman, M.J.; Hill, A.M. M-1/M-2 Macrophages and the Th1/Th2 Paradigm. J. Immunol. 2000, 164, 6166–6173. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.; Abbehusen, M.; Teixeira, C.; Cunha, J.; Nascimento, I.P.; Fukutani, K.; Dos-Santos, W.; Barral, A.; De Oliveira, C.I.; Barral-Netto, M.; et al. Vaccination with Leishmania infantum Acidic Ribosomal P0 but Not with Nucleosomal Histones Proteins Controls Leishmania infantum Infection in Hamsters. PLOS Neglected Trop. Dis. 2015, 9, e0003490. [Google Scholar] [CrossRef] [PubMed]
- Melo, A.R.d.S.; de Macêdo, L.S.; Invenção, M.d.C.V.; de Moura, I.A.; da Gama, M.A.T.M.; de Melo, C.M.L.; Silva, A.J.D.; Batista, M.V.d.A.; de Freitas, A.C. Third-Generation Vaccines: Features of Nucleic Acid Vaccines and Strategies to Improve Their Efficiency. Genes 2022, 13, 2287. [Google Scholar] [CrossRef]
- Varotto-Boccazzi, I.; Epis, S.; Cattaneo, G.M.; Guerrini, N.; Manenti, A.; Rubolini, D.; Gabrieli, P.; Otranto, D.; Zuccotti, G.; Montomoli, E.; et al. Rectal Administration of Leishmania Cells Elicits a Specific, Th1-Associated IgG2a Response in Mice: New Perspectives for Mucosal Vaccination against Leishmaniasis, after the Repurposing of a Study on an Anti-Viral Vaccine Candidate. Trop. Med. Infect. Dis. 2023, 8, 406. [Google Scholar] [CrossRef]
- Helou, D.G.; Mauras, A.; Fasquelle, F.; Lanza, J.S.; Loiseau, P.M.; Betbeder, D.; Cojean, S. Intranasal vaccine from whole Leishmania donovani antigens provides protection and induces specific immune response against visceral leishmaniasis. PLOS Neglected Trop. Dis. 2021, 15, e0009627. [Google Scholar] [CrossRef]
- Howe, S.E.; Sowa, G.; Konjufca, V. Systemic and Mucosal Antibody Responses to Soluble and Nanoparticle-Conjugated Antigens Administered Intranasally. Antibodies 2016, 5, 20. [Google Scholar] [CrossRef]
- Kim, S.-H.; Jang, Y.-S. The development of mucosal vaccines for both mucosal and systemic immune induction and the roles played by adjuvants. Clin. Exp. Vaccine Res. 2017, 6, 15. [Google Scholar] [CrossRef] [PubMed]
- Monreal-Escalante, E.; Ramos-Vega, A.; Angulo, C.; Bañuelos-Hernández, B. Plant-Based Vaccines: Antigen Design, Diversity, and Strategies for High Level Production. Vaccines 2022, 10, 100. [Google Scholar] [CrossRef]
- Saberianfar, R.; Sattarzadeh, A.; Joensuu, J.J.; Kohalmi, S.E.; Menassa, R. Protein Bodies in Leaves Exchange Contents through the Endoplasmic Reticulum. Front. Plant Sci. 2016, 7, 693. [Google Scholar] [CrossRef]
- Saberianfar, R.; Menassa, R. Protein bodies: How the ER deals with high accumulation of recombinant proteins. Plant Biotechnol. J. 2017, 15, 671–673. [Google Scholar] [CrossRef]
- Jacquet, N.; Navarre, C.; Desmecht, D.; Boutry, M. Hydrophobin Fusion of an Influenza Virus Hemagglutinin Allows High Transient Expression in Nicotiana benthamiana, Easy Purification and Immune Response with Neutralizing Activity. PLoS ONE 2014, 9, e115944. [Google Scholar] [CrossRef]
- Nakari-Setälä, T.; Aro, N.; Kalkkinen, N.; Alatalo, E.; Penttilä, M. Genetic and Biochemical Characterization of the Trichoderma Reesei Hydrophobin HFBI. Eur. J. Biochem. 1996, 235, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Wang, N.; Zhang, X.; Wang, M.; Liu, Y.; Shi, Y. Potentials of saponins-based adjuvants for nasal vaccines. Front. Immunol. 2023, 14, 1153042. [Google Scholar] [CrossRef] [PubMed]
- Kirk, D.D.; Rempel, R.; Pinkhasov, J.; Walmsley, A.M. Application of Quillaja saponaria extracts as oral adjuvants for plant-made vaccines. Expert Opin. Biol. Ther. 2004, 4, 947–958. [Google Scholar] [CrossRef]
- Pickering, R.J.; Smith, S.D.; Strugnell, R.A.; Wesselingh, S.L.; Webster, D.E. Crude saponins improve the immune response to an oral plant-made measles vaccine. Vaccine 2006, 24, 144–150. [Google Scholar] [CrossRef]
- Boyaka, P.N.; Marinaro, M.; Jackson, R.J.; van Ginkel, F.W.; Cormet-Boyaka, E.; Kirk, K.L.; Kensil, C.R.; McGhee, J.R. Oral QS-21 Requires Early IL-4 Help for Induction of Mucosal and Systemic Immunity. J. Immunol. 2001, 166, 2283–2290. [Google Scholar] [CrossRef]
Group/Immunization Route | Immunization Protocol | Parasite Challenge | |||
---|---|---|---|---|---|
Immunogen | Adjuvant | Total Volume | Immunization Timing | ||
Intranasal (n = 6 mice) | 5 µg of semi-purified rK39-HFBI | 8 µg of saponin | 12 µL (6 µL per nostril) | First immunization (Day 0) Booster doses (21st and 35th days) | Intravenous administration of 1 × 107 L. infantum promastigote cells (49th day) |
Oral (n = 6 mice) | 10 µg of semi-purified rK39-HFBI | 16 µg of saponin | 25 µL | ||
Subcutaneous (n = 6 mice) | 20 µg of semi-purified rK39-HFBI | 16 µg of saponin | 40 µL | ||
Control (n = 6 mice) | None |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, B.B.d.; Silva Junior, A.B.d.; Araújo, L.d.S.; Santos, E.N.F.N.; Silva, A.C.M.d.; Florean, E.O.P.T.; van Tilburg, M.F.; Guedes, M.I.F. Subcutaneous, Oral, and Intranasal Immunization of BALB/c Mice with Leishmania infantum K39 Antigen Induces Non-Protective Humoral Immune Response. Trop. Med. Infect. Dis. 2023, 8, 444. https://doi.org/10.3390/tropicalmed8090444
Silva BBd, Silva Junior ABd, Araújo LdS, Santos ENFN, Silva ACMd, Florean EOPT, van Tilburg MF, Guedes MIF. Subcutaneous, Oral, and Intranasal Immunization of BALB/c Mice with Leishmania infantum K39 Antigen Induces Non-Protective Humoral Immune Response. Tropical Medicine and Infectious Disease. 2023; 8(9):444. https://doi.org/10.3390/tropicalmed8090444
Chicago/Turabian StyleSilva, Bruno Bezerra da, Amauri Barbosa da Silva Junior, Lucelina da Silva Araújo, Eduarda Nattaly Ferreira Nobre Santos, Ana Cláudia Marinho da Silva, Eridan Orlando Pereira Tramontina Florean, Maurício Fraga van Tilburg, and Maria Izabel Florindo Guedes. 2023. "Subcutaneous, Oral, and Intranasal Immunization of BALB/c Mice with Leishmania infantum K39 Antigen Induces Non-Protective Humoral Immune Response" Tropical Medicine and Infectious Disease 8, no. 9: 444. https://doi.org/10.3390/tropicalmed8090444
APA StyleSilva, B. B. d., Silva Junior, A. B. d., Araújo, L. d. S., Santos, E. N. F. N., Silva, A. C. M. d., Florean, E. O. P. T., van Tilburg, M. F., & Guedes, M. I. F. (2023). Subcutaneous, Oral, and Intranasal Immunization of BALB/c Mice with Leishmania infantum K39 Antigen Induces Non-Protective Humoral Immune Response. Tropical Medicine and Infectious Disease, 8(9), 444. https://doi.org/10.3390/tropicalmed8090444