Clinical Characteristics of Acute Kidney Injury Associated with Tropical Acute Febrile Illness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Clinical Definitions
2.3. Statistical Analysis
3. Results
3.1. Characteristics of Eligible Cases and Prevalence of AKI in Patients with TAFI
3.2. Complications and Outcomes of AKI in Patients with TAFI
3.3. Factors Associated with AKI
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eskerud, J.R.; Laerum, E.; Fagerthun, H.; Lunde, P.K.; Naess, A. Fever in general practiceI. Frequency and diagnoses. Fam. Pract. 1992, 9, 263–269. [Google Scholar] [CrossRef]
- Andrews, M.A.; Ittyachen, A.M. Aetiology of acute febrile illness: A multicentre study from the province of Kerala in southern India. Trop. Dr. 2018, 48, 322–325. [Google Scholar] [CrossRef] [PubMed]
- Luvira, V.; Silachamroon, U.; Piyaphanee, W.; Lawpoolsri, S.; Chierakul, W.; Leaungwutiwong, P.; Thawornkuno, C.; Wattanagoon, Y. Etiologies of Acute Undifferentiated Febrile Illness in Bangkok, Thailand. Am. J. Trop. Med. Hyg. 2019, 100, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Nair, J.J.; Bhat, A.; Prabhu, M.V. A Clinical Study of Acute Kidney Injury in Tropical Acute Febrile Illness. J. Clin. Diagn. Res. 2016, 10, OC01–OC05. [Google Scholar] [CrossRef]
- Koza, Y. Acute kidney injury: Current concepts and new insights. J. Inj. Violence Res. 2014, 8, 58–62. [Google Scholar]
- Attur, R.P.; Kuppasamy, S.; Bairy, M.; Nagaraju, S.P.; Pammidi, N.R.; Kamath, V.; Kamath, A.; Rao, L.; Bairy, I. Acute kidney injury in scrub typhus. Clin. Exp. Nephrol. 2013, 17, 725–729. [Google Scholar] [CrossRef]
- Boonpucknavig, V.; Bhamarapravati, N.; Boonpucknavig, S.; Futrakul, P.; Tanpaichitr, P. Glomerular changes in dengue hemorrhagic fever. Arch. Pathol. Lab. Med. 1976, 100, 206–212. [Google Scholar] [PubMed]
- Boonpucknavig, V.; Soontornniyomkij, V. Pathology of renal diseases in the tropics. Semin. Nephrol. 2003, 23, 88–106. [Google Scholar] [CrossRef]
- Herbert, C.; Patel, M.; Nugent, A.; Dimas, V.V.; Guleserian, K.J.; Quigley, R.; Modem, V. Serum Cystatin C as an Early Marker of Neutrophil Gelatinase-associated Lipocalin-positive Acute Kidney Injury Resulting from Cardiopulmonary Bypass in Infants with Congenital Heart Disease. Congenit. Heart Dis. 2015, 10, E180–E188. [Google Scholar] [CrossRef]
- Hommel, D.; Talarmin, A.; Reynes, J.M.; Hulin, A. Acute renal failure associated with dengue fever in French Guiana. Nephron 1999, 83, 183. [Google Scholar] [CrossRef]
- Susilawati, T.N.; McBride, W.J. Acute undifferentiated fever in Asia: A review of the literature. Southeast Asian J. Trop. Med. Public Health 2014, 45, 719–726. [Google Scholar] [PubMed]
- Kim, D.-M.; Kang, D.W.; Kim, J.O.; Chung, J.H.; Kim, H.L.; Park, C.Y.; Lim, S.-C. Acute renal failure due to acute tubular necrosis caused by direct invasion of Orientia tsutsugamushi. J. Clin. Microbiol. 2008, 46, 1548–1550. [Google Scholar] [CrossRef] [PubMed]
- Tseng, B.Y.; Yang, H.H.; Liou, J.H.; Chen, L.K.; Hsu, Y.H. Immunohistochemical study of scrub typhus: A report of two cases. Kaohsiung J. Med. Sci. 2008, 24, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, R.; Yu, L.; Younes-Ibrahim, M.; Schor, N.; Burdmann, E.A. Epidemiology of acute kidney injury in Latin America. Semin. Nephrol. 2008, 28, 320–329. [Google Scholar] [CrossRef]
- Mishra, S.K.; Das, B.S. Malaria and acute kidney injury. Semin. Nephrol. 2008, 28, 395–408. [Google Scholar] [CrossRef]
- Oliveira, J.F.; Burdmann, E.A. Dengue-associated acute kidney injury. Clin. Kidney J. 2015, 8, 681–685. [Google Scholar] [CrossRef]
- Plewes, K.; Royakkers, A.A.; Hanson, J.; Hasan, M.M.; Alam, S.; Ghose, A.; Maude, R.J.; Stassen, P.M.; Charunwatthana, P.; Lee, S.J.; et al. Correlation of biomarkers for parasite burden and immune activation with acute kidney injury in severe falciparum malaria. Malar. J. 2014, 13, 91. [Google Scholar] [CrossRef]
- Shenouda, A.; Hatch, F.E. Influenza A viral infection associated with acute renal failure. Am. J. Med. 1976, 61, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Singh, U.; Scheld, W.M. Infectious etiologies of rhabdomyolysis: Three case reports and review. Clin. Infect. Dis. 1996, 22, 642–649. [Google Scholar] [CrossRef]
- Watanabe, T. Renal complications of seasonal and pandemic influenza A virus infections. Eur. J. Pediatr. 2013, 172, 15–22. [Google Scholar] [CrossRef]
- Yang, L. Acute Kidney Injury in Asia. Kidney Dis. 2016, 2, 95–102. [Google Scholar] [CrossRef]
- Cerda, J.; Lameire, N.; Eggers, P.; Pannu, N.; Uchino, S.; Wang, H.; Bagga, A.; Levin, A. Epidemiology of acute kidney injury. Clin. J. Am. Soc. Nephrol. 2008, 3, 881–886. [Google Scholar] [CrossRef]
- Jeyachandran Dhanapriya, T.D. Ramanathan Sakthirajan, Natarajan Gopalakrishnan. Acute Kidney Injury in Tropical Countries. EMJ 2017, 5, 66–74. [Google Scholar]
- Eckardt, K.U.; Kasiske, B.L. Kidney disease: Improving global outcomes. Nat. Rev. Nephrol. 2009, 5, 650–657. [Google Scholar] [CrossRef]
- Ando, M.; Mori, J.; Ohashi, K.; Akiyama, H.; Morito, T.; Tsuchiya, K.; Nitta, K.; Sakamaki, H. A comparative assessment of the RIFLE, AKIN and conventional criteria for acute kidney injury after hematopoietic SCT. Bone Marrow Transpl. 2010, 45, 1427–1434. [Google Scholar] [CrossRef]
- Angeli, P.; Rodriguez, E.; Piano, S.; Ariza, X.; Morando, F.; Sola, E.; Romano, A.; Garcia, E.; Pavesi, M.; Risso, A.; et al. Acute kidney injury and acute-on-chronic liver failure classifications in prognosis assessment of patients with acute decompensation of cirrhosis. Gut 2015, 64, 1616–1622. [Google Scholar] [CrossRef]
- Park, S.; Jeong, T.D. Estimated Glomerular Filtration Rates Show Minor but Significant Differences Between the Single and Subgroup Creatinine-Based Chronic Kidney Disease Epidemiology Collaboration Equations. Ann. Lab. Med. 2019, 39, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Enderlein, J. Maximum-likelihood criterion and single-molecule detection. Appl. Opt. 1995, 34, 514–526. [Google Scholar] [CrossRef] [PubMed]
- Ngamjarus, C.; Chongsuvivatwong, V.; McNeil, E.; Holling, H. Enhancement of Learning on Sample Size Calculation with a Smartphone Application: A Cluster-Randomized Controlled Trial. Southeast Asian J. Trop. Med. Public Health 2017, 48, 240–252. [Google Scholar]
- Basu, G.; Chrispal, A.; Boorugu, H.; Gopinath, K.G.; Chandy, S.; Prakash, J.A.J.; Thomas, K.; Abraham, A.M.; John, G.T. Acute kidney injury in tropical acute febrile illness in a tertiary care centre—RIFLE criteria validation. Nephrol. Dial. Transplant. 2010, 26, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.D.; Jain, A.D. Acute Kidney Injury in Tropical Acute Febrile Illness of Malwa Region. Sch. J. Appl. Med. Sci. 2018, 6, 1274–1277. [Google Scholar]
- Kamil, W.M.; Abdullah, R.; Thabit, A.; Din, M.; Azman, S.; Arumugam, M.; Singh, S.; Rosli, N. 117 A Prospective Study of Acute Kidney Injury in Tropical Acute Febrile Illness in West Pahang, Malaysia. In Kidney International Reports; Elsevier: Amsterdam, The Netherlands, 2017; p. 2. [Google Scholar]
- Ferenbach, D.A.; Bonventre, J.V. Acute kidney injury and chronic kidney disease: From the laboratory to the clinic. Nephrol. Ther. 2016, 12 (Suppl. S1), S41–S48. [Google Scholar] [CrossRef] [PubMed]
- Diptyanusa, A.; Phumratanaprapin, W.; Phonrat, B.; Poovorawan, K.; Hanboonkunupakarn, B.; Sriboonvorakul, N.; Thisyakorn, U. Characteristics and associated factors of acute kidney injury among adult dengue patients: A retrospective single-center study. PLoS ONE 2019, 14, e0210360. [Google Scholar] [CrossRef] [PubMed]
- Diptyanusa, A.; Phumratanaprapin, W. Predictors and Outcomes of Dengue-Associated Acute Kidney Injury. Am. J. Trop. Med. Hyg. 2021, 105, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.D.; Solomon, S.; Lerner, D.; Del Rio, M. Malaria and acute kidney injury. Pediatr. Nephrol. 2020, 35, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Dalbhi, S.A.; Alshahrani, H.A.; Almadi, A.; Busaleh, H.; Alotaibi, M.; Almutairi, W.; Almukhrq, Z. Prevalence and mortality due to acute kidney injuries in patients with influenza A (H1N1) viral infection: A systemic narrative review. Int. J. Health Sci. (Qassim) 2019, 13, 56–62. [Google Scholar]
- Berendt, A.R. Sequestration and its discontents: Infected erythrocyte-endothelial cell interactions in Plasmodium falciparum malaria. Res. Immunol. 1993, 144, 740–745; discussion 754–762. [Google Scholar] [CrossRef]
- Daher, E.F.; Vieira, A.P.; Jacinto, C.N.; Lima, R.S.; Girao, M.M.; Fernandes, A.T.; Neto, R.J.; Silva, G.B.J. Differences among children, adolescents and adults with severe leptospirosis: A comparative analysis. Indian J. Nephrol. 2014, 24, 166–170. [Google Scholar] [CrossRef]
- Mehta, K.; Pajai, A.; Bhurke, S.; Shirkande, A.; Bhadade, R.; D’Souza, R. Acute Kidney Injury of Infectious Etiology in Monsoon Season: A Prospective Study Using Acute Kidney Injury Network Criteria. Indian J. Nephrol. 2018, 28, 143–152. [Google Scholar] [CrossRef]
- Hoste, E.A.J.; Kellum, J.A.; Selby, N.M.; Zarbock, A.; Palevsky, P.M.; Bagshaw, S.M.; Goldstein, S.L.; Cerda, J.; Chawla, L.S. Global epidemiology and outcomes of acute kidney injury. Nat. Rev. Nephrol. 2018, 14, 607–625. [Google Scholar] [CrossRef]
- Han, S.S.; Ahn, S.Y.; Ryu, J.; Baek, S.H.; Chin, H.J.; Na, K.Y.; Chae, D.W.; Kim, S. Proteinuria and hematuria are associated with acute kidney injury and mortality in critically ill patients: A retrospective observational study. BMC Nephrol. 2014, 15, 93. [Google Scholar] [CrossRef]
- Han, S.S.; Ahn, S.Y.; Ryu, J.; Baek, S.H.; Kim, K.I.; Chin, H.J.; Na, K.Y.; Chae, D.W.; Kim, S. U-shape relationship of white blood cells with acute kidney injury and mortality in critically ill patients. Tohoku J. Exp. Med. 2014, 232, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Melnikov, V.Y.; Faubel, S.; Siegmund, B.; Lucia, M.S.; Ljubanovic, D.; Edelstein, C.L. Neutrophil-independent mechanisms of caspase-1- and IL-18-mediated ischemic acute tubular necrosis in mice. J. Clin. Investig. 2002, 110, 1083–1091. [Google Scholar] [CrossRef] [PubMed]
- Tadagavadi, R.; Reeves, W.B. Neutrophils in cisplatin AKI-mediator or marker? Kidney Int. 2017, 92, 11–13. [Google Scholar] [CrossRef] [PubMed]
- Rabb, H. The T cell as a bridge between innate and adaptive immune systems: Implications for the kidney. Kidney Int. 2002, 61, 1935–1946. [Google Scholar] [CrossRef]
- Rahman, M.A.; Roy, D.K.; Debnath, C.R.; Roy, A.S.; Muqueet, M.A.; Kabir, M.S.; Ahammed, S.U.; Rabbani, M.G.; Asadujjaman, M.; Hossain, M.B.; et al. Acute Kidney Injury in Patients with Acute Viral Hepatitis: A Study in a Tertiary Care Hospital. Mymensingh Med. J. 2017, 26, 790–796. [Google Scholar]
- Wiedermann, C.J.; Wiedermann, W.; Joannidis, M. Causal relationship between hypoalbuminemia and acute kidney injury. World J. Nephrol. 2017, 6, 176–187. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Y.; Geng, X.; Chen, R.; Xu, X.; Zhang, X.; Lin, J.; Teng, J.; Ding, X. Metabolic acidosis as a risk factor for the development of acute kidney injury and hospital mortality. Exp. Med. 2017, 13, 2362–2374. [Google Scholar] [CrossRef]
- Vachvanichsanong, P.; Thisyakorn, U.; Thisyakorn, C. Dengue hemorrhagic fever and the kidney. Arch. Virol. 2016, 161, 771–778. [Google Scholar] [CrossRef]
- Viera, A.J.; Wouk, N. Potassium Disorders: Hypokalemia and Hyperkalemia. Am. Fam. Physician 2015, 92, 487–495. [Google Scholar]
- Vikrant, S.; Gupta, D.; Singh, M. Epidemiology and outcome of acute kidney injury from a tertiary care hospital in India. Saudi J. Kidney Dis. Transpl. 2018, 29, 956–966. [Google Scholar] [CrossRef] [PubMed]
- Barber, B.E.; Rajahram, G.S.; Grigg, M.J.; William, T.; Anstey, N.M. World Malaria Report: Time to acknowledge Plasmodium knowlesi malaria. Malar. J. 2017, 16, 135. [Google Scholar] [CrossRef] [PubMed]
- Mallhi, T.H.; Khan, A.H.; Adnan, A.S.; Sarriff, A.; Khan, Y.H.; Jummaat, F. Incidence, Characteristics and Risk Factors of Acute Kidney Injury among Dengue Patients: A Retrospective Analysis. PLoS ONE 2015, 10, e0138465. [Google Scholar] [CrossRef]
- Mehta, R.L.; Chertow, G.M. Acute renal failure definitions and classification: Time for change? J. Am. Soc. Nephrol. 2003, 14, 2178–2187. [Google Scholar] [CrossRef] [PubMed]
- Hodeify, R.; Megyesi, J.; Tarcsafalvi, A.; Mustafa, H.I.; Hti Lar Seng, N.S.; Price, P.M. Gender differences control the susceptibility to ER stress-induced acute kidney injury. Am. J. Physiol. Ren. Physiol. 2013, 304, F875–F882. [Google Scholar] [CrossRef]
- Kawakami, T.; Inagi, R.; Takano, H.; Sato, S.; Ingelfinger, J.R.; Fujita, T.; Nangaku, M. Endoplasmic reticulum stress induces autophagy in renal proximal tubular cells. Nephrol. Dial. Transpl. 2009, 24, 2665–2672. [Google Scholar] [CrossRef]
- Panitchote, A.; Mehkri, O.; Hastings, A.; Hanane, T.; Demirjian, S.; Torbic, H.; Mireles-Cabodevila, E.; Krishnan, S.; Duggal, A. Factors associated with acute kidney injury in acute respiratory distress syndrome. Ann. Intensive Care 2019, 9, 74. [Google Scholar] [CrossRef]
- Kuiper, J.W.; Vaschetto, R.; Della Corte, F.; Plotz, F.B.; Groeneveld, A.B. Bench-to-bedside review: Ventilation-induced renal injury through systemic mediator release—Just theory or a causal relationship? Crit Care 2011, 15, 228. [Google Scholar] [CrossRef]
- Husain-Syed, F.; Slutsky, A.S.; Ronco, C. Lung-Kidney Cross-Talk in the Critically Ill Patient. Am. J. Respir. Crit. Care Med. 2016, 194, 402–414. [Google Scholar] [CrossRef]
- Sharkey, R.A.; Mulloy, E.M.; O’Neill, S.J. The acute effects of oxygen and carbon dioxide on renal vascular resistance in patients with an acute exacerbation of COPD. Chest 1999, 115, 1588–1592. [Google Scholar] [CrossRef]
- Win, K.K.; Thanachartwet, V.; Wattanagoon, Y.; Jerraksuwan, S.; Ruangweerayut, R.; Desakorn, V. Factors associated with acute renal failure in adults with severe falciparum malaria. Southeast Asian J. Trop. Med. Public Health 2012, 43, 1071–1079. [Google Scholar] [PubMed]
- Kraev, A.I.; Torosoff, M.T.; Fabian, T.; Clement, C.M.; Perez-Tamayo, R.A. Postoperative hyperbilirubinemia is an independent predictor of longterm outcomes after cardiopulmonary bypass. J. Am. Coll. Surg. 2008, 206, 645–653. [Google Scholar] [CrossRef]
- Mohapatra, M.K.; Behera, A.K.; Karua, P.C.; Bariha, P.K.; Rath, A.; Aggrawal, K.C.; Nahak, S.R.; Gudaganatti, S.S. Urinary bile casts in bile cast nephropathy secondary to severe falciparum malaria. Clin. Kidney J. 2016, 9, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Liao, P.P.; Song, H.C.; Zhou, J.H.; Chu, H.C.; Lyu, L. Hyperbilirubinemia Induces Pro-Apoptotic Effects and Aggravates Renal Ischemia Reperfusion Injury. Nephron 2019, 142, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Gameiro, J.; Goncalves, M.; Pereira, M.; Rodrigues, N.; Godinho, I.; Neves, M.; Gouveia, J.; Silva, Z.C.E.; Jorge, S.; Lopes, J.A. Obesity, acute kidney injury and mortality in patients with sepsis: A cohort analysis. Ren. Fail. 2018, 40, 120–126. [Google Scholar] [CrossRef]
- Schiffl, H.; Lang, S.M. Obesity, acute kidney injury and outcome of critical illness. Int. Urol. Nephrol. 2017, 49, 461–466. [Google Scholar] [CrossRef]
- Druml, W.; Metnitz, B.; Schaden, E.; Bauer, P.; Metnitz, P.G. Impact of body mass on incidence and prognosis of acute kidney injury requiring renal replacement therapy. Intensive Care Med. 2010, 36, 1221–1228. [Google Scholar] [CrossRef] [PubMed]
- Chagnac, A.; Weinstein, T.; Korzets, A.; Ramadan, E.; Hirsch, J.; Gafter, U. Glomerular hemodynamics in severe obesity. Am. J. Physiol. Renal. Physiol. 2000, 278, F817–F822. [Google Scholar] [CrossRef]
- Nakamura, K.; Fuster, J.J.; Walsh, K. Adipokines: A link between obesity and cardiovascular disease. J. Cardiol. 2014, 63, 250–259. [Google Scholar] [CrossRef]
- Danziger, J.; Chen, K.P.; Lee, J.; Feng, M.; Mark, R.G.; Celi, L.A.; Mukamal, K.J. Obesity, Acute Kidney Injury, and Mortality in Critical Illness. Crit. Care Med. 2016, 44, 328–334. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, Y.; Huang, Y.M.; Wang, M.; Ling, W.; Sui, Y.; Zhao, H.L. Obesity in patients with COVID-19: A systematic review and meta-analysis. Metabolism 2020, 113, 154378. [Google Scholar] [CrossRef]
- Huang, C.Y.; Grandas, F.G.; Flechet, M.; Meyfroidt, G. Clinical prediction models for acute kidney injury. Rev. Bras. Ter. Intensiv. 2020, 32, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Angeli, P.; Ginès, P.; Wong, F.; Bernardi, M.; Boyer, T.D.; Gerbes, A.; Moreau, R.; Jalan, R.; Sarin, S.K.; Piano, S.; et al. Diagnosis and management of acute kidney injury in patients with cirrhosis: Revised consensus recommendations of the International Club of Ascites. J. Hepatol. 2015, 62, 968–974. [Google Scholar] [CrossRef]
- Bellomo, R.; Ronco, C.; Kellum, J.A.; Mehta, R.L.; Palevsky, P.; ADQI Workgroup. Acute renal failure-definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care 2004, 8, R204. [Google Scholar] [CrossRef] [PubMed]
- Mehta, R.L.; Kellum, J.A.; Shah, S.V.; Molitoris, B.A.; Ronco, C.; Warnock, D.G.; Levin, A.; Acute Kindey Injury Network. Acute Kidney Injury Network: Report of an initiative to improve outcomes in acute kidney injury. Crit Care 2007, 11, 1–8. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO). Acute Kidney Injury Work Group. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Kidney Int. Suppl. 2012, 2, 1–138. [Google Scholar]
TAFI | Total Cases n = 1019 n | Non-AKI Cases n = 950 n (%) | AKI Cases n = 69 n (%) |
---|---|---|---|
Dengue (%) | 767 | 726 (94.7) | 41 (5.3) |
Non-severe (93.7%) | 719 | 693 (96.3) | 26 (3.6) |
Severe (6.3%) | 48 | 33 (4.5) | 15 (31.3) |
Malaria (%) | 131 | 117 (89.3) | 14 (10.7) |
Pf (28.2) | 37 | 27 (73.0) | 10 (27.0) |
Pv (71.8) | 94 | 90 (95.7) | 4 (4.3) |
Influenza (%) | 106 | 95 (89.6) | 11 (10.4) |
Influenza A (77.4) | 82 | 73 (89.0) | 9 (11.0) |
Influenza B (22.6) | 24 | 22 (91.7) | 2 (8.3) |
AKI Criteria and Staging | |||
---|---|---|---|
Conventional Criteria 41/1019 (4%) | RIFLE 42/1019 (4.1%) | AKIN 61/1019 (5.9%) | KDIGO 69/1019 (6.8%) |
Risk: 18 (42.9%) | Stage 1: 36 (59%) | Stage 1: 45 (65.2%) | |
Injury: 9 (21.4%) | Stage 2: 9 (14.8%) | Stage 2: 8 (11.6%) | |
Failure: 15 (35.7%) | Stage 3: 16 (26.2%) | Stage 3: 16 (23.2%) |
Parameter | Total Cases n = 1019 | Non-AKI Group n = 950 | AKI Group n = 69 | p-Value |
---|---|---|---|---|
Age, median (IQR) | 33 (24–48) | 32 (24–48) | 37 (27–56) | 0.01 |
Age group, n (%) | ||||
18–39 years | 650 (63.8) | 611 (64.3) | 39 (56.5) | 0.06 |
41–59 years | 240 (23.6) | 225 (23.7) | 15 (21.7) | |
≥60 years | 129 (12.7) | 114 (12) | 15 (21.7) | |
Sex, n (%) | ||||
Male | 565 (55.4) | 515 (54.2) | 50 (72.5) | 0.003 |
Female | 454 (44.6) | 435 (45.8) | 19 (27.5) | |
BMI, median (IQR) | 23.1 (20.4–26.7) | 23 (20.5–26.4) | 25.7 (22.7–30.8) | <0.001 |
Body temperature (°C), median (IQR) | 38.2 (37.8–39) | 38.2(37.8–39) | 38.5 (38–39.3) | 0.009 |
Underlying disease, n (%) | ||||
Diabetes mellitus | 83 (8.1) | 72 (7.6) | 11 (15.9) | 0.01 |
Hypertension | 141 (13.8) | 127 (13.4) | 14 (20.3) | 0.1 |
Dyslipidaemia | 81 (7.9) | 73 (7.7) | 8 (11.6) | 0.2 |
Other underlying diseases * | 141 (13.8) | 120 (12.6) | 21(30.4) | <0.001 |
Dyspnea, n (%) | 35 (3.4%) | 25(2.6%) | 10(14.5%) | <0.001 |
Nausea and vomiting, n (%) | 378 (37.1) | 359 (37.8) | 19 (27.5) | 0.8 |
High-grade fever, n (%) | 191 (18.7) | 171 (18) | 20 (29) | 0.02 |
Chills, n (%) | 430(42.2) | 401 (42.2) | 29(42) | 0.9 |
Headache, n (%) | 540 (53%) | 509 (53.6) | 31 (44.9) | 0.16 |
Myalgia, n (%) | 655 (64.3%) | 624 (65.7) | 31 (44.9) | 0.001 |
Arthralgia, n (%) | 43 (4.2) | 41 (4.3) | 2 (2.9) | 0.8 |
Pallor, n (%) | 29 (2.8) | 22 (2.3) | 7 (10.1) | 0.002 |
Parameter | Overall | Non-AKI Group | AKI Group | p-Value | |||
---|---|---|---|---|---|---|---|
n | Median (IQR) | n | Median (IQR) | n | Median (IQR) | ||
WBC (×103/μL) 10 | 1019 | 3.9 (2.8–6.1) | 950 | 3.9 (2.7–6) | 69 | 5.2 (4–8.3) | <0.001 |
Neutrophils (%) | 1019 | 53 (36–68) | 950 | 52 (35–67) | 69 | 63 (51.5–73) | <0.001 |
Lymphocytes (%) | 1016 | 24 (15–33) | 949 | 25 (16–34) | 69 | 16 (10–25) | <0.001 |
Atypical lymphocytes (%) | 936 | 9 (4–18) | 872 | 9 (4–18) | 64 | 5 (2–10.8) | <0.001 |
RBC (×106/μL) | 1019 | 4.9 (4.9–5.4) | 950 | 4.9 (4.5–5.5) | 69 | 4.7 (4.1–5.4) | 0.01 |
Platelets (×103/μL) /µL) | 1019 | 71 (39–124) | 951 | 72 (39.8–125) | 69 | 55 (29–112) | 0.079 |
Hemoglobin (g/dL) | 1019 | 13.7 (12.5–15) | 951 | 13.7 (12.6–15) | 69 | 13.7 (10.9–15.3) | 0.35 |
Hematocrit (%) | 1019 | 40.6 (37.5–44) | 951 | 40.6 (37.5–43.9) | 69 | 40.4 (33.2–44.7) | 0.3 |
Serum creatinine (mg/dL) | 1019 | 0.84 (0.67–1.02) | 950 | 0.82 (0.66–0.99) | 69 | 1.3 (1.09–1.8) | N/A |
BUN (mg/dL) | 992 | 9.9 (7.5–13) | 926 | 9.6 (7.4–12.4) | 66 | 17.2 (12.6–24.8) | N/A |
Serum Na (mmol/L) | 910 | 137 (134–139) | 845 | 137 (134–139) | 65 | 135 (131–138) | 0.002 |
Serum K (mmol/L) | 910 | 3.7 (3.5–4) | 845 | 3.7 (3.5–4) | 65 | 4 (3.7–4.3) | <0.001 |
Serum HCO3 (mmol/L) | 910 | 24 (22–26) | 845 | 24 (22–26) | 65 | 22 (18.5–24) | <0.001 |
Serum albumin (g/L) | 637 | 4 (3.6–4.2) | 579 | 4 (3.6–4.2) | 58 | 3.6 (2.8–4.1) | 0.001 |
Serum total bilirubin (mg/dL) | 637 | 0.6 (0.4–1.1) | 579 | 0.5 (0.4–1) | 58 | 1.5 (0.7–3.2) | <0.001 |
AST (IU/L) | 878 | 87 (45–180.3) | 822 | 86 (44–175.3) | 56 | 111 (58–360) | 0.015 |
ALT (IU/L) | 879 | 58 (32–121) | 823 | 58 (32–117) | 56 | 69 (35–209) | 0.11 |
Parameters | Overall Cases n = 1019 n (%) | Non-AKI Group n = 950 n (%) | AKI Group n = 69 n (%) | p-Value |
---|---|---|---|---|
Leukocytosis | 56 (5.5) | 44 (4.6) | 12 (17.4) | <0.001 |
Severe thrombocytopenia | 333 (32.7) | 304 (32) | 29 (42) | 0.086 |
Severe transaminitis (n = 882) | 69 (7.8) | 56 (6.8) | 13 (23.2) | <0.001 |
Hypoalbuminemia (n = 637) | 111 (17.4) | 90 (15.5) | 21 (36.2) | <0.001 |
Metabolic acidosis (n = 909) | 11 (1.2) | 1 (0.1) | 10 (15.4) | <0.001 |
Respiratory failure | 62 (6.1) | 39 (4.1) | 23 (33.3) | <0.001 |
Multi-organ dysfunction | 18 (1.8) | 5 (0.5) | 13 (18.8) | <0.001 |
Intensive care unit | 43 (4.2) | 23 (2.4) | 20 (29) | <0.001 |
Inotropic drug use | 13 (1.3) | 0 (0) | 13 (18.8) | <0.001 |
Dialysis | 14 (1.4) | 0 (0) | 14 (20.3) | <0.001 |
Hospital stay > 3 days | 507 (49.8) | 451 (47.5) | 56 (81.2) | 0.02 |
Death | 7 (0.68) | 0 (0) | 7 (10.1) | <0.0001 |
Variable | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
p-Value | OR (95% CI) | p-Value | AOR (95% CI) | |
Age > 40 | 0.1 | 1.49 (0.91–2.4) | 1.8 (0.8–3.8) | |
Male | 0.003 | 2.2 (1.3–3.8) | 0.01 | 3.1 (1.3–7.4) |
Diabetes mellitus | 0.01 | 2.3 (1.2–4.6) | - | 0.7 (0.2–2.4) |
Respiratory failure | <0.001 | 11.7 (6.4–21.2) | 0.008 | 4.6 (1.5–14.1) |
Hypoalbuminemia | <0.001 | 0.3 (0.1–0.5) | 1.5 (0.6–3.5) | |
Hyperbilirubinemia | <0.001 | 4.5 (2.6–7.9) | 0.02 | 2.4 (1.1–4.9) |
Severe transaminitis | <0.001 | 4.2 (2.2–8.3) | - | 2.3 (0.8–6.5) |
Obesity | <0.001 | 2.9 (1.6–5.2) | 0.003 | 2.9 (1.4–6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omar, F.D.; Phumratanaprapin, W.; Silachamroon, U.; Hanboonkunupakarn, B.; Sriboonvorakul, N.; Thaipadungpanit, J.; Pan-ngum, W. Clinical Characteristics of Acute Kidney Injury Associated with Tropical Acute Febrile Illness. Trop. Med. Infect. Dis. 2023, 8, 147. https://doi.org/10.3390/tropicalmed8030147
Omar FD, Phumratanaprapin W, Silachamroon U, Hanboonkunupakarn B, Sriboonvorakul N, Thaipadungpanit J, Pan-ngum W. Clinical Characteristics of Acute Kidney Injury Associated with Tropical Acute Febrile Illness. Tropical Medicine and Infectious Disease. 2023; 8(3):147. https://doi.org/10.3390/tropicalmed8030147
Chicago/Turabian StyleOmar, Fardosa Dahir, Weerapong Phumratanaprapin, Udomsak Silachamroon, Borimas Hanboonkunupakarn, Natthida Sriboonvorakul, Janjira Thaipadungpanit, and Wirichada Pan-ngum. 2023. "Clinical Characteristics of Acute Kidney Injury Associated with Tropical Acute Febrile Illness" Tropical Medicine and Infectious Disease 8, no. 3: 147. https://doi.org/10.3390/tropicalmed8030147
APA StyleOmar, F. D., Phumratanaprapin, W., Silachamroon, U., Hanboonkunupakarn, B., Sriboonvorakul, N., Thaipadungpanit, J., & Pan-ngum, W. (2023). Clinical Characteristics of Acute Kidney Injury Associated with Tropical Acute Febrile Illness. Tropical Medicine and Infectious Disease, 8(3), 147. https://doi.org/10.3390/tropicalmed8030147