Mathematical Modeling of SARS-CoV-2 Transmission between Minks and Humans Considering New Variants and Mink Culling
Abstract
:1. Introduction
2. Methods
2.1. A Two-Strain Compartmental Model
2.2. A Single-Strain Compartmental Model with Vaccinated Minks
2.3. Basic Reproduction Number and Sensitivity Analysis
2.4. COVID-19 Data from Denmark
3. Results
3.1. Results Concerning the Two-Strain Model with Mutation
3.1.1. Impact of Transmission Rates and Incubation Period
3.1.2. Is It Possible for the Mutated Virus to Invade the Human Population?
- Scenario 1:
- Effect of High Transmission Rate with Long Infection or High Mutation Rate
- Scenario 2:
- Effect of High Transmission Rates on Human Populations
- Scenario 3:
- Effects of High Transmission and Mutation Rates on Mink Populations
3.1.3. The Impact of Culling Minks on the Spread of COVID-19
- Scenario 1:
- Using Three Distinct Culling Ratios on Six Distinct Culling Dates
- Scenario 2:
- Increasing the Death Rate of Minks
3.2. Results for the Single-Strain Model with Vaccination in Minks
3.2.1. The Impact of Mink Vaccination on COVID-19 Transmission
3.2.2. The Impact of Culling Minks on the Spread of COVID-19
3.3. Sensitivity Analysis
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Basic Reproduction Numbers
Appendix A.1. Basic Reproduction Number of the Two-Strain Model (1)
Appendix A.2. Basic Reproduction Number of the Single-Strain Model (2)
References
- Haider, N.; Rothman-Ostrow, P.; Osman, A.Y.; Arruda, L.B.; Macfarlane-Berry, L.; Elton, L.; Thomason, M.J.; Yeboah-Manu, D.; Ansumana, R.; Kapata, N.; et al. COVID-19—Zoonosis or emerging infectious disease? Front. Public Health 2020, 8, 763. [Google Scholar] [CrossRef]
- WHO Africa. Coronavirus. Available online: https://www.afro.who.int/publications/coronavirus#:~:text=Coronaviruses%20are%20zoonotic%2C%20meaning,not%20yet%20infected%20humans (accessed on 1 May 2023).
- Hemida, M.; Chu, D.; Perera, R.; Ko, R.; So, R.; Ng, B.; Chan, S.; Chu, S.; Alnaeem, A.; Alhammadi, M.; et al. Coronavirus infections in horses in Saudi Arabia and Oman. Transbound. Emerg. Dis. 2017, 64, 2093–2103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhama, K.; Khan, S.; Tiwari, R.; Sircar, S.; Bhat, S.; Malik, Y.S.; Singh, K.P.; Chaicumpa, W.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. Coronavirus disease 2019–COVID-19. Clin. Microbiol. Rev. 2020, 33, e00028-20. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Coronavirus. Available online: https://www.who.int/health-topics/coronavirus#tab=tab_1 (accessed on 1 May 2023).
- CDC. Animals and COVID-19. Available online: https://www.cdc.gov/coronavirus/2019-ncov/daily-life-coping/animals.html#print (accessed on 1 May 2023).
- Sit, T.H.; Brackman, C.J.; Ip, S.M.; Tam, K.W.; Law, P.Y.; To, E.M.; Yu, V.Y.; Sims, L.D.; Tsang, D.N.; Chu, D.K.; et al. Infection of dogs with SARS-CoV-2. Nature 2020, 586, 776–778. [Google Scholar] [CrossRef]
- Patterson, E.I.; Elia, G.; Grassi, A.; Giordano, A.; Desario, C.; Medardo, M.; Smith, S.L.; Anderson, E.R.; Prince, T.; Patterson, G.T.; et al. Evidence of exposure to SARS-CoV-2 in cats and dogs from households in Italy. Nat. Commun. 2020, 11, 6231. [Google Scholar] [CrossRef]
- Sailleau, C.; Dumarest, M.; Vanhomwegen, J.; Delaplace, M.; Caro, V.; Kwasiborski, A.; Hourdel, V.; Chevaillier, P.; Barbarino, A.; Comtet, L.; et al. First detection and genome sequencing of SARS-CoV-2 in an infected cat in France. Transbound. Emerg. Dis. 2020, 67, 2324–2328. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Wen, Z.; Zhong, G.; Yang, H.; Wang, C.; Huang, B.; Liu, R.; He, X.; Shuai, L.; Sun, Z.; et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science 2020, 368, 1016–1020. [Google Scholar] [CrossRef] [Green Version]
- Gollakner, R.; Capua, I. Is COVID-19 the first pandemic that evolves into a panzootic? Vet. Ital. 2020, 56, 11–12. [Google Scholar]
- Oude Munnink, B.B.; Sikkema, R.S.; Nieuwenhuijse, D.F.; Molenaar, R.J.; Munger, E.; Molenkamp, R.; Van Der Spek, A.; Tolsma, P.; Rietveld, A.; Brouwer, M.; et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 2021, 371, 172–177. [Google Scholar] [CrossRef]
- Boklund, A.; Gortazar, C.; Pasquali, P.; Roberts, H.; Nielsen, S.; Stahl, K.; Stegeman, A.; Baldinelli, F.; Broglia, A.; Van Der Stede, Y.; et al. Scientific Opinion on the monitoring of SARS-CoV-2 infection in mustelids. EFSA J. 2021, 19, 6459. [Google Scholar]
- Sharun, K.; Tiwari, R.; Natesan, S.; Dhama, K. SARS-CoV-2 infection in farmed minks, associated zoonotic concerns, and importance of the One Health approach during the ongoing COVID-19 pandemic. Vet. Q. 2021, 41, 50–60. [Google Scholar] [CrossRef]
- Boklund, A.; Hammer, A.S.; Quaade, M.L.; Rasmussen, T.B.; Lohse, L.; Strandbygaard, B.; Jørgensen, C.S.; Olesen, A.S.; Hjerpe, F.B.; Petersen, H.H.; et al. SARS-CoV-2 in Danish mink farms: Course of the epidemic and a descriptive analysis of the outbreaks in 2020. Animals 2021, 11, 164. [Google Scholar] [CrossRef]
- Pickering, B.; Lung, O.; Maguire, F.; Kruczkiewicz, P.; Kotwa, J.D.; Buchanan, T.; Gagnier, M.; Guthrie, J.L.; Jardine, C.M.; Marchand-Austin, A.; et al. Divergent SARS-CoV-2 variant emerges in white-tailed deer with deer-to-human transmission. Nat. Microbiol. 2022, 7, 2011–2024. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Lam, S.D.; Richard, D.; Owen, C.J.; Berchtold, D.; Orengo, C.; Nair, M.S.; Kuchipudi, S.V.; Kapur, V.; van Dorp, L.; et al. Transmission of SARS-CoV-2 from humans to animals and potential host adaptation. Nat. Commun. 2022, 13, 2988. [Google Scholar] [CrossRef]
- WHO Europe. Coronavirus. Available online: https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/publications-and-technical-guidance/infection-prevention-and-control/covid-19-mink-associated-strain-q-and-as (accessed on 1 May 2023).
- Oreshkova, N.; Molenaar, R.J.; Vreman, S.; Harders, F.; Munnink, B.B.O.; Hakze-van Der Honing, R.W.; Gerhards, N.; Tolsma, P.; Bouwstra, R.; Sikkema, R.S.; et al. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Eurosurveillance 2020, 25, 2001005. [Google Scholar] [CrossRef] [PubMed]
- Molenaar, R.J.; Vreman, S.; Hakze-van der Honing, R.W.; Zwart, R.; de Rond, J.; Weesendorp, E.; Smit, L.A.; Koopmans, M.; Bouwstra, R.; Stegeman, A.; et al. Clinical and pathological findings in SARS-CoV-2 disease outbreaks in farmed mink (Neovison vison). Vet. Pathol. 2020, 57, 653–657. [Google Scholar] [CrossRef]
- WHO-WOAH. Joint Monthly Surveillance Report on SARS-CoV-2 and Mpox in Animals in the European Region, November 2022. Available online: https://apps.who.int/iris/rest/bitstreams/1483774/retrieve (accessed on 1 May 2023).
- Pomorska-Mól, M.; Włodarek, J.; Gogulski, M.; Rybska, M. SARS-CoV-2 infection in farmed minks—An overview of current knowledge on occurrence, disease and epidemiology. Animal 2021, 15, 100272. [Google Scholar] [CrossRef] [PubMed]
- Hammer, A.S.; Quaade, M.L.; Rasmussen, T.B.; Fonager, J.; Rasmussen, M.; Mundbjerg, K.; Lohse, L.; Strandbygaard, B.; Jørgensen, C.S.; Alfaro-Núñez, A.; et al. SARS-CoV-2 transmission between mink (Neovison vison) and humans, Denmark. Emerg. Infect. Dis. 2021, 27, 547. [Google Scholar] [CrossRef]
- Larsen, H.D.; Fonager, J.; Lomholt, F.K.; Dalby, T.; Benedetti, G.; Kristensen, B.; Urth, T.R.; Rasmussen, M.; Lassaunière, R.; Rasmussen, T.B.; et al. Preliminary report of an outbreak of SARS-CoV-2 in mink and mink farmers associated with community spread, Denmark, June to November 2020. Eurosurveillance 2021, 26, 2100009. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Environment and Food of Denmark. COVID-19: All Mink in Denmark Must Be Culled. Available online: https://en.fvm.dk/news/news/nyhed/covid-19-all-mink-in-denmark-must-be-culled (accessed on 1 May 2023).
- Haq, I.U.; Ullah, N.; Ali, N.; Nisar, K.S. A New Mathematical Model of COVID-19 with Quarantine and Vaccination. Mathematics 2022, 11, 142. [Google Scholar] [CrossRef]
- Haq, I.U.; Ali, N.; Ahmad, S. A fractional mathematical model for COVID-19 outbreak transmission dynamics with the impact of isolation and social distancing. Math. Model. Control 2022, 2, 228–242. [Google Scholar] [CrossRef]
- Sun, T.C.; DarAssi, M.H.; Alfwzan, W.F.; Khan, M.A.; Alqahtani, A.S.; Alshahrani, S.S.; Muhammad, T. Mathematical Modeling of COVID-19 with Vaccination Using Fractional Derivative: A Case Study. Fractal Fract. 2023, 7, 234. [Google Scholar] [CrossRef]
- Ali, A.; Ullah, S.; Khan, M.A. The impact of vaccination on the modeling of COVID-19 dynamics: A fractional order model. Nonlinear Dyn. 2022, 110, 3921–3940. [Google Scholar] [CrossRef]
- Rihan, F.; Alsakaji, H. Dynamics of a stochastic delay differential model for COVID-19 infection with asymptomatic infected and interacting people: Case study in the UAE. Results Phys. 2021, 28, 104658. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, S.; Petersen, M.S.; Høiby, N. SARS-CoV-2 infection dynamics in Denmark, February through October 2020: Nature of the past epidemic and how it may develop in the future. PLoS ONE 2021, 16, e0249733. [Google Scholar] [CrossRef] [PubMed]
- Valentin, J.B.; Møller, H.; Johnsen, S.P. The basic reproduction number can be accurately estimated within 14 days after societal lockdown: The early stage of the COVID-19 epidemic in Denmark. PLoS ONE 2021, 16, e0247021. [Google Scholar] [CrossRef]
- Gumel, A.B. Global dynamics of a two-strain avian influenza model. Int. J. Comput. Math. 2009, 86, 85–108. [Google Scholar] [CrossRef]
- Agusto, F.B. Optimal isolation control strategies and cost-effectiveness analysis of a two-strain avian influenza model. Biosystems 2013, 113, 155–164. [Google Scholar] [CrossRef]
- Rashkov, P.; Kooi, B.W. Complexity of host-vector dynamics in a two-strain dengue model. J. Biol. Dyn. 2021, 15, 35–72. [Google Scholar] [CrossRef]
- Royce, K.; Fu, F. Mathematically modeling spillovers of an emerging infectious zoonosis with an intermediate host. PLoS ONE 2020, 15, e0237780. [Google Scholar] [CrossRef]
- Sardar, T.; Ghosh, I.; Rodó, X.; Chattopadhyay, J. A realistic two-strain model for MERS-CoV infection uncovers the high risk for epidemic propagation. PLoS Neglected Trop. Dis. 2020, 14, e0008065. [Google Scholar] [CrossRef] [PubMed]
- de León, U.A.P.; Avila-Vales, E.; Huang, K.-L. Modeling COVID-19 dynamic using a two-strain model with vaccination. Chaos Solitons Fractals 2022, 157, 111927. [Google Scholar] [CrossRef] [PubMed]
- Tchoumi, S.; Rwezaura, H.; Tchuenche, J. Dynamic of a two-strain COVID-19 model with vaccination. Results Phys. 2022, 39, 105777. [Google Scholar] [CrossRef] [PubMed]
- Trigger, S.; Ignatov, A. Strain-stream model of epidemic spread in application to COVID-19. Eur. Phys. J. B 2022, 95, 194. [Google Scholar] [CrossRef] [PubMed]
- Fatmawati; Yuliani, E.; Alfiniyah, C.; Juga, M.L.; Chukwu, C.W. On the Modeling of COVID-19 Transmission Dynamics with Two Strains: Insight through Caputo Fractional Derivative. Fractal Fract. 2022, 6, 346. [Google Scholar] [CrossRef]
- Yagan, O.; Sridhar, A.; Eletreby, R.; Levin, S.; Plotkin, J.B.; Poor, H.V. Modeling and Analysis of the Spread of COVID-19 under a Multiple-strain Model with Mutations. Harv. Data Sci. Rev. 2021, 4. [Google Scholar] [CrossRef]
- Martsenyuk, V.; Bernas, M.; Klos-Witkowska, A. Two-strain COVID-19 model using delayed dynamic system and big data. IEEE Access 2021, 9, 113866–113878. [Google Scholar] [CrossRef]
- Diekmann, O.; Heesterbeek, J.; Roberts, M.G. The construction of next-generation matrices for compartmental epidemic models. J. R. Soc. Interface 2010, 7, 873–885. [Google Scholar] [CrossRef] [Green Version]
- Van den Driessche, P.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 2002, 180, 29–48. [Google Scholar] [CrossRef]
- Blower, S.M.; Dowlatabadi, H. Sensitivity and uncertainty analysis of complex models of disease transmission: An HIV model, as an example. Int. Stat. Rev. Int. Stat. 1994, 62, 229–243. [Google Scholar] [CrossRef]
- Worldometer. Denmark. Available online: https://www.worldometers.info/coronavirus/country/denmark/ (accessed on 1 May 2023).
- Kurt, S. ADW: Neovison Vison: INFORMATION. Available online: https://animaldiversity.org/site/accounts/information/Neovison_vison.html (accessed on 1 May 2023).
- Chapman, J.A.; Feldhamer, G. Wild Mammals of North America; Johns Hopkins University Press: Baltimore, MD, USA; London, UK, 1982. [Google Scholar]
- Kurta, A. Mammals of the Great Lakes Region; University of Michigan: Ann Arbor Press, MI, USA, 1995. [Google Scholar]
- McKay, M.D.; Beckman, R.J.; Conover, W.J. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 1979, 21, 239–245. [Google Scholar]
- Dhouib, W.; Maatoug, J.; Ayouni, I.; Zammit, N.; Ghammem, R.; Fredj, S.B.; Ghannem, H. The incubation period during the pandemic of COVID-19: A systematic review and meta-analysis. Syst. Rev. 2021, 10, 101. [Google Scholar] [CrossRef] [PubMed]
- CDC. Symptoms of COVID-19. Available online: https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html (accessed on 1 May 2023).
- Eckstrand, C.D.; Baldwin, T.J.; Rood, K.A.; Clayton, M.J.; Lott, J.K.; Wolking, R.M.; Bradway, D.S.; Baszler, T. An outbreak of SARS-CoV-2 with high mortality in mink (Neovison vison) on multiple Utah farms. PLoS Pathog. 2021, 17, e1009952. [Google Scholar] [CrossRef] [PubMed]
- Jacob Gronholt-Pedersen. ‘It Stops Here’: Danish Mink Farmer Sees No Future after Mass Cull. Available online: https://www.reuters.com/article/us-health-coronavirus-denmark-mink-farme-idUSKBN27L2BN (accessed on 1 May 2023).
- World Bank. Population, Total-Denmark. Available online: https://data.worldbank.org/indicator/SP.POP.TOTL?end=2020&locations=DK&start=2020 (accessed on 1 May 2023).
- Dean, G. Denmark Says It Will Cull 17 Million Mink after Discovering a Mutated Strain of COVID-19 That Officials Fear Could `Restart’ the Entire Global Pandemic. Available online: https://web.archive.org/web/20201105235715/https://www.businessinsider.com/denmark-mink-covid-19-mutation-cull-minks-restart-coronavirus-pandemic-2020-11 (accessed on 1 May 2023).
- CDC. Isolation and Precautions for People with COVID-19. Available online: https://www.cdc.gov/coronavirus/2019-ncov/your-health/isolation.html (accessed on 1 May 2023).
Humans | |||
---|---|---|---|
Humans with Indirect Contact | Humans with Direct Contact | ||
Variable | Description | Variable | Description |
Susceptible | Susceptible | ||
Exposed | Exposed | ||
Infected | Infected | ||
Recovered | Recovered | ||
Death or Removed | Death or Removed | ||
Total population | Total population | ||
Minks | |||
Variable | Description | Variable | Description |
Susceptible | Recovered | ||
Exposed | Death or Removed | ||
Infected | , | Vaccinated, Total population | |
Parameters | |||
Parameter | Description | ||
Human-to-human transmission rates | |||
Human-to-mink transmission rates | |||
Mink-to-mink transmission rates | |||
Mink-to-human transmission rates | |||
Human incubation rates | |||
Mink incubation rates | |||
Human recovery rates | |||
Mink recovery rates | |||
Human disease-induced death rates | |||
, | Mink birth and death rates | ||
Mink disease-induced death rates | |||
Virus mutation rate in minks | |||
, | Mink vaccination rate; Rate of infected vaccinated minks |
Parameter | Value Model (1) | Value Model (2) | Units | Source |
---|---|---|---|---|
, , | 0.104, 0.17, 0.031 | 0.061, −, − | Day | Estimated |
, | 0.467, 0.02 | 0.407, − | Day | Estimated |
, | 0.632, 0.02 | 0.531, − | Day | Estimated |
, | 0.020, 0.02 | 0.048, − | Day | Estimated |
, | 0.070, 0.23 | 0.071, − | Day | [52,53] |
, | 0.207, 0.199 | 0.183, − | Day | Estimated |
, | 0.142, 0.118 | 0.142, − | Day | [53] |
, | 0.149, 0.118 | 0.149, − | Day | Estimated |
, | 0.266, 0.238 | 0.262, − | Day | Estimated |
, | 0.156, 0.284 | 0.225, − | Day | [54] |
, | 0, 0.0009 | 0, 0.0009 | Day | [48,49,50] |
0.102 | − | Day | Estimated | |
, | −, − | 0, 0.001 | Day | Estimated |
2500 | 2500 | Person | [55] | |
5,831,400 | 5,831,400 | Person | [56] | |
17,000,000 | 17,000,000 | Mink | [57] |
Results Concerning the Two-Strain Model (1) with Mutation | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Impact of transmission rates and incubation periods | ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
Potential spread of the mutated virus in human or mink populations | ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
The effect of varying the culling of minks | ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
Basic reproduction number | ||||||||||||||||||||||||||||||||||||
Results Concerning the Single-Strain Model (2) with Vaccination in Minks | ||||||||||||||||||||||||||||||||||||
Impact of mink vaccination | ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
The effect of varying the culling of minks | ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
Basic reproduction number | ||||||||||||||||||||||||||||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, M.A.; Dénes, A. Mathematical Modeling of SARS-CoV-2 Transmission between Minks and Humans Considering New Variants and Mink Culling. Trop. Med. Infect. Dis. 2023, 8, 398. https://doi.org/10.3390/tropicalmed8080398
Ibrahim MA, Dénes A. Mathematical Modeling of SARS-CoV-2 Transmission between Minks and Humans Considering New Variants and Mink Culling. Tropical Medicine and Infectious Disease. 2023; 8(8):398. https://doi.org/10.3390/tropicalmed8080398
Chicago/Turabian StyleIbrahim, Mahmoud A., and Attila Dénes. 2023. "Mathematical Modeling of SARS-CoV-2 Transmission between Minks and Humans Considering New Variants and Mink Culling" Tropical Medicine and Infectious Disease 8, no. 8: 398. https://doi.org/10.3390/tropicalmed8080398
APA StyleIbrahim, M. A., & Dénes, A. (2023). Mathematical Modeling of SARS-CoV-2 Transmission between Minks and Humans Considering New Variants and Mink Culling. Tropical Medicine and Infectious Disease, 8(8), 398. https://doi.org/10.3390/tropicalmed8080398