Epidemiological, Microbiological, and Clinical Characteristics of Multi-Resistant Pseudomonas aeruginosa Isolates in King Fahad Medical City, Riyadh, Saudi Arabia
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Data Collection
2.3. P. aeruginosa Identification and Antimicrobial Susceptibility Testing
2.4. Statistical Analysis
2.5. Ethical Consideration
3. Results
3.1. Demographic Characteristics of Patients with Multi-Resistant P. aeruginosa
3.2. Antimicrobial Susceptibility of Multi-Resistant P. aeruginosa Isolates
3.3. Clinical Characteristics of ICU Patients Infected with Multi-Resistant P. aeruginosa
3.4. Clinical Outcomes and Factors Associated with Mortality Rates of ICU Patients Infected with Multi-Resistant P. aeruginosa
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arber, W. Horizontal gene transfer among bacteria and its role in biological evolution. Life 2014, 4, 217–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sando, E.; Suzuki, M.; Ishida, M.; Yaegashi, M.; Aoshima, M.; Ariyoshi, K.; Morimoto, K. Definitive and indeterminate Pseudomonas aeruginosa infection in adults with community-acquired pneumonia: A prospective observational study. Ann. Am. Thorac. Soc. 2021, 18, 1475–1481. [Google Scholar] [CrossRef] [PubMed]
- Restrepo, M.I.; Babu, B.L.; Reyes, L.F.; Chalmers, J.D.; Soni, N.J.; Sibila, O.; Faverio, P.; Cilloniz, C.; Rodriguez-Cintron, W.; Aliberti, S. Burden and risk factors for Pseudomonas aeruginosa community-acquired pneumonia: A multinational point prevalence study of hospitalised patients. Eur. Respir.J. 2018, 52, 1701190. [Google Scholar] [CrossRef] [Green Version]
- Afshari, A.; Pagani, L.; Harbarth, S. Year in review 2011: Critical care–infection. Crit. Care 2012, 16, 242. [Google Scholar] [CrossRef] [Green Version]
- Moradali, M.F.; Ghods, S.; Rehm, B.H. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front. Cell. Infect. Microbiol. 2017, 7, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horcajada, J.P.; Montero, M.; Oliver, A.; Sorlí, L.; Luque, S.; Gómez-Zorrilla, S.; Benito, N.; Grau, S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin. Microbiol. Rev. 2019, 32, e00031-19. [Google Scholar] [CrossRef]
- de Sousa, T.; Hébraud, M.; Dapkevicius, M.L.; Maltez, L.; Pereira, J.E.; Capita, R.; Alonso-Calleja, C.; Igrejas, G.; Poeta, P. Genomic and Metabolic Characteristics of the Pathogenicity in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2021, 22, 12892. [Google Scholar] [CrossRef]
- Hwang, W.; Yoon, S.S. Virulence characteristics and an action mode of antibiotic resistance in multidrug-resistant Pseudomonas aeruginosa. Sci. Rep. 2019, 9, 487. [Google Scholar] [CrossRef] [Green Version]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2021; ECDC: Stockholm, Sweden, 2022.
- Gill, J.S.; Arora, S.; Khanna, S.P.; Kumar, K.H. Prevalence of multidrug-resistant, extensively drug-resistant, and pandrug-resistant Pseudomonas aeruginosa from a tertiary level intensive care unit. J. Glob. Infect. Dis. 2016, 8, 155. [Google Scholar]
- Morales, E.; Cots, F.; Sala, M.; Comas, M.; Belvis, F.; Riu, M.; Salvadó, M.; Grau, S.; Horcajada, J.P.; Montero, M.M.; et al. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. BMC Health Serv. Res. 2012, 12, 122. [Google Scholar] [CrossRef] [Green Version]
- Kaye, K.S.; Pogue, J.M. Infections caused by resistant gram-negative bacteria: Epidemiology and management. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2015, 35, 949–962. [Google Scholar] [CrossRef] [PubMed]
- Alhussain, F.A.; Yenugadhati, N.; Al Eidan, F.A.; Al Johani, S.; Badri, M. Risk factors, antimicrobial susceptibility pattern and patient outcomes of Pseudomonas aeruginosa infection: A matched case-control study. J. Infect. Public Health 2021, 14, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.E. High antimicrobial resistant rates among gram-negative pathogens in intensive care units: A retrospective study at a tertiary care hospital in Southwest Saudi Arabia. Saudi Med.J. 2018, 39, 1035. [Google Scholar] [CrossRef] [Green Version]
- Raman, G.; Avendano, E.E.; Chan, J.; Merchant, S.; Puzniak, L. Risk factors for hospitalized patients with resistant or multidrug-resistant Pseudomonas aeruginosa infections: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2018, 7, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez, A.; Gato, E.; Pérez-Llarena, J.; Fernández-Cuenca, F.; Gude, M.J.; Oviaño, M.; Pachón, M.E.; Garnacho, J.; González, V.; Pascual, Á.; et al. High incidence of MDR and XDR Pseudomonas aeruginosa isolates obtained from patients with ventilator-associated pneumonia in Greece, Italy and Spain as part of the MagicBullet clinical trial. J. Antimicrob.Chemother. 2019, 74, 1244–1252. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, V.D.; Jin, Z.; Memish, Z.A.; Daboor, M.A.; Ruzzieh, M.A.A.; Hussien, N.H.; Guclu, E.; Olmez-Gazioglu, E.; Ogutlu, A.; Agha, H.M.; et al. Risk factors for mortality in ICU patients in 10 middle eastern countries: The role of healthcare-associated infections. J. Crit. Care 2022, 72, 154149. [Google Scholar] [CrossRef]
- Hafiz, T.A.; Aldawood, E.; Albloshi, A.; Alghamdi, S.S.; Mubaraki, M.A.; Alyami, A.S.; Aldriwesh, M.G. Stenotrophomonas maltophilia Epidemiology, Resistance Characteristics, and Clinical Outcomes: Understanding of the Recent Three Years’ Trends. Microorganisms 2022, 10, 2506. [Google Scholar]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Micek, S.T.; Wunderink, R.G.; Kollef, M.H.; Chen, C.; Rello, J.; Chastre, J.; Antonelli, M.; Welte, T.; Clair, B.; Ostermann, H.; et al. An international multicenter retrospective study of Pseudomonas aeruginosa nosocomial pneumonia: Impact of multidrug resistance. Crit. Care 2015, 19, 219. [Google Scholar] [CrossRef] [Green Version]
- Yezli, S.; Shibl, A.M.; Livermore, D.M.; Memish, Z.A. Prevalence and antimicrobial resistance among Gram-negative pathogens in Saudi Arabia. J. Chemother. 2014, 26, 257–272. [Google Scholar] [CrossRef]
- Ahmed, O.B. Incidence and antibiotic susceptibility pattern of pseudomonas aeruginosa isolated from inpatients in two Tertiary Hospitals. Clin. Microbiol. Open Access 2016, 5, 2. [Google Scholar]
- Al-Orphaly, M.; Hadi, H.A.; Eltayeb, F.K.; Al-Hail, H.; Samuel, B.G.; Sultan, A.A.; Skariah, S. Epidemiology of Multidrug-Resistant Pseudomonas aeruginosa in the Middle East and North Africa Region. Msphere 2021, 6, e00202-21. [Google Scholar] [CrossRef] [PubMed]
- Tiri, B.; Sensi, E.; Marsiliani, V.; Cantarini, M.; Priante, G.; Vernelli, C.; Martella, L.A.; Costantini, M.; Mariottini, A.; Andreani, P.; et al. Antimicrobial Stewardship Program, COVID-19, and Infection Control: Spread of Carbapenem-Resistant Klebsiella Pneumoniae Colonization in ICU COVID-19 Patients. What Did Not Work? J. Clin. Med. 2020, 9, 2744. [Google Scholar] [CrossRef] [PubMed]
- AlDiba, M.; Daghriri, A.M.H.; Jamali, E.M.E.; Alzahrani, A.; Alsharif, A.B.; Almudeer, H.G.; Khobrani, H.; Hakami, N.T.M.; Ghannam, W.M.; Alasy, H.M. Prevalence of Antimicrobial Resistance of Common Bacterial Isolates before and during COVID-19 Pandemic in Armed Forces Hospital Jazan, Saudi Arabia. Eur. J. Med. Health Sci. 2021, 3, 31–38. [Google Scholar] [CrossRef]
- Centers for Disease; National Center for Emerging and Zoonotic Infectious Diseases; Division of Healthcare Quality Promotion (Eds.) COVID-19: U.S. Impact on Antimicrobial Resistance, Special Report 2022; The Centers for Disease Control and Prevention (CDC): Hyattsville, MD, USA, 2022. [CrossRef]
- Augustine, S.; Bonomo, R.A. Taking stock of infections and antibiotic resistance in the elderly and long-term care facilities: A survey of existing and upcoming challenges. Eur. J. Microbiol. Immunol. 2011, 1, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Dias, S.P.; Brouwer, M.C.; Beek, D.V.D. Sex and Gender Differences in Bacterial Infections. Infect. Immun. 2022, 90, e00283-22. [Google Scholar] [CrossRef]
- McGregor, J.C.; Elman, M.R.; Bearden, D.T.; Smith, D.H. Sex- and age-specific trends in antibiotic resistance patterns of Escherichia coli urinary isolates from outpatients. BMC Fam. Pract. 2013, 14, 25. [Google Scholar] [CrossRef] [Green Version]
- Azim, N.S.A.; Al-Harbi, M.A.; Al-Zaban, M.I.; Nofal, M.Y.; Somily, A.M. Prevalence and Antibiotic Susceptibility among Gram Negative Bacteria Isolated from Intensive Care Units at a Tertiary Care Hospital in Riyadh, Saudi Arabia. J. Pure Appl. Microbiol. 2019, 13, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Galani, I.; Papoutsaki, V.; Karantani, I.; Karaiskos, I.; Galani, L.; Adamou, P.; Deliolanis, I.; Kodonaki, A.; Papadogeorgaki, E.; Markopoulou, M.; et al. In vitro activity of ceftolozane/tazobactam alone and in combination with amikacin against MDR/XDR Pseudomonas aeruginosa isolates from Greece. J. Antimicrob. Chemother. 2020, 75, 2164–2172. [Google Scholar] [CrossRef]
- del Barrio-Tofiño, E.; Zamorano, L.; Cortes-Lara, S.; López-Causapé, C.; Sánchez-Diener, I.; Cabot, G.; Bou, G.; Martínez-Martínez, L.; Oliver, A.; GEMARA-SEIMC/REIPI Pseudomonas Study Group. Spanish nationwide survey on Pseudomonas aeruginosa antimicrobial resistance mechanisms and epidemiology. J. Antimicrob. Chemother. 2019, 74, 1825–1835. [Google Scholar] [CrossRef]
- Said, K.B.; Al-Jarbou, A.N.; Alrouji, M. Surveillance of antimicrobial resistance among clinical isolates recovered from a tertiary care hospital in Al Qassim, Saudi Arabia. Int. J. Health Sci. 2014, 8, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Alnasser AH, A.; Al-Tawfiq, J.A.; Ahmed HA, A.; Alqithami SM, H.; Alhaddad ZM, A.; Rabiah AS, M.; Albrahim, M.A.A.; Al Kalif, M.S.H.; Barry, M.; Temsah, M.-H.; et al. Public knowledge, attitude and practice towards antibiotics use and antimicrobial resistance in Saudi Arabia: A web-based cross-sectional survey. J. Public Health Res. 2021, 10, 2276. [Google Scholar] [CrossRef] [PubMed]
- Doumith, M.; Alhassinah, S.; Alswaji, A.; Alzayer, M.; Alrashidi, E.; Okdah, L.; Aljohani, S.; Balkhy, H.H.; Alghoribi, M.F.; NGHA AMR Surveillance Group. Genomic Characterization of Carbapenem-Non-susceptible Pseudomonas aeruginosa Clinical Isolates From Saudi Arabia Revealed a Global Dissemination of GES-5-Producing ST235 and VIM-2-Producing ST233 Sub-Lineages. Front. Microbiol. 2022, 12, 4155. [Google Scholar] [CrossRef] [PubMed]
- Beović, B.; Doušak, M.; Ferreira-Coimbra, J.; Nadrah, K.; Rubulotta, F.; Belliato, M.; Berger-Estilita, J.; Ayoade, F.; Rello, J.; Erdem, H. Antibiotic use in patients with COVID-19: A ‘snapshot’ Infectious Diseases International Research Initiative (ID-IRI) survey. J. Antimicrob. Chemother. 2020, 75, 3386–3390. [Google Scholar] [CrossRef]
- Codjoe, F.S.; Donkor, E.S. Carbapenem Resistance: A Review. Med.Sci. 2018, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Moghnieh, R.A.; Kanafani, Z.A.; Tabaja, H.Z.; Sharara, S.L.; Awad, L.S.; Kanj, S.S. Epidemiology of common resistant bacterial pathogens in the countries of the Arab League. Lancet Infect. Dis. 2018, 18, e379–e394. [Google Scholar] [CrossRef]
- Alotaibi, F. Carbapenem-Resistant Enterobacteriaceae: An update narrative review from Saudi Arabia. J. Infect. Public Health 2019, 12, 465–471. [Google Scholar] [CrossRef]
- Falagas, M.E.; Kasiakou, S.K. Colistin: The revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin. Infect. Dis. 2005, 40, 1333–1341. [Google Scholar] [CrossRef] [Green Version]
- Ramadan, R.A.; Gebriel, M.G.; Kadry, H.M.; Mosallem, A. Carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa: Characterization of carbapenemase genes and E-test evaluation of colistin-based combinations. Infect. Drug Resist. 2018, 11, 1261–1269. [Google Scholar] [CrossRef] [Green Version]
- Saeed, N.K.; Kambal, A.M.; El-Khizzi, N.A. Antimicrobial-resistant bacteria in a general intensive care unit in Saudi Arabia. Saudi Med. J. 2010, 31, 1341. [Google Scholar]
- Blot, S.; Ruppé, E.; Harbarth, S.; Asehnoune, K.; Poulakou, G.; Luyt, C.-E.; Rello, J.; Klompas, M.; Depuydt, P.; Eckmann, C.; et al. Healthcare-associated infections in adult intensive care unit patients: Changes in epidemiology, diagnosis, prevention and contributions of new technologies. Intensive Crit. Care Nurs. 2022, 70, 103227. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Healthcare-Associated Infections Acquired in Intensive Care Units. In ECDC. Annual Epidemiological Report for 2017; ECDC: Stockholm, Sweden, 2019. [Google Scholar]
- Rosenthal, V.D.; Belkebir, S.; Zand, F.; Afeef, M.; Tanzi, V.L.; Al-Abdely, H.M.; El-Kholy, A.; AlKhawaja, S.A.A.; Demiroz, A.P.; Sayed, A.F.; et al. Six-year multicenter study on short-term peripheral venous catheters-related bloodstream infection rates in 246 intensive units of 83 hospitals in 52 cities of 14 countries of Middle East: Bahrain, Egypt, Iran, Jordan, Kingdom of Saudi Arabia, Kuwait, Lebanon, Morocco, Pakistan, Palestine, Sudan, Tunisia, Turkey, and United Arab Emirates-International Nosocomial Infection Control Consortium (INICC) findings. J. Infect. Public Health 2020, 13, 1134–1141. [Google Scholar] [PubMed]
- El-Saed, A.; Balkhy, H.H.; Al-Dorzi, H.M.; Khan, R.; Rishu, A.H.; Arabi, Y. Acinetobacter is the most common pathogen associated with late-onset and recurrent ventilator-associated pneumonia in an adult intensive care unit in Saudi Arabia. Int. J. Infect. Dis. 2013, 17, e696–e701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langford, B.J.; So, M.; Simeonova, M.; Leung, V.; Lo, J.; Kan, T.; Raybardhan, S.; E Sapin, M.; Mponponsuo, K.; Farrell, A.; et al. Antimicrobial resistance in patients with COVID-19: A systematic review and meta-analysis. Lancet Microbe 2023, 4, e179–e191. [Google Scholar] [CrossRef] [PubMed]
- Kabrah, A.; Bahwerth, F.; Alghamdi, S.; Alkhotani, A.; Alahmadi, A.; Alhuzali, M.; Aljerary, I.; Alsulami, A. Antibiotics Usage and Resistance among Patients with Severe Acute Respiratory Syndrome Coronavirus 2 in the Intensive Care Unit in Makkah, Saudi Arabia. Vaccines 2022, 10, 2148. [Google Scholar] [CrossRef] [PubMed]
- Maraolo, A.E.; Cascella, M.; Corcione, S.; Cuomo, A.; Nappa, S.; Borgia, G.; De Rosa, F.G.; Gentile, I. Management of multidrug-resistant Pseudomonas aeruginosa in the intensive care unit: State of the art. Expert Rev. Anti Infect. Ther. 2017, 15, 861–871. [Google Scholar] [CrossRef]
- Blot, S.; Koulenti, D.; Dimopoulos, G.; Martin, C.; Komnos, A.; Krueger, W.A.; Spina, G.; Armaganidis, A.; Rello, J. Prevalence, Risk Factors, and Mortality for Ventilator-Associated Pneumonia in Middle-Aged, Old, and Very Old Critically Ill Patients*. Crit. Care Med. 2014, 42, 601–609. [Google Scholar] [CrossRef]
- Balkhy, H.H.; El-Saed, A.; Maghraby, R.; Al-Dorzi, H.M.; Khan, R.; Rishu, A.H.; Arabi, Y.M. Drug-resistant ventilator associated pneumonia in a tertiary care hospital in Saudi Arabia. Ann. Thorac. Med. 2014, 9, 104–111. [Google Scholar] [CrossRef]
- Aloush, V.; Navon-Venezia, S.; Seigman-Igra, Y.; Cabili, S.; Carmeli, Y. Multidrug-resistant Pseudomonas aeruginosa: Risk factors and clinical impact. Antimicrob. Agents Chemother. 2006, 50, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Li, S.; Li, S. The role of the liver in sepsis. Int. Rev. Immunol. 2014, 33, 498–510. [Google Scholar] [CrossRef] [Green Version]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Soucy, J.-P.R.; Westwood, D.; Daneman, N.; MacFadden, D.R. Antibiotic prescribing in patients with COVID-19: Rapid review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 520–531. [Google Scholar] [CrossRef] [PubMed]
- Nandi, A.; Pecetta, S.; Bloom, D.E. Global antibiotic use during the COVID-19 pandemic: Analysis of pharmaceutical sales data from 71 countries, 2020–2022. Eclinicalmedicine 2023, 57, 101848. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Total n (%) (Total = 3579) | P. aeruginosa Isolates | p-Value | |||
---|---|---|---|---|---|---|
P. aeruginosa n (%) (Total = 2798) | MDR n (%) (Total = 348) | XDR n (%) (Total = 422) | PDR n (%) (Total = 11) | |||
Gender | ||||||
Male | 1990 (55.6) | 1513 (54.1) | 215 (61.8) | 258 (61.1) | 4 (36.4) | 0.002 ** |
Female | 1589 (44.4) | 1285 (45.9) | 133 (38.2) | 164 (38.2) | 7 (63.6) | |
Age | ||||||
Paediatric infant (<1 year) | 236 (26.2) | 185 (24.2) | 26 (38.8) | 23 (33.8) | 2 (100) | 0.001 ** |
Paediatric child (1–10 years) | 466 (51.7) | 417 (54.6) | 24 (35.8) | 25 (36.8) | 0 (0) | |
Paediatric adolescent (11–18 years) | 199 (22.1) | 162 (21.2) | 17 (25.4) | 20 (29.4) | 0 (0) | |
Adult (19–44 years) | 658 (24.6) | 491 (24.1) | 59 (21) | 83 (32.2) | 2 (22.2) | 0.022 * |
Adult (45–64 years) | 889 (33.2) | 695 (34.2) | 83 (29.5) | 80 (31) | 4 (44.4) | |
Adult (65–84 years) | 968 (36.1) | 728 (35.8) | 111 (39.5) | 89 (34.5) | 3 (33.3) | |
Adult (≥85 years) | 163 (6.1) | 120 (5.9) | 28 (10) | 6 (2.3) | 0 (0) | |
Source | ||||||
Miscellaneous | 927 (25.9) | 738 (26.4) | 79 (22.7) | 108 (25.6) | 2 (18.2) | <0.001 ** |
Blood | 284 (7.9) | 232 (8.3) | 24 (6.9) | 25 (5.9) | 3 (27.3) | |
Respiratory | 1633 (45.6) | 1194 (42.7) | 205 (58.9) | 228 (54) | 6 (54.5) | |
Urine | 719 (20.1) | 622 (22.2) | 39 (11.2) | 58 (13.7) | 0 (0) | |
CSF | 16 (0.4) | 12 (0.4) | 1 (0.3) | 3 (0.7) | 0 (0) |
Antibiotics | Total n (%) (Total = 3579) | P. aeruginosa Isolates | p-Value | |||
---|---|---|---|---|---|---|
P. aeruginosa n (%) (Total = 2798) | MDR n (%) (Total = 348) | XDR n (%) (Total = 422) | PDR n (%) (Total = 11) | |||
Ceftazidime | ||||||
Sensitive | 2529 (70.7) | 2498 (89.3) | 25 (7.2) | 6 (1.4) | 0 (0) | <0.001 ** |
Intermediate | 117 (3.3) | 78 (2.8) | 31 (8.9) | 8 (1.9) | 0 (0) | |
Resistant | 933 (26.1) | 222 (7.9) | 292 (83.9) | 408 (96.7) | 11 (100) | |
Cefepime | ||||||
Sensitive | 2617 (73.1) | 2567 (91.7) | 42 (12.1) | 8 (1.9) | 0 (0) | <0.001 ** |
Intermediate | 92 (2.6) | 33 (1.2) | 39 (11.2) | 20 (4.7) | 0 (0) | |
Resistant | 870 (24.3) | 198 (7.1) | 267 (76.7) | 394 (93.4) | 11 (100) | |
Ciprofloxacin | ||||||
Sensitive | 2783 (77.8) | 2554 (91.3) | 218 (62.6) | 11 (2.6) | 0 (0) | <0.001 ** |
Intermediate | 159 (4.4) | 95 (3.4) | 36 (10.3) | 28 (6.6) | 0 (0) | |
Resistant | 637 (17.8) | 149 (5.3) | 94 (27) | 383 (90.8) | 11 (100) | |
Piperacillin-Tazobactam | ||||||
Sensitive | 2573 (71.9) | 2516 (89.9) | 44 (12.6) | 13 (3.1) | 0 (0) | <0.001 ** |
Intermediate | 394 (11) | 178 (6.4) | 114 (32.8) | 102 (24.2) | 0 (0) | |
Resistant | 612 (17.1) | 104 (3.7) | 190 (54.6) | 307 (72.7) | 11 (100) | |
Gentamicin | ||||||
Sensitive | 3085 (86.2) | 2709 (96.8) | 274 (78.7) | 102 (24.2) | 0 (0) | <0.001 ** |
Intermediate | 77 (2.2) | 38 (1.4) | 12 (3.4) | 27 (6.4) | 0 (0) | |
Resistant | 417 (11.7) | 51 (1.8) | 62 (17.8) | 293 (69.4) | 11 (100) | |
Amikacin | ||||||
Sensitive | 3313 (92.6) | 2776 (99.2) | 317 (91.1) | 220 (52.1) | 0 (0) | <0.001 ** |
Intermediate | 66 (1.8) | 7 (0.3) | 9 (2.6) | 50 (11.8) | 0 (0) | |
Resistant | 200 (5.6) | 15 (0.5) | 22 (6.3) | 152 (36) | 11 (100) | |
Imipenem | ||||||
Sensitive | 2365 (66.1) | 2270 (81.1) | 85 (24.4) | 10 (2.4) | 0 (0) | <0.001 ** |
Intermediate | 158 (4.4) | 139 (5) | 16 (4.6) | 3 (0.7) | 0 (0) | |
Resistant | 1056 (29.5) | 389 (13.9) | 247 (71) | 409 (96.9) | 11 (100) | |
Meropenem | ||||||
Sensitive | 2555 (71.4) | 2446 (87.4) | 99 (28.4) | 10 (2.4) | 0 (0) | <0.001 ** |
Intermediate | 108 (3) | 88 (3.1) | 15 (4.3) | 5 (1.2) | 0 (0) | |
Resistant | 916 (25.6) | 264 (9.4) | 234 (67.2) | 407 (96.4) | 11 (100) | |
Colistin | ||||||
Sensitive | 3234 (90.4) | 2546 (91) | 308 (88.5) | 380 (90) | 0 (0) | <0.001 ** |
Intermediate | 305 (8.5) | 241 (8.6) | 33 (9.5) | 31 (7.3) | 0 (0) | |
Resistant | 40 (1.1) | 11 (0.4) | 7 (2) | 11 (2.6) | 11 (100) | |
Levofloxacin | ||||||
Sensitive | 2587 (72.3) | 2412 (86.2) | 155 (44.5) | 20 (4.7) | 0 (0) | <0.001 ** |
Intermediate | 261 (7.3) | 179 (6.2) | 65 (18.7) | 17 (4) | 0 (0) | |
Resistant | 729 (20.4) | 207 (6.4) | 126 (36.2) | 385 (91.2) | 11 (100) | |
Aztreonam | ||||||
Sensitive | 2124 (59.3) | 2043 (73) | 54 (15.5) | 27 (6.4) | 0 (0) | <0.001 ** |
Intermediate | 381 (10.6) | 306 (10.9) | 40 (11.5) | 35 (8.3) | 0 (0) | |
Resistant | 1065 (29.8) | 442 (15.8) | 253 (72.7) | 359 (85.1) | 11 (100) |
Characteristic | Total n (%) (Total = 255) | Years | p-Value | ||
---|---|---|---|---|---|
2019 n (%) (Total = 114) | 2020 n (%) (Total = 78) | 2021 n (%) (Total = 63) | |||
Gender | |||||
Male | 157 (61.6) | 66 (57.9) | 52 (66.7) | 39 (61.9) | 0.470 |
Female | 98 (38.4) | 48 (42.1) | 26 (33.3) | 24 (38.1) | |
Age | |||||
Adult (19–44 years) | 54 (21.2) | 33 (28.9) | 11 (14.1) | 10 (15.9) | 0.256 |
Adult (45–64 years) | 72 (28.2) | 29 (25.4) | 24 (30.8) | 19 (30.2) | |
Adult (65–84 years) | 113 (44.3) | 46 (40.4) | 38 (48.7) | 29 (46) | |
Adult (⇒85 years) | 16 (6.3) | 6 (5.3) | 5 (6.4) | 5 (7.9) | |
Source of specimen | |||||
Miscellaneous | 31 (12.2) | 12 (10.5) | 14 (17.9) | 5 (7.9) | 0.003 ** |
Blood | 26 (10.2) | 12 (10.5) | 3 (3.8) | 11 (17.5) | |
Respiratory | 178 (69.8) | 75 (65.8) | 56 (71.8) | 47 (74.6) | |
Urine | 20 (7.8) | 15 (13.2) | 5 (6.4) | 0 (0) | |
Clinical presentation/infection | |||||
Fever | 34 (13.4) | 18 (15.8) | 12 (15.4) | 4 (6.3) | 0.182 |
Sepsis | 25 (9.8) | 9 (7.9) | 7 (9) | 9 (14.3) | 0.375 |
Septic shock | 40 (15.7) | 22 (19.3) | 5 (6.4) | 13 (20.6) | 0.025 * |
Respiratory | 195 (76.5) | 102 (89.5) | 63 (80.8) | 30 (47.6) | <0.001 ** |
GIT | 8 (3.1) | 5 (4.4) | 2 (2.6) | 1 (1.6) | 0.558 |
UTI | 32 (12.5) | 16 (14) | 12 (15.4) | 4 (6.3) | 0.222 |
WI | 46 (18) | 24 (21.1) | 12 (15.4) | 10 (15.9) | 0.529 |
Pneumonia | 117 (45.9) | 27 (23.7) | 38 (48.7) | 52 (82.5) | <0.001 ** |
Underlying disease | |||||
Kidney disease | 90 (35.3) | 42 (36.8) | 28 (35.9) | 20 (31.7) | 0.787 |
Heart disease | 101 (39.6) | 44 (38.6) | 35 (44.9) | 22 (34.9) | 0.465 |
Liver disease | 32 (12.5) | 26 (22.8) | 4 (5.1) | 2 (3.2) | <0.001 ** |
Brain disorder | 68 (26.7) | 34 (29.8) | 24 (30.8) | 10 (15.9) | 0.082 |
Cancer | 33 (12.9) | 23 (20.2) | 4 (5.1) | 6 (9.5) | 0.006 ** |
DM | 136 (53.3) | 56 (49.1) | 44 (56.4) | 36 (57.1) | 0.478 |
Asthma | 8 (3.1) | 4 (3.5) | 2 (2.6) | 2 (3.2) | 0.934 |
HTN | 152 (59.6) | 55 (48.2) | 54 (69.2) | 43 (68.3) | 0.004 ** |
Risk factors | |||||
Mechanical ventilation | 93 (36.5) | 23 (20.2) | 24 (30.8) | 46 (73) | <0.001 ** |
COVID-19 | 37 (14.5) | 0 (0) | 14 (17.9) | 23 (36.5) | <0.001 ** |
Outcome | |||||
Died | 142 (55.7) | 71 (62.3) | 35 (44.9) | 36 (57.1) | 0.002 ** |
Treated | 82 (32.2) | 35 (30.7) | 24 (30.8) | 23 (36.5) | |
Transferred | 31 (12.2) | 8 (7) | 19 (24.4) | 4 (6.3) |
Characteristic | Outcome | p-Value | |
---|---|---|---|
Alive n (%) (Total = 113) | Dead n (%) (Total = 142) | ||
Year | |||
2019 | 43 (38.1) | 71 (50) | 0.056 |
2020 | 43 (38.1) | 35 (24.6) | |
2021 | 27 (23.9) | 36 (25.4) | |
Gender | |||
Male | 69 (61.1) | 88 (62) | 0.882 |
Female | 44 (38.9) | 54 (38) | |
Age | |||
Adult (19–44 years) | 32 (28.3) | 22 (15.5) | 0.075 |
Adult (45–64 years) | 29 (25.7) | 43 (30.3) | |
Adult (65–84 years) | 44 (38.9) | 69 (48.6) | |
Adult (≥85 years) | 8 (7.1) | 8 (5.6) | |
Respiratory culture | |||
Positive | 87 (48.9) | 91 (51.1) | 0.026 * |
Clinical presentation/infection | |||
Fever | 21 (18.6) | 13 (9.2) | 0.028 * |
Sepsis | 9 (8) | 16 (11.3) | 0.378 |
Septic shock | 8 (7.1) | 32 (22.5) | 0.001 ** |
Respiratory | 80 (70.8) | 115 (81) | 0.057 |
GIT | 5 (4.4) | 3 (2.1) | 0.293 |
UTI | 15 (13.3) | 17 (12) | 0.755 |
WI | 23 (20.4) | 23 (16.2) | 0.391 |
Pneumonia | 56 (49.6) | 61 (43) | 0.293 |
Underlying disease | |||
Kidney | 32 (28.3) | 58 (40.8) | 0.038 * |
Heart | 46 (40.7) | 55 (38.7) | 0.749 |
Liver | 7 (6.2) | 25 (17.6) | 0.006 ** |
Brain disorder | 41 (36.3) | 27 (19) | 0.002 ** |
Cancer | 9 (8) | 24 (16.9) | 0.035 * |
DM | 53 (46.9) | 83 (58.5) | 0.066 |
Asthma | 6 (5.3) | 2 (1.4) | 0.076 |
HTN | 70 (61.9) | 82 (57.7) | 0.497 |
Risk factors | |||
Mechanical ventilation | 23 (28.3) | 61 (43) | 0.016 * |
COVID-19 | 15 (3.3) | 22 (15.5) | 0.617 |
Variable | RR | CI 95% | p-Value |
---|---|---|---|
Septic shock | 2.458 | 1.080–5.593 | 0.032 * |
Kidney disease | 1.287 | 0.851–1.946 | 0.232 |
Liver disease | 3.107 | 1.053–9.162 | 0.039 * |
Cancer | 1.673 | 0.738–3.789 | 0.217 |
Mechanical ventilation | 1.219 | 0.828–1.796 | 0.314 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hafiz, T.A.; Bin Essa, E.A.; Alharbi, S.R.; Alyami, A.S.; Alkudmani, Z.S.; Mubaraki, M.A.; Alturki, N.A.; Alotaibi, F. Epidemiological, Microbiological, and Clinical Characteristics of Multi-Resistant Pseudomonas aeruginosa Isolates in King Fahad Medical City, Riyadh, Saudi Arabia. Trop. Med. Infect. Dis. 2023, 8, 205. https://doi.org/10.3390/tropicalmed8040205
Hafiz TA, Bin Essa EA, Alharbi SR, Alyami AS, Alkudmani ZS, Mubaraki MA, Alturki NA, Alotaibi F. Epidemiological, Microbiological, and Clinical Characteristics of Multi-Resistant Pseudomonas aeruginosa Isolates in King Fahad Medical City, Riyadh, Saudi Arabia. Tropical Medicine and Infectious Disease. 2023; 8(4):205. https://doi.org/10.3390/tropicalmed8040205
Chicago/Turabian StyleHafiz, Taghreed A., Eman A. Bin Essa, Sarah R. Alharbi, Ahmed S. Alyami, Zeina S. Alkudmani, Murad A. Mubaraki, Norah A. Alturki, and Fawzia Alotaibi. 2023. "Epidemiological, Microbiological, and Clinical Characteristics of Multi-Resistant Pseudomonas aeruginosa Isolates in King Fahad Medical City, Riyadh, Saudi Arabia" Tropical Medicine and Infectious Disease 8, no. 4: 205. https://doi.org/10.3390/tropicalmed8040205
APA StyleHafiz, T. A., Bin Essa, E. A., Alharbi, S. R., Alyami, A. S., Alkudmani, Z. S., Mubaraki, M. A., Alturki, N. A., & Alotaibi, F. (2023). Epidemiological, Microbiological, and Clinical Characteristics of Multi-Resistant Pseudomonas aeruginosa Isolates in King Fahad Medical City, Riyadh, Saudi Arabia. Tropical Medicine and Infectious Disease, 8(4), 205. https://doi.org/10.3390/tropicalmed8040205