Next Article in Journal
Modeling the Climatic Suitability of COVID-19 Cases in Brazil
Next Article in Special Issue
The Potential of Surveillance Data for Dengue Risk Mapping: An Evaluation of Different Approaches in Cuba
Previous Article in Journal
Feasibility and Acceptability of a Strategy Deploying Multiple First-Line Artemisinin-Based Combination Therapies for Uncomplicated Malaria in the Health District of Kaya, Burkina Faso
Previous Article in Special Issue
Molecular Detection of Multiple Genotypes of Orientia tsutsugamushi Causing Scrub Typhus in Febrile Patients from Theni District, South India
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Communication

Dichotomous Keys Based on Cytogenetic Data for Triatomines Reported in Brazilian Regions with Outbreaks of Orally Transmitted Chagas Disease (Pernambuco and Rio Grande Do Norte)

by
Denis Vinícius de Mello
1,
Emercio Felisberto Nhapulo
2,
Laura Poloto Cesaretto
1,
Julia Junqueira Alevi
1,
Daniel Cesaretto Cristal
1,
Giulia Montanari
1,
Cleber Galvão
3,* and
Kaio Cesar Chaboli Alevi
1,2,3
1
Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Rua Dr. Antônio Celso Wagner Zanin, 250, Distrito de Rubião Júnior, Botucatu 18618-689, Brazil
2
Laboratório de Entomologia em Saúde Pública, Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo 715, São Paulo 01246-904, Brazil
3
Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Instituto Oswaldo Cruz (FIOCRUZ), Av. Brasil 4365, Pavilhão Rocha Lima, sala 505, Rio de Janeiro 21040-360, Brazil
*
Author to whom correspondence should be addressed.
Trop. Med. Infect. Dis. 2023, 8(4), 196; https://doi.org/10.3390/tropicalmed8040196
Submission received: 26 December 2022 / Revised: 2 February 2023 / Accepted: 3 February 2023 / Published: 29 March 2023
(This article belongs to the Special Issue Emerging Vector-Borne Diseases and Public Health Challenges)

Abstract

:
Chagas disease (CD) affects about eight million people worldwide. Brazil has the highest number of estimated cases and the largest number of deaths due to CD. Considering the recent outbreaks of oral CD involving at least 27 cases of acute CD in Pernambuco (PE) as well as 18 cases and 2 deaths in the Rio Grande do Norte (RN), we developed dichotomous keys for the identification of triatomine species in these Brazilian states based on cytogenetic data. All triatomine species could be distinguished by cytogenetic characteristics, emphasizing the importance of the newly developed taxonomic keys for the correct identification of triatomes from PE and RN, particularly for species that exhibit morphological similarities, such as Triatoma brasilensis and T. petrocchiae (present in both states) and T. maculata and T. pseudomaculata (as T. pseudomaculata has been misidentified as T. maculata in PE and RN). These alternative keys are expected to provide a useful tool for the scientific community and, above all, health agents, aimed at preventing mistakes from occurring in the identification of the vectors present in PE and RN related to CD outbreaks caused by oral infection.

1. Introduction

Chagas disease (CD) (also referred to as American trypanosomiasis) is a neglected disease caused by the protozoan Trypanosoma cruzi (Chagas, 1909) (Kinetoplastida, Trypanosomatidae) that affects about eight million people worldwide (although an estimated 70 million people are at risk of infection), resulting in approximately 10,000 deaths per year [1,2,3]. This disease is found mainly in endemic areas of 21 continental Latin American countries (where it kills more people each year than any other parasite-borne disease, including malaria [3,4]), although increasing cases have been reported in Canada and the United States of America, as well as in many European and some African, Eastern Mediterranean, and Western Pacific countries [1,2,3].
Brazil has the highest number of estimated cases and the largest number of deaths due to CD (7903 in 1990 and 6523 in 2019) [5]. CD can be transmitted by congenital transmission (transplacental), blood transfusions, organ transplantation, accidental laboratory exposure by triatomine vectors (Hemiptera: Triatominae), orally through breastfeeding, by the consumption of raw or undercooked meat from wild animals contaminated with T. cruzi, and by consumption of food that is contaminated with feces/urine from triatomines infected with the protozoan (such as juices and fruit pulp consumed in natura) [2]; the latter form of transmission is currently recognized as the main source of infection (especially in the Brazilian Amazon) [6,7]. However, it is worth mentioning that cases of oral transmission do not rule out the importance of triatomines, as food is often is contaminated with T. cruzi from the intestines of insects [1].
The Triatominae subfamily comprises 157 species; all 154 living species are considered to be potential CD vectors [8,9,10]. More than 60 species are present in Brazil, including species belonging to the genera Alberprosenia Martínez & Carcavallo, 1977; Belminus Stål, 1859; Microtriatoma Prosen & Martínez, 1952; Parabelminus Lent, 1943; Cavernicola Barber, 1937; Psammolestes Bergroth, 1911; Rhodnius Stål, 1859; Eratyrus Stål, 1859; Panstrongylus Bergroth, 1879; and Triatoma Laporte, 1832, more than half of which are endemic [11]. The northeast region includes about 30 species belonging to the genera Cavernicola Barber, 1937; Eratyrus, Panstrongylus, Parabelminus, Psammolestes, Rhodnius, and Triatoma [12].
In the states of Pernambuco (PE) and Rio Grande do Norte (RN), where outbreaks of oral CD have occurred [13,14], 13 species [Panstrongylus geniculatus (Latreille, 1811); P. lutzi Neiva & Pinto, 1926; P. megistus Burmeister, 1835; P. tibiamaculatus (Pinto, 1926); Psammolestes tertius Lent & Jurberg, 1965; Rhodnius nasutus Stal, 1859; R. neglectus Lent, 1954; Triatoma brasiliensis Neiva, 1911; T. melanocephala Neiva & Pinto, 1923; T. petrocchiae Pinto & Barreto, 1925; T. pseudomaculata Corrêa & Spínola, 1964; T. rubrofasciata (De Geer, 1773) and T. sordida (Stål, 1859)] and 9 species [P. lutzi, P. megistus, P. tertius, R. nasutus, T. brasiliensis, T. melanocephala, T. petrocchiae, T. pseudomaculata and T. rubrofasciata] have been reported to date, respectively [15,16,17].
The correct identification of these insects contributes directly to vector control programs, allowing the prioritization of species of primary importance during epidemiological surveillance [18]. Until 2019, classification was mainly based on dichotomous keys based on morphological data [15,19]. However, in some cases, phenotypic characters are not informative (such as phenotypic plasticity and cryptic speciation [20]), and alternative dichotomous keys using cytogenetic data (CytoKey) have been proposed [21,22,23,24].
In Brazil, several outbreaks of acute CD have been reported in which groups of individuals gathered in the same place, ingested the same food, and became sick almost simultaneously, with fever and general manifestations of a systemic infection [25]. These outbreaks occurred because triatomines infected with T. cruzi or the feces of these infected vectors were processed together with food consumed in natura [26,27]. At the end of the 20th century, 50% of acute CD cases recorded in the Amazon region, for example, were attributed to oral transmission [28]; at the beginning of the 21st century, this rate reached 70% [27].
In the Brazilian Northeast, research on CD outbreaks is not prioritized compared with other areas of Brazil, even though outbreak events are serious [7]. Outbreaks caused by oral contamination have already been registered in Paraíba (by sugarcane juice ingestion) [26], Bahia (possibly associated with fatal cases) [29], Ceará (possibly due to the consumption of contaminated vegetable soup) [30], Pernambuco (PE) (due to the consumption of contaminated food or beverages at a religious event) [14], and RN (where 2 deaths occurred after the consumption of contaminated food) [13].
Considering the recent outbreaks caused by oral infection resulting in at least 27 cases of acute CD in PE [14] and 18 cases and 2 deaths in the RN [13], we developed dichotomous keys to assist in the identification of triatomine species from the states of PE and RN based on cytogenetic data.

2. Materials and Methods

Cytogenetic data reported in the literature—including the chromosome number (as determined by lacto-acetic orcein staining), constitutive heterochromatin pattern (determined by C-banding), and 45S rDNA localization (probe analyzed with fluorescent in situ hybridization-FISH)—for triatomines present in PE and RN were revisited [31,32,33,34]. An identification key was developed based on Borsatto et al. [21,22].

3. Results and Discussion

Based on the cytogenetic characteristics of triatomines, we present dichotomous keys (CytoKeys) for the states of PE (Table 1) and RN (Table 2). All triatomine species could be distinguished by cytogenetic characteristics (Table 1 and Table 2).
Species of the genus Panstrongylus could be easily differentiated by the number of chromosomes (Table 1 and Table 2). Panstrongylus geniculatus and P. tibiamaculatus, which have the same number of chromosomes, could be distinguished by the constitutive heterochromatin pattern (Table 1). Species in the tribe Rhodniini could be distinguished by the heterochromatic pattern and by the composition of the chromocenter in prophase cells (Table 1 and Table 2). Finally, to differentiate among Triatoma spp., several cytogenetic characters were needed: the number of chromosomes, 45S rDNA localization, and properties of constitutive heterochromatin in chromosomes and prophase cells (Table 1 and Table 2).
Triatoma brasiliensis Neiva, 1911 and T. petrocchiae (Pinto & Barreto, 1925) belong to the T. brasiliensis subcomplex [35,36] reported in both states (Table 1 and Table 2). Triatoma brasiliensis is the most important vector of CD in semi-arid Brazil (frequently colonizing domiciles), and T. petrocchiae has not been associated with major outbreaks to date, as it is rarely found in habitats related to the peridomicile or intradomicile [37]. These species live in sympatry on rocky outcrops (where infection with T. cruzi has been reported) [37]. They exhibit morphological similarities [19,38] and can be distinguished by the following characters: i. presence of light stains on the femurs of T. petrocchiae [38]; ii. absence of a spongy pit in the tibiae of T. petrocchiae males; iii. presence of a practically glabrous rostrum and shorter first antennal segment in T. petrocchiae; and iv. membrane of hemelytra with a dark cloudy spot across the vein separating the two cells in T. petrocchiae [19]. These subtle differences can result in taxonomic errors in entomoepidemiological surveys, emphasizing the importance of the taxonomic keys for correct species identification.
Cytogenetic studies have provided insight into reproductive [39,40,41], physiological [42,43], evolutionary [44,45,46], systematic [34,47], and taxonomic [33,36,48] aspects of Triatominae. Cytotaxonomy was initially developed in 1950, when Schreiber and Pellegrino [49] described some karyotypes of species from South America. Since then, Ueshima [50] characterized new karyotypes and, in addition to chromosome number, used meiosis and the heteropyknotic pattern to differentiate 20 species of triatomines. More recently, the constitutive heterochromatin pattern [32,51,52] and the distribution of 45S rDNA probes [33,34,47] have been used to differentiate CD vectors.
The first identification keys for triatomines based on cytogenetic data were proposed by Borsatto et al. [21,22], who developed keys for species from the states of Alagoas, Amapá, Ceará, Roraima, Santa Catarina, and São Paulo (differentiating species from the genera Panstrongylus, Psammolestes, Rhodnius, and Triatoma). Recently, Oliveira et al. [24] reported, for the first time, T. infestans (Klug, 1834) in the state of Espírito Santo and developed a key based on cytogenetic data for all species reported in the state (differentiating species from genera Panstrongylus, Cavernicola, Rhodnius and Triatoma). Furthermore, Gonzalez-Britz et al. [23] performed an entomoepidemiological study of T. sordida (Stål, 1859) in Paraguay and presented a key based on cytogenetic data for all triatomines present in this Latin American country (differentiating species from the genera Panstrongylus, Psammolestes and Triatoma).
Triatoma brasiliensis and T. pseudomaculata Corrêa & Espínola, 1964 are the most abundant species in the states of PE and RN, where they are naturally infected by T. cruzi in anthropic areas [53,54]. Due to the morphological similarities between T. pseudomaculata and T. maculata (Erichson, 1848), until 1964 these taxa were considered the same species [55]. Lucena et al. [56] studied triatomines in Northeastern Brazil and reported the presence of T. maculata in PE and RN. However, the distribution of T. maculata in Brazil is restricted to Roraima [12,15], that is, its report in both states represents an error in the identification of T. pseudomaculata specimens. Although T. maculata is not included in the key (since it does not contribute to vector diversity in the RN), it can be easily differentiated by cytogenetic characteristics (T. maculata: 45S rDNA probe located in XY sex chromosomes; T. pseudomaculata: 45S rDNA probe located in one autosomal pair [47]).

4. Conclusions

We developed two dichotomous keys to assist in the correct identification of triatomines present in PE and RN, based on cytogenetic data. These alternative keys have practical implications for the scientific community and health agents, providing a basis for the prevention of errors in the identification of key vectors contributing to CD outbreaks caused by oral infection in these states.

Author Contributions

Conceptualization, D.V.d.M. and K.C.C.A.; methodology, D.V.d.M., E.F.N., L.P.C., J.J.A., D.C.C., G.M., C.G. and K.C.C.A.; formal analysis, D.V.d.M., E.F.N., L.P.C., J.J.A., D.C.C., G.M., C.G. and K.C.C.A.; resources, D.V.d.M., E.F.N., L.P.C., J.J.A., D.C.C., G.M., C.G. and K.C.C.A.; writing—original draft preparation, D.V.d.M. and K.C.C.A.; writing—review and editing, D.V.d.M., E.F.N., L.P.C., J.J.A., D.C.C., G.M., C.G. and K.C.C.A.; supervision, K.C.C.A.; project administration, D.V.d.M. and K.C.C.A.; funding acquisition, C.G. and K.C.C.A. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the São Paulo Research Foundation, Brazil (FAPESP), Coordination for the Improvement of Higher Education Personnel, Brazil (CAPES)—Finance Code 001, National Council for Scientific and Technological Development, Brazil (CNPq) and Carlos Chagas Filho Research Foundation of the State of Rio de Janeiro (FAPERJ).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

All relevant data are within the manuscript.

Acknowledgments

We thank Gilmar Perbiche Neves for initial support in the execution of the project.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis) (accessed on 4 December 2022).
  2. Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/parasites/chagas/index.html (accessed on 4 December 2022).
  3. Drugs for Neglected Diseases Iniciative. Available online: https://dndi.org/diseases/chagas/facts/ (accessed on 4 December 2022).
  4. Lima, F.M.; Oliveira, P.; Mortara, R.A.; Silveira, J.F.; Bahia, D. The challenge of Chagas’ disease: Has the human pathogen, Trypanosoma cruzi, learned how to modulate signaling events to subvert host cells? N. Biotechnol. 2010, 27, 837–843. [Google Scholar] [CrossRef] [PubMed]
  5. Gómez-Ochoa, S.A.; Rojas, L.Z.; Echeverría, L.E.; Muka, T.; Franco, O.H. Global, Regional, and National Trends of Chagas Disease from 1990 to 2019: Comprehensive Analysis of the Global Burden of Disease Study. Glob. Heart. 2022, 17, 59. [Google Scholar] [CrossRef] [PubMed]
  6. Dias, J.C.P.; Vinhaes, M.C.; Silveira, A.C.; Schofield, C.J.; Cardoso, B.; Coura, J.R. Pesquisas prioritárias sobre doença de Chagas na Amazônia: Agenda de curto-médio prazo. Rev. Soc. Bras. Med. Trop. 2001, 34, 497–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  7. Monsalve-Lara, J.; Lilioso, M.; Valença-Barbosa, C.; Thyssen, P.J.; Miguel, D.C.; Limeira, C.; Gadelha, F.R.; Fontes, F.V.H.M.; Pires-Silva, D.; Dornak, L.L.; et al. The risk of oral transmission in an area of a Chagas disease outbreak in the Brazilian northeast evaluated through entomological, socioeconomic and schooling indicators. Acta Trop. 2021, 215, 105803. [Google Scholar] [CrossRef] [PubMed]
  8. Alevi, K.C.C.; Oliveira, J.; Rocha, D.S.; Galvão, C. Trends in taxonomy of Chagas disease vectors (Hemiptera, Reduviidae, Triatominae): From Linnaean to integrative taxonomy. Pathogens 2021, 10, 1627. [Google Scholar] [CrossRef] [PubMed]
  9. Oliveira Correia, J.P.S.O.; Gil-Santana, H.R.; Dale, C.; Galvão, C. Triatoma guazu Lent and Wygodzinsky is a junior synonym of Triatoma williami Galvão, Souza and Lima. Insects 2022, 13, 591. [Google Scholar] [CrossRef] [PubMed]
  10. Gil-Santana, H.R.; Chavez, T.; Pita, S.; Panzera, F.; Galvão, C. Panstrongylus noireaui, a remarkable new species of Triatominae (Hemiptera, Reduviidae) from Bolivia. ZooKeys 2022, 1104, 203–225. [Google Scholar] [CrossRef]
  11. Costa, J.; Dale, C.; Galvão, C.; Almeida, C.E.; Dujardin, J.P. Do the new triatomine species pose new challenges or strategies for monitoring Chagas disease? An overview from 1979-2021. Mem. Inst. Oswaldo Cruz 2021, 116, e210015. [Google Scholar] [CrossRef]
  12. Galvão, C.; Carcavallo, R.; Rocha, D.S.; Jurberg, J. A checklist of the current valid species of the subfamily Triatominae Jeannel, 1919 (Hemiptera, Reduviidae) and their geographical distribution, with nomenclatural and taxonomic notes. Zootaxa 2003, 202, 1–36. [Google Scholar] [CrossRef] [Green Version]
  13. Vargas, A.; Malta, J.M.A.S.; Costa, V.M.; Del Grande, L.; Alves, C.R.V.; Cordeiro, G.S.; Aguiar, L.M.A.; Percio, J. Investigação de surto de doença de Chagas aguda na região extra-amazônica, Rio Grande do Norte, Brasil, 2016. Cad. Saúde Pública 2018, 34, e00006517. [Google Scholar] [CrossRef] [Green Version]
  14. Sampaio, G.H.F.; Silva, A.N.B.D.; Brito, C.R.D.N.; Honorato, N.R.M.; Oliveira, L.M.; Câmara, A.C.J.D.; Galvão, L.M.D.C. Epidemiological profile of acute Chagas disease in individuals infected by oral transmission in northern Brazil. Rev. Soc. Bras. Med. Trop. 2020, 53, e20200088. [Google Scholar] [CrossRef] [PubMed]
  15. Galvão, C. Vetores da Doença de Chagas no Brasil, 1st ed.; Sociedade Brasileira de Zoologia: Curitiba, Brazil, 2014; 289p. [Google Scholar]
  16. da Silva, A.N.B.; Diotaiuti, L.; Câmara, A.C.J.; Oliveira, P.I.C.; Galvão, L.M.C.; Chiari, E.; Souza, R.C.M. First report of Psammolestes tertius Lent & Jurberg, 1965 (Hemiptera, Reduviidae, Triatominae) in Rio Grande do Norte state, Brazil. Check List 2018, 14, 1109–1113. [Google Scholar]
  17. Silva, D.R.; Jurberg, J.; Silva, A.; de Farias, M.C.G.; Galvão, C. Registration of new geographical distribution of Panstrongylus geniculatus (Latreille) 1811 (Hemiptera, Reduviidae, Triatominae) in Brazil. Rev. Patol. Trop. 2016, 45, 323–326. [Google Scholar]
  18. Carcavallo, R.U.; Jurberg, J.; Lent, H.; Noireau, F.; Galvão, C. Phylogeny of the Triatominae (Hemiptera, Reduviidae). Propos. Taxon. Arrange. Entom. Vect. 2000, 7, 1–99. [Google Scholar]
  19. Lent, H.; Wygodzinsky, P. Revision of the Triatominae (Hemiptera: Reduviidae) and their significance as vectors of Chagas disease. Bull. Am. Mus. Nat. Hist. 1979, 163, 123–520. [Google Scholar]
  20. Abad-Franch, F.; Pavan, M.G.; Jaramillo, N.; Palomeque, F.S.; Dale, C.; Chaverra, D.; Monteiro, F.A. Rhodnius barretti, a new species of Triatominae (Hemiptera: Reduviidae) from western Amazonia. Mem. Inst. Oswaldo Cruz 2013, 108, 92–99. [Google Scholar] [CrossRef]
  21. Borsatto, K.C.; Azeredo-Oliveira, M.T.V.; Alevi, K.C.C. Identification Key for the Chagas Disease Vectors of Five Brazilian States, Based on Cytogenetic Data. Am. J. Trop. Med. Hyg. 2019, 100, 303–305. [Google Scholar] [CrossRef] [Green Version]
  22. Borsatto, K.C.; Reis, Y.V.; Garcia, A.C.C.; Sousa, P.S.; Azeredo-Oliveira, M.T.V.; Alevi, K.C.C. CytoKey: Identification Key for the Chagas Disease Vectors of the Largest Brazilian Urban Center (Sao Paulo State), Based on Cytogenetic Data. Am. J. Trop. Med. Hyg. 2019, 101, 113–115. [Google Scholar] [CrossRef]
  23. Gonzalez-Britz, N.E.G.; Alevi, K.C.C.; Caris-Garcia, A.C.; Martinez-Purroy, C.E.; Galvão, C.; Carrasco, H.J. Chagas disease vectors of Paraguay: Entomoepidemiological aspects of Triatoma sordida (Stal, 1859) and development of an identification key for Paraguayan triatomines based on cytogenetics data. Am. J. Trop. Med. Hyg. 2021, 105, 130–133. [Google Scholar] [CrossRef]
  24. Oliveira, J.; Rosa, J.A.; Alevi, K.C.C. Chagas Disease Vectors of Espirito Santo, Brazil: First Report of Triatoma infestans (Klug, 1834) (Hemiptera, Triatominae) in the Brazilian State and Development of an Identification Key Based on Cytogenetic Data. Am. J. Trop. Med. Hyg. 2021, 104, 653–655. [Google Scholar] [CrossRef]
  25. Ferreira, R.T.B.; Branquinho, M.R.; Cardarelli-Leite, P. Transmissão oral da doença de Chagas pelo consumo de açaí: Um desafio para a vigilância sanitária. Vigil. Sanit. Deb. 2014, 2, 4–11. [Google Scholar]
  26. Shikanai-Yasuda, M.A.; Chapadeiro, E. Possible oral transmission of acute Chagas’disease in Brazil. Rev. Inst. Med. Trop. 1991, 33, 351–357. [Google Scholar] [CrossRef] [PubMed]
  27. Shikanai-Yasuda, M.A.; Carvalho, N.B. Oral transmission of Chagas disease. Clin. Infec. Dis. 2012, 54, 845–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  28. Benchimol-Barbosa, P.R. The oral transmission of Chagas’ disease: An acute form of infection responsible for regional outbreaks. Int. J. Card. 2006, 112, 132–133. [Google Scholar] [CrossRef] [PubMed]
  29. Dias, J.P.; Bastos, C.; Araújo, E.; Mascarenhas, A.V.; Netto, E.; Grassi, M.F.; Silva, M.; Tatto, E.; Mendonça, J.; Araújo, R.F.; et al. Acute Chagas disease outbreak associated with oral transmission. Rev. Soc. Bras. Med. Trop. 2008, 41, 296–300. [Google Scholar] [CrossRef] [Green Version]
  30. Cavalcanti, L.P.G.; Rolim, D.B.; Pires Neto, R.J.; Vilar, D.C.L.F.; Nogueira, J.O.L.; Pompeu, M.M.L.; Tiexeira, M.J.; Sousa, A.Q. Microepidemics of acute Chagas’ disease by oral transmission in Ceará. Cad. Saúde Colet. 2009, 17, 911–921. [Google Scholar]
  31. Alevi, K.C.C.; Moreira, F.F.F.; Jurberg, J.; Azeredo-Oliveira, M.T.V. Description of the diploid chromosome set of Triatoma pintodiasi (Hemiptera, Triatominae). Genet. Mol. Res. 2016, 25, 15. [Google Scholar] [CrossRef]
  32. Panzera, F.; Pérez, R.; Panzera, Y.; Ferrandis, I.; Ferreiro, M.J.; Calleros, L. Cytogenetics and genome evolution in the subfamily Triatominae (Hemiptera, Reduviidae). Cytogenet. Genome Res. 2010, 128, 77–87. [Google Scholar] [CrossRef]
  33. Panzera, F.; Pita, S.; Nattero, J.; Panzera, Y.; Galvão, C.; Chavez, T.; Rojas De Arias, A.; Cardozo Téllez, L.; Noireau, F. Cryptic speciation in the Triatoma sordida subcomplex (Hemiptera, Reduviidae) revealed by chromosomal markers. Parasit. Vect. 2015, 8, 495. [Google Scholar] [CrossRef] [Green Version]
  34. Pita, S.; Lorite, P.; Nattero, J.; Galvão, C.; Alevi, K.C.C.; Teves, S.C.; Azeredo-Oliveira, M.T.V.; Panzera, F. New arrangements on several species subcomplexes of Triatoma genus based on the chromosomal position of ribosomal genes (Hemiptera-Triatominae). Infect. Genet. Evol. 2016, 43, 225–231. [Google Scholar] [CrossRef] [Green Version]
  35. Oliveira, J.; Marcet, P.L.; Takiya, D.M.; Mendonça, V.J.; Belintani, T.; Bargues, M.D.; Mateo, L.; Chagas, V.; Folly-Ramos, E.; Cordeiro-Estrela, P.; et al. Combined phylogenetic and morphometric information to delimitand unify the Triatoma brasiliensis species complex and the Brasiliensis subcomplex. Acta Trop. 2017, 170, 140–148. [Google Scholar] [CrossRef] [PubMed]
  36. Alevi, K.C.C.; Bittinelli, I.F.; Delgado, L.M.G.; Madeira, F.F.; Oliveira, J.; Lilioso, M.; Folly-Ramos, E.; Rosa, J.A.; Azeredo-Oliveira, M.T.V. Molecular cytotaxonomy of the Triatoma brasiliensis species subcomplex (Hemiptera, Triatominae). Acta Trop. 2020, 201, 105225. [Google Scholar] [CrossRef] [PubMed]
  37. Lima-Oliveira, T.M.; Fontes, F.V.H.M.; Lilioso, M.; Pires-Silva, D.; Teixeira, M.M.G.; Meza, J.G.V.; Harry, M.; Fileé, J.; Costa, J.; Valença-Barbosa, C.; et al. Molecular eco-epidemiology on the sympatric Chagas disease vectors Triatoma brasiliensis and Triatoma petrocchiae: Ecotopes, genetic variation, natural infection prevalence by trypanosomatids and parasite genotyping. Acta Trop. 2020, 201, 105188. [Google Scholar] [CrossRef] [PubMed]
  38. Pinto, C.; Barreto, J.B. Uma nova espécie de “barbeiro” do Brasil, (Triatoma petrochii n.sp.). Scienc. Med. 1925, 3, 769. [Google Scholar]
  39. Alevi, K.C.C.; Mendonça, P.P.; Pereira, N.P.; Fernandes, A.L.V.Z.; Rosa, J.A.; Azeredo-Oliveira, M.T.V. Analysis of spermiogenesis like a tool in the study of the triatomines of the Brasiliensis subcomplex. Comp. Rendus Biolog. 2013, 336, 46–50. [Google Scholar] [CrossRef]
  40. Alevi, K.C.C.; Guerra, A.L.; Imperadir, C.H.L.; Rosa, J.A.; Azeredo-Oliveira, M.T.V. Biology of Triatoma brasiliensis (Hemiptera, Triatominae) During the Imaginal Molt. Am. J. Trop. Med. Hyg. 2016, 94, 689–690. [Google Scholar] [CrossRef] [Green Version]
  41. Alevi, K.C.C.; Augusto, Y.; Oliveira, J.; Belintani, T.; Silva, L.A.; Rosa, J.A.; Azeredo-Oliveira, M.T.V. Reproductive aspects of Chagas disease vectors (Hemiptera, Triatominae) with anatomical teratologies. Acta Trop. 2018, 185, 251–254. [Google Scholar] [CrossRef] [Green Version]
  42. Alevi, K.C.C.; Castro, N.F.C.; Lima, A.C.C.; Ravazi, A.; Morielli-Souza, A.; Oliveira, J.; Rosa, J.A.; Azeredo-Oliveira, M.T.V. Nucleolar persistence during spermatogenesis of the genus Rhodnius (Hemiptera, Triatominae). Cell Biol. Int. 2014, 38, 977–980. [Google Scholar] [CrossRef]
  43. Madeira, F.F.; Borsatto, K.C.; Lima, A.C.C.; Ravazi, A.; Oliveira, J.; Rosa, J.A.; Azeredo-Oliveira, M.T.V.; Alevi, K.C.C. Nucleolar Persistence: Peculiar Characteristic of Spermatogenesis of the Vectors of Chagas Disease (Hemiptera, Triatominae). Am. J. Trop. Med. Hyg. 2016, 95, 1118–1120. [Google Scholar] [CrossRef] [Green Version]
  44. Ravazi, A.; Oliveira, J.; Campos, F.F.; Madeira, F.F.; Reis, Y.V.; Oliveira, A.B.B.; Azeredo-Oliveira, M.T.V.; Rosa, J.A.; Galvão, C.; Alevi, K.C.C. Trends in evolution of the Rhodniini tribe (Hemiptera, Triatominae): Experimental crosses between Psammolestes tertius Lent & Jurberg, 1965 and P. coreodes Bergroth, 1911 and analysis of the reproductive isolating mechanisms. Parasit. Vec. 2021, 14, 350. [Google Scholar]
  45. Pinotti, H.; Oliveira, J.; Ravazi, A.; Madeira, F.F.; Reis, Y.V.; Oliveira, A.B.B.; Azeredo-Oliveira, M.T.V.; Rosa, J.A.; Alevi, K.C.C. Revisiting the hybridization processes in the Triatoma brasiliensis complex (Hemiptera, Triatominae): Interspecific genomic compatibility point to a possible recent diversification of the species grouped in this monophyletic complex. PLoS ONE 2021, 16, e0257992. [Google Scholar] [CrossRef] [PubMed]
  46. Alevi, K.C.C.; Pinotti, H.; Araújo, R.F.; Azeredo-Oliveira, M.T.V.; Rosa, J.A.; Mendonça, V.J. Hybrid colapse confirm the specific status of Triatoma bahiensis Sherlock and Serafim, 1967 (Hemiptera, Triatominae). Am. J. Trop. Med. Hyg. 2018, 98, 475–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  47. Pita, S.; Lorite, P.; Cuadrado, A.; Panzera, Y.; De Oliveira, J.; Alevi, K.C.C.; Rosa, J.A.; Freitas, S.P.C.; Gómez-Palacio, A.; Solari, A.; et al. High chromosomal mobility of rDNA clusters in holocentric chromosomes of Triatominae, vectors of Chagas disease (Hemiptera-Reduviidae). Med. Vet. Entomol. 2022, 36, 66–80. [Google Scholar] [CrossRef] [PubMed]
  48. Alevi, K.C.C.; Imperador, C.H.L.; Moreira, F.F.F.; Jurberg, J.; Azeredo-Oliveira, M.T.V. Differentiation between Triatoma arthurneivai and Triatoma wygodzinskyi (Hemiptera: Reduviidae: Triatominae) using cytotaxonomy. Gen. Mol. Res. 2016, 15, gmr7869. [Google Scholar] [CrossRef] [PubMed]
  49. Schreiber, G.; Pellegrino, J. Eteropicnosi di autosomi come possible meccanismo di speciazione. Sci. Genet. 1950, 3, 215–226. [Google Scholar]
  50. Ueshima, N. Cytotaxonomy of the Triatominae (Reduviidae: Hemiptera). Chromosoma 1966, 18, 97–122. [Google Scholar] [CrossRef]
  51. Alevi, K.C.C.; Oliveira, J.; Moreira, F.F.F.; Jurberg, J.; Rosa, J.A.; Azeredo-Oliveira, M.T.V. Chromosomal characteristics and distribution of constitutive heterochromatin in the Matogrossensis and Rubrovaria subcomplexes. Infect. Gen. Evol. 2015, 33, 158–162. [Google Scholar] [CrossRef]
  52. Alevi, K.C.C.; Ravazi, A.; Franco-Bernardes, M.F.; Rosa, J.A.; Azeredo-Oliveira, M.T.V. Chromosomal evolution in the pallescens group (Hemiptera, Triatominae). Gen. Mol. Res. 2015, 14, 12654–12659. [Google Scholar] [CrossRef]
  53. Silva, L.R.S.; Silva, M.B.A.; Oliveira, G.M.A.; Medeiros, C.A.; Oliveira, J.B. Entomological surveillance of Chagas disease vectors in the municipalities of the VIII Regional Health Management of Pernambuco State, Brazil, from 2012 to 2017. Rev. Pan. Amaz. Saude 2021, 12, e202100858. [Google Scholar]
  54. Barbosa-Silva, A.N.; Souza, R.C.M.; Diotaiuti, L.; Aguiar, L.M.A.; Câmara, A.C.J.; Galvão, L.M.C.; Chiari, E. Synanthropic triatomines (Hemiptera: Reduviidae): Infestation, colonization, and natural infection by trypanosomatids in the State of Rio Grande do Norte, Brazil. Rev. Soc. Bras. Med. Trop. 2019, 52, e20190061. [Google Scholar] [CrossRef] [Green Version]
  55. Corrêa, R.R.; Espínola, H.N. Descrição de Triatoma pseudomaculata, nova espécie de triatomíneo de Sobral, Ceará (Hemiptera, Reduviidae). Arq. Hig. Saude Publ. 1964, 29, 115–127. [Google Scholar]
  56. Lucena, D. Estudo sobre a Doença de Chagas no Nordeste do Brasil. Rev. Brasil. Mal. Trop. 1969, 22, 3–173. [Google Scholar]
Table 1. Dichotomous key for species from Pernambuco, based on cytogenetic data.
Table 1. Dichotomous key for species from Pernambuco, based on cytogenetic data.
Identification Key (CytoKey)
1. Karyotype with 2n = 21 chromosomes (18A + X1X2Y)Panstrongylus megistus
2. Karyotype with 2n = 23 chromosomes (20A + X1X2 Y)3
3a. Prophase without heterochromatin blocks dispersed inside the nucleusPanstrongylus geniculatus
3b. Prophase with heterochromatic blocks dispersed inside the nucleusPanstrongylus tibiamaculatus
4. Karyotype with 2n = 25 chromosomes (22A + X1X2Y)Triatoma rubrofasciata
5. Karyotype with 2n = 24 chromosomes (20A + X1X2 X3Y)6
6a. 45S rDNA probe located in one autosomal pairPanstrongylus lutzi
6b. 45S rDNA probe located in one X sex chromosome Triatoma melanocephala
7. Karyotype with 2n = 22 chromosomes (20A + XY)8
8a. Prophase without heterochromatin blocks dispersed inside the nucleus9
8b. Prophase with heterochromatic blocks dispersed inside the nucleus10
9a. Chromocenter formed by a single heterochromatic corpusclePsammolestes tertius
9b. Chromocenter formed by three heterochromatic corpusclesRhodnius neglectus
10a. Chromocenter formed by XY sex chromosomesRhodnius nasutus
10b. Chromocenter formed by XY sex chromosomes and autosomes11
11a. 45S rDNA probe located in one X sex chromosome 12
11b. 45S rDNA probe located in one autosomal pair13
12a. Chromocenter formed by XY sex chromosomes and attached bivalentTriatoma petrocchiae
12b. Chromocenter formed by XY sex chromosomes and several bivalentsTriatoma sordida
13a. Heterochromatin in 3–4 pairs of autosomesTriatoma pseudomaculata
13b. Heterochromatin in all autosomesTriatoma brasiliensis
Table 2. Dichotomous key for species from Rio Grande do Norte, based on cytogenetic data.
Table 2. Dichotomous key for species from Rio Grande do Norte, based on cytogenetic data.
Identification Key (CytoKey)
1. Karyotype with 2n = 21 chromosomes (18A + X1X2Y)Panstrongylus megistus
2. Karyotype with 2n = 25 chromosomes (22A + X1X2Y)Triatoma rubrofasciata
3. Karyotype with 2n = 24 chromosomes (20A + X1X2 X3Y)4
4a. 45S rDNA probe located in one autosomal pairPanstrongylus lutzi
4b. 45S rDNA probe located in one X sex chromosome Triatoma melanocephala
5. Karyotype with 2n = 22 chromosomes (20A + XY)6
6a. Prophase without heterochromatin blocks dispersed inside the nucleusPsammolestes tertius
6b. Prophase with heterochromatic blocks dispersed inside the nucleus7
7a. 45S rDNA probe located in one autosomal pair8
7b. 45S rDNA probe located in one X sex chromosome 9
8a. Heterochromatin in 3–4 pairs of autosomesTriatoma pseudomaculata
8b. Heterochromatin in all autosomesTriatoma brasiliensis
9a. Chromocenter formed by XY sex chromosomesRhodnius nasutus
9b. Chromocenter formed by XY sex chromosomes more autosomesTriatoma petrocchiae
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

de Mello, D.V.; Nhapulo, E.F.; Cesaretto, L.P.; Alevi, J.J.; Cristal, D.C.; Montanari, G.; Galvão, C.; Alevi, K.C.C. Dichotomous Keys Based on Cytogenetic Data for Triatomines Reported in Brazilian Regions with Outbreaks of Orally Transmitted Chagas Disease (Pernambuco and Rio Grande Do Norte). Trop. Med. Infect. Dis. 2023, 8, 196. https://doi.org/10.3390/tropicalmed8040196

AMA Style

de Mello DV, Nhapulo EF, Cesaretto LP, Alevi JJ, Cristal DC, Montanari G, Galvão C, Alevi KCC. Dichotomous Keys Based on Cytogenetic Data for Triatomines Reported in Brazilian Regions with Outbreaks of Orally Transmitted Chagas Disease (Pernambuco and Rio Grande Do Norte). Tropical Medicine and Infectious Disease. 2023; 8(4):196. https://doi.org/10.3390/tropicalmed8040196

Chicago/Turabian Style

de Mello, Denis Vinícius, Emercio Felisberto Nhapulo, Laura Poloto Cesaretto, Julia Junqueira Alevi, Daniel Cesaretto Cristal, Giulia Montanari, Cleber Galvão, and Kaio Cesar Chaboli Alevi. 2023. "Dichotomous Keys Based on Cytogenetic Data for Triatomines Reported in Brazilian Regions with Outbreaks of Orally Transmitted Chagas Disease (Pernambuco and Rio Grande Do Norte)" Tropical Medicine and Infectious Disease 8, no. 4: 196. https://doi.org/10.3390/tropicalmed8040196

APA Style

de Mello, D. V., Nhapulo, E. F., Cesaretto, L. P., Alevi, J. J., Cristal, D. C., Montanari, G., Galvão, C., & Alevi, K. C. C. (2023). Dichotomous Keys Based on Cytogenetic Data for Triatomines Reported in Brazilian Regions with Outbreaks of Orally Transmitted Chagas Disease (Pernambuco and Rio Grande Do Norte). Tropical Medicine and Infectious Disease, 8(4), 196. https://doi.org/10.3390/tropicalmed8040196

Article Metrics

Back to TopTop