Distribution and Risk of Cutaneous Leishmaniasis in Khyber Pakhtunkhwa, Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Ethical Statement
2.3. Data Collection and Processing
2.4. Choropleth Map, Inverse Distance Weighting (IDW) Interpolation
2.5. Cluster and Outlier Analysis and Hotspot Analysis
2.6. Bayesian Geostatistical Analysis
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mandell, G.L.; Bennett, J.E.; Dolin, R. Principles and Practice of Infectious Diseases, 6th ed.; Elsevier Churchill Livingstone: Philadelphia, PA, USA, 2005; pp. 1864–1890. [Google Scholar]
- Malani, P.N. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. JAMA 2010, 304, 2067–2071. [Google Scholar] [CrossRef]
- Khan, K.; Khan, N.H.; Wahid, S. Systematic review of leishmaniasis in Pakistan: Evaluating spatial distribution and risk factors. J. Parasitol. 2021, 107, 630–638. [Google Scholar] [CrossRef]
- Arevalo, J.; Ramirez, L.; Adaui, V.; Zimic, M.; Tulliano, G.; Miranda-Verástegui, C.; Lazo, M.; Loayza-Muro, R.; De Doncker, S.; Maurer, A.; et al. Influence of Leishmania (Viannia) species on the response to antimonial treatment in patients with American tegumentary leishmaniasis. J. Infect. Dis. 2007, 195, 1846–1851. [Google Scholar] [CrossRef] [Green Version]
- Demirel, R.; Erdogan, S. Determination of high risk regions of cutaneous leishmaniasis in Turkey using spatial analysis. Turkiye Parazitol. Derg. 2009, 33, 8–14. [Google Scholar]
- Pourmohammadi, B.; Motazedian, M.; Hatam, G.; Kalantari, M.; Habibi, P.; Sarkari, B. Comparison of three methods for diagnosis of cutaneous leishmaniasis. Iran. J. Parasitol. 2010, 5, 1–8. [Google Scholar]
- Davies, C.R.; Kaye, P.; Croft, S.L.; Sundar, S. Leishmaniasis: New approaches to disease control. BMJ 2003, 326, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Reithinger, R.; Dujardin, J.C.; Louzir, H.; Pirmez, C.; Alexander, B.; Brooker, S. Cutaneous leishmaniasis. Lancet Infect. Dis. 2007, 7, 581–596. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Bumb, R.A.; Ansari, N.A.; Mehta, R.D.; Salotra, P. Cutaneous leishmaniasis caused by Leishmania tropica in Bikaner, India: Parasite identification and characterization using molecular and immunologic tools. Am. J. Trop. Med. Hyg. 2007, 76, 896–901. [Google Scholar] [CrossRef]
- Lainson, R.; Ryan, L.; Shaw, J.J. Infective stages of Leishmania in the sandfly vector and some observations on the mechanism of transmission. Mem. Inst. Oswaldo Cruz 1987, 82, 421–424. [Google Scholar] [CrossRef]
- Shah, A.A.; Funk, W.C.; Ghalambor, C.K. Thermal acclimation ability varies in temperate and tropical aquatic insects from different elevations. Integr. Comp. Biol. 2017, 57, 977–987. [Google Scholar] [CrossRef] [Green Version]
- Peter, H.; Hand, I. Patterns of patient-spouse interaction in agoraphobics: Assessment by Camberwell Family Interview (CFI) and impact on outcome of self-exposure treatment. In Panic and Phobias, 2nd ed.; Springer: Cham, Switzerland, 1988; pp. 240–251. [Google Scholar]
- ul Bari, A. Chronology of cutaneous leishmaniasis: An overview of the history of the disease. J. Pak. Assoc. Dermatol. 2006, 16, 24–27. [Google Scholar]
- Grevelink, S.A.; Lerner, E. Leishmaniasis. J. Am. Acad. Dermatol. 1996, 34, 80121–80126. [Google Scholar] [CrossRef] [PubMed]
- Ashford, R.W. The leishmaniases as emerging and reemerging zoonoses. Int. J. Parasitol. 2000, 30, 1269–1281. [Google Scholar] [CrossRef] [PubMed]
- Daszak, P.; Cunningham, A.A.; Hyatt, A.D. Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop. 2001, 78, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Patz, J.A.; Graczyk, T.K.; Geller, N.; Vittor, A.Y. Effects of environmental change on emerging parasitic diseases. Int. J. Parasitol. 2000, 30, 1395–1405. [Google Scholar] [CrossRef] [Green Version]
- Jeddi-Tehrani, M.; Torabi, R.; Zarnani, A.H.; Mohammadzadeh, A.; Arefi, S.; Zeraati, H.; Akhondi, M.M.; Chamani-Tabriz, L.; Idali, F.; Emami, S.; et al. Analysis of plasminogen activator inhibitor-1, integrin beta3, beta fibrinogen, and methylenetetrahydrofolate reductase polymorphisms in Iranian women with recurrent pregnancy loss. Am. J. Reprod. Immunol. 2011, 66, 149–156. [Google Scholar] [CrossRef]
- Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; den Boer, M.; WHO Leishmaniasis Control Team. Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE 2012, 7, e35671. [Google Scholar] [CrossRef]
- Kassi, M.; Kassi, M.; Afghan, A.K.; Rehman, R.; Kasi, P.M. Marring leishmaniasis: The stigmatization and the impact of cutaneous leishmaniasis in Pakistan and Afghanistan. PLoS Negl. Trop. Dis. 2008, 2, e259. [Google Scholar] [CrossRef] [Green Version]
- Saifullah Khan, S.; Shahab, M.H.; Naz, T. Visceral leishmaniasis in a resident of Swat, Khyber Pakhtunkhwa, Pakistan, presenting to Civil Hospital Karachi: A case report. Cureus 2019, 11, e6059. [Google Scholar] [CrossRef]
- Rowland, M.; Munir, A.; Durrani, N.; Noyes, H.; Reyburn, H. An outbreak of cutaneous leishmaniasis in an Afghan refugee settlement in north-west Pakistan. Trans. R. Soc. Trop. Med. Hyg. 1999, 93, 133–136. [Google Scholar] [CrossRef]
- Hussain, M.; Munir, S.; Khan, T.A.; Khan, A.; Ayaz, S.; Jamal, M.A.; Ahmed, I.; Aziz, S.; Watany, N.; Kasbari, M. Epidemiology of cutaneous leishmaniasis outbreak, Waziristan, Pakistan. Emerg. Infect. Dis. 2018, 24, 159–161. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.; Munir, S.; Jamal, M.A.; Ayaz, S.; Akhoundi, M.; Mohamed, K. Epidemic outbreak of anthroponotic cutaneous leishmaniasis in Kohat District, Khyber Pakhtunkhwa, Pakistan. Acta Trop. 2017, 172, 147–155. [Google Scholar] [CrossRef]
- Musa, G.J.; Chiang, P.H.; Sylk, T.; Bavley, R.; Keating, W.; Lakew, B.; Tsou, H.C.; Hoven, C.W. Use of GIS mapping as a public health tool-from cholera to cancer. Health Serv. Insights 2013, 6, 111–116. [Google Scholar] [CrossRef]
- Gwitira, I.; Mukonoweshuro, M.; Mapako, G.; Shekede, M.D.; Chirenda, J.; Mberikunashe, J. Spatial and spatio-temporal analysis of malaria cases in Zimbabwe. Infect. Dis. Poverty. 2020, 9, 146. [Google Scholar] [CrossRef]
- Duncombe, J.; Clements, A.; Hu, W.; Weinstein, P.; Ritchie, S.; Espino, F.E. Geographical information systems for dengue surveillance. Am. J. Trop. Med. Hyg. 2012, 86, 753–755. [Google Scholar] [CrossRef] [Green Version]
- Bavia, M.E.; Carneiro, D.D.; Gurgel Hda, C.; Madureira Filho, C.; Barbosa, M.G. Remote sensing and geographic information systems and risk of American visceral leishmaniasis in Bahia, Brazil. Parassitologia 2005, 47, 165–169. [Google Scholar]
- Malone, J.B.; Bergquist, R.; Martins, M.; Luvall, J.C. Use of geospatial surveillance and response systems for vector-borne diseases in the elimination phase. Trop. Med. Infect. Dis. 2019, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Kuleshov, Y.; Wei, Y.; Inape, K.; Liu, G.J. Spatio-temporal distribution of vector borne diseases in Australia and Papua New Guinea vis-à-vis climatic factors. J. Vector Borne Dis. 2022, 59, 115–126. [Google Scholar] [CrossRef]
- Karunaweera, N.D.; Ginige, S.; Senanayake, S.; Silva, H.; Manamperi, N.; Samaranayake, N.; Siriwardana, Y.; Gamage, D.; Senerath, U.; Zhou, G. Spatial epidemiologic trends and hotspots of leishmaniasis, Sri Lanka, 2001–2018. Emerg. Infect. Dis. 2020, 26, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Abedi-Astaneh, F.; Hajjaran, H.; Yaghoobi-Ershadi, M.R.; Hanafi-Bojd, A.A.; Mohebali, M.; Shirzadi, M.R.; Rassi, Y.; Akhavan, A.A.; Mahmoudi, B. Risk mapping and situational analysis of cutaneous leishmaniasis in an endemic area of Central Iran: A GIS-based survey. PLoS ONE 2016, 11, e0161317. [Google Scholar] [CrossRef]
- Eisen, L.; Eisen, R.J. Using geographic information systems and decision support systems for the prediction, prevention, and control of vector-borne diseases. Annu. Rev. Entomol. 2011, 56, 41–61. [Google Scholar] [CrossRef] [PubMed]
- Ostad, M.; Shirian, S.; Pishro, F.; Abbasi, T.; Ai, A.; Azimi, F. Control of cutaneous leishmaniasis using geographic information systems from 2010 to 2014 in Khuzestan Province, Iran. PLoS ONE 2016, 11, e0159546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaidi, F.; Fatima, S.H.; Jan, T.; Fatima, M.; Ali, A.; Khisroon, M.; Adnan, M.; Rasheed, S.B. Environmental risk modelling and potential sand fly vectors of cutaneous leishmaniasis in Chitral district: A leishmanial focal point of mount Tirich Mir, Pakistan. Trop. Med. Int. Health 2017, 22, 1130–1140. [Google Scholar] [CrossRef]
- Khan, K.; Khan, N.H.; Anwar, F.; Ullah, I.; Badshah, N.; Irfan, I.; Iqbal, K.; Shah, I.; Aziz, S.T.; Khan, M.S.N.; et al. Characterization of sand fly breeding sites in district Malakand, Khyber Pakhtunkhwa, Pakistan, and evaluation of risk factors for cutaneous leishmaniasis in the region. Zoonoses Public Health 2022, 69, 33–45. [Google Scholar] [CrossRef]
- Wahid, S.; Khan, K.; Khan, N.H. Sand fly (Diptera: Psychodidae) species diversity, habitat preferences, and ecological aspects of distribution in Bajaur District, Khyber Pakhtunkhwa, Pakistan. J. Med. Entomol. 2020, 57, 1432–1439. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.R.; Ben-Horin, T.; Lafferty, K.D.; McNally, A.; Mordecai, E.; Paaijmans, K.P.; Pawar, S.; Ryan, S.J. Understanding uncertainty in temperature effects on vector-borne disease: A Bayesian approach. Ecology 2015, 96, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Adigun, A.B.; Gajere, E.N.; Oresanya, O.; Vounatsou, P. Malaria risk in Nigeria: Bayesian geostatistical modelling of 2010 malaria indicator survey data. Malar. J. 2015, 14, 156. [Google Scholar] [CrossRef] [Green Version]
- Schur, N.; Hürlimann, E.; Garba, A.; Traoré, M.S.; Ndir, O.; Ratard, R.C.; Tchuem Tchuenté, L.A.; Kristensen, T.K.; Utzinger, J.; Vounatsou, P. Geostatistical model-based estimates of Schistosomiasis prevalence among individuals aged ≤ 20 years in West Africa. PLoS Negl. Trop. Dis. 2011, 5, e1194. [Google Scholar] [CrossRef] [Green Version]
- Karagiannis-Voules, D.A.; Scholte, R.G.; Guimarães, L.H.; Utzinger, J.; Vounatsou, P. Bayesian geostatistical modeling of leishmaniasis incidence in Brazil. PLoS Negl. Trop. Dis. 2013, 7, e2213. [Google Scholar] [CrossRef] [Green Version]
- Jewell, C.P.; Brown, R.G. Bayesian data assimilation provides rapid decision support for vector-borne diseases. J. R. Soc. Interface 2015, 12, 20150367. [Google Scholar] [CrossRef]
- Pakzad, R.; Dabbagh-Moghaddam, A.; Mohebali, M.; Safiri, S.; Barati, M. Spatio-temporal analysis of cutaneous leishmaniasis using geographic information system among Iranian Army Units and its comparison with the general population of Iran during 2005–2014. J. Parasit. Dis. 2017, 41, 1114–1122. [Google Scholar] [CrossRef] [PubMed]
- Messina, J.P.; Taylor, S.M.; Meshnick, S.R.; Linke, A.M.; Tshefu, A.K.; Atua, B.; Mwandagalirwa, K.; Emch, M. Population, behavioural and environmental drivers of malaria prevalence in the Democratic Republic of Congo. Malar. J. 2011, 10, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moeletsi, M.E.; Shabalala, Z.P.; de Nysschen, G.; Walker, S. Evaluation of an inverse distance weighting method for patching daily and dekadal rainfall over the free state province, South Africa. Water SA 2016, 42, 466–474. [Google Scholar] [CrossRef] [Green Version]
- Becker, R.; Wilks, A.R. Maps: Draw Geographical Maps. Version 3.3.0 2017. Available online: https://cran.r-project.org/web/packages/maps/index.html (accessed on 21 November 2022).
- Khan, N.H.; Bari, A.U.; Hashim, R.; Khan, I.; Muneer, A.; Shah, A.; Wahid, S.; Yardley, V.; O’Neil, B.; Sutherland, C.J. Cutaneous leishmaniasis in Khyber Pakhtunkhwa province of Pakistan: Clinical diversity and species-level diagnosis. Am. J. Trop. Med. Hyg. 2016, 95, 1106–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeb, I.; Ali, A.; Nawab, J.; Khan, M.Q.; Kamil, A.; Tsai, K.H. Cutaneous leishmaniasis in male schoolchildren in the upper and lower Dir districts of Khyber Pakhtunkhwa, and a review of previous record in Pakistan. Acta Trop. 2020, 209, 105578. [Google Scholar] [CrossRef]
- Calderon-Anyosa, R.; Galvez-Petzoldt, C.; Garcia, P.J.; Carcamo, C.P. Housing characteristics and leishmaniasis: A systematic review. Am. J. Trop. Med. Hyg. 2018, 99, 1547–1554. [Google Scholar] [CrossRef] [Green Version]
- Kolaczinski, J.; Brooker, S.; Reyburn, H.; Rowland, M. Epidemiology of anthroponotic cutaneous leishmaniasis in Afghan refugee camps in northwest Pakistan. Trans. R. Soc. Trop. Med. Hyg. 2004, 98, 373–378. [Google Scholar] [CrossRef]
- Ali, A.; Rehman, T.U.; Qureshi, N.A.; Rahman, H.U. New endemic focus of cutaneous leishmaniasis in Pakistan and future epidemics threats. Asian Pac. J. Trop. Dis. 2016, 6, 155–159. [Google Scholar] [CrossRef]
- Khan, K.; Wahid, S.; Shah, A.; Ali, N. First report of sand fly (Diptera: Psycodidae: Phlebotomine) immature males and various reproductive stages of females in Upper and Lower Dir Districts, Khyber Pakhtunkhwa Pakistan. Pak. J. Zool. 2016, 48, 1581–1584. [Google Scholar]
- Khan, K.; Wahid, S.; Khan, N.H.; Ali, N. Potential resting and breeding sites of sand flies (Diptera: Psychodidae) and their habitat characteristics in leishmaniasis foci of Dir districts, Khyber Pakhtunkhwa, Pakistan. J. Med. Entomol. 2017, 54, 1390–1396. [Google Scholar] [CrossRef]
- Zeb, I.; Qureshi, N.A.; Shaheen, N.; Zafar, M.I.; Ali, A.; Hamid, A.; Shah, S.A.A.; Ashraf, A. Spatiotemporal patterns of cutaneous leishmaniasis in the district Upper and Lower Dir, Khyber Pakhtunkhwa, Pakistan: A GIS-based spatial approaches. Acta Trop. 2021, 217, 105861. [Google Scholar] [CrossRef] [PubMed]
- Torres-Guerrero, E.; Quintanilla-Cedillo, M.R.; Ruiz-Esmenjaud, J.; Arenas, R. Leishmaniasis: A review. F1000Research 2017, 6, 750. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.; Wahid, S.; Khan, N.H. Habitat characterization of sand fly vectors of leishmaniasis in Khyber Pakhtunkhwa, Pakistan. Acta Trop. 2019, 199, 105147. [Google Scholar] [CrossRef]
- Ali, N.; Khan, K.; Wahid, S.; Khan, N.H.; Shah, S.U. Species composition and activity patterns of sand flies (Psycodidae: Phlebotomine) in four tehsils of Dir Districts, Khyber Pakhtunkhwa, Pakistan. Acta Trop. 2016, 156, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Ullah, A.; Wahid, S.; Khisroon, M.; Rasheed, S.B. Distribution, species composition and relative abundances of sandflies in North Waziristan Agency, Pakistan. Med. Vet. Entomol. 2016, 30, 89–94. [Google Scholar] [CrossRef]
- Khan, K.; Sajjad, M.; Wahid, S.; Gul, M.; Khan, L.; Ullah, H.; Rahman, Y.; Khan, D.; Khan, K.; Khan, M.Y.; et al. Bionomics of the unexplored sand flies fauna of District Mohmand, Khyber Pakhtunkhwa, Pakistan: Assessing risk factors associated with cutaneous leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 2022, 116, 832–844. [Google Scholar] [CrossRef]
- Durrani, A.Z.; Durrani, H.Z.; Kamal, N. Prevalence of Leishmania in sand fly in Pakistan. Pakistan J. Zool. 2012, 44, 61–65. [Google Scholar]
- Parvizi, P.; Mauricio, I.; Aransay, A.M.; Miles, M.A.; Ready, P.D. First detection of Leishmania major in peridomestic Phlebotomus papatasi from Isfahan province, Iran: Comparison of nested PCR of nuclear ITS ribosomal DNA and semi-nested PCR of minicircle kinetoplast DNA. Acta Trop. 2005, 93, 75–83. [Google Scholar] [CrossRef]
- Yaghoobi-Ershadi, M.R.; Javadian, E.; Tahvildare-Bidruni, G.H. Leishmania major MON-26 isolated from naturally infected Phlebotomus papatasi (Diptera: Psychodidae) in Isfahan Province, Iran. Acta Trop. 1995, 59, 279–282. [Google Scholar] [CrossRef]
- Es-Sette, N.; Ajaoud, M.; Bichaud, L.; Hamdi, S.; Mellouki, F.; Charrel, R.N.; Lemrani, M. Phlebotomus sergenti a common vector of Leishmania tropica and Toscana virus in Morocco. J. Vector. Borne Dis. 2014, 51, 86–90. [Google Scholar]
- Azizi, K.; Fakoorziba, M.R.; Jalali, M.; Moemenbellah-Fard, M.D. First molecular detection of Leishmania major within naturally infected Phlebotomus salehi from a zoonotic cutaneous leishmaniasis focus in southern Iran. Trop. Biomed. 2012, 29, 1–8. [Google Scholar] [PubMed]
- Zahraei-Ramazani, A.; Saghafipour, A.; Mehdi Sedaghat, M.; Absavaran, A.; Azarm, A. Molecular identification of Phlebotomus caucasicus and Phlebotomus mongolensis (Diptera: Psychodidae) in a hyperendemic area of zoonotic cutaneous leishmaniasis in Iran. J. Med. Entomol. 2017, 54, 1525–1530. [Google Scholar] [CrossRef] [PubMed]
- Yurchenko, V.; Chistyakov, D.S.; Akhmadishina, L.V.; Lukashev, A.N.; Sádlová, J.; Strelkova, M.V. Revisiting epidemiology of leishmaniasis in central Asia: Lessons learnt. Parasitology 2023, 150, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Yemisen, M.; Ulas, Y.; Celik, H.; Aksoy, N. Epidemiological and clinical characteristics of 7172 patients with cutaneous leishmaniasis in Sanliurfa, between 2001 and 2008. Int. J. Dermatol. 2012, 51, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Bennis, I.; de Brouwere, V.; Ameur, B.; El Idrissi Laamrani, A.; Chichaoui, S.; Hamid, S.; Boelaert, M. Control of cutaneous leishmaniasis caused by Leishmania major in south-eastern Morocco. Trop. Med. Int. Health 2015, 20, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
- Haouas, N.; Amer, O.; Ishankyty, A.; Alazmi, A.; Ishankyty, I. Profile and geographical distribution of reported cutaneous leishmaniasis cases in Northwestern Saudi Arabia, from 2010 to 2013. Asian Pac. J. Trop. Med. 2015, 8, 287–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayat, U.; Ayaz, S.; Akram, M.; Khattak, A.M. Cutaneous leishmaniasis: Its prevalence and role of PCR in its detection. J. Islamabad Med. Dent. Coll. 2015, 4, 15–18. [Google Scholar]
- Khosravani, M.; Moemenbellah-Fard, M.D.; Sharafi, M.; Rafat-Panah, A. Epidemiologic profile of oriental sore caused by Leishmania parasites in a new endemic focus of cutaneous leishmaniasis, southern Iran. J. Parasit. Dis. 2016, 40, 1077–1081. [Google Scholar] [CrossRef] [Green Version]
- Mann, R.S.; Kaufman, P.E. The seasonal abundance of phlebotomine sand flies, Lutzomyia species in Florida. J. Am. Mosq. Control Assoc. 2010, 26, 10–17. [Google Scholar] [CrossRef]
- Khattak, A.S.; Khan, S.; Shams, S.; Saqalain, M.; Ahmad, J.; Bibi, A.; Ahmad, M.; Noreen, S.; Hussain, M. Cutaneous leishmaniasis in Karak, Pakistan: Report of an outbreak and comparison of diagnostic techniques. Afr. J. Biotechnol. 2011, 10, 9908–9910. [Google Scholar] [CrossRef]
- Fakhar, M.; Karamian, M.; Ghatee, M.A.; Taylor, W.R.; Pazoki Ghohe, H.; Rasooli, S.A. Distribution pattern of anthroponotic cutaneous leishmaniasis caused by Leishmania tropica in Western Afghanistan during 2013–2014. Acta Trop. 2017, 176, 22–28. [Google Scholar] [CrossRef]
- Machado, P.; Araújo, C.; Da Silva, A.T.; Almeida, R.P.; D’Oliveira, A., Jr.; Bittencourt, A.; Carvalho, E.M. Failure of early treatment of cutaneous leishmaniasis in preventing the development of an ulcer. Clin. Infect. Dis. 2002, 34, e69–e73. [Google Scholar] [CrossRef] [PubMed]
- Sandanayaka, R.; Kahawita, I.; Gamage, A.; Siribaddana, S.; Agampodi, S. Emergence of cutaneous leishmaniasis in Polonnaruwa, Sri Lanka 2008–2011. Trop. Med. Int. Health. 2014, 19, 140–145. [Google Scholar] [CrossRef] [Green Version]
- Osei, F.B.; Stein, A. Spatial variation and hot-spots of district level diarrhea incidences in Ghana: 2010–2014. BMC Public Health 2017, 17, 617. [Google Scholar] [CrossRef] [PubMed]
- Bhunia, G.S.; Kesari, S.; Chatterjee, N.; Kumar, V.; Das, P. Spatial and temporal variation and hotspot detection of kala-azar disease in Vaishali district (Bihar), India. BMC Infect. Dis. 2013, 13, 64. [Google Scholar] [CrossRef] [Green Version]
- Chaves, L.F.; Pascual, M. Climate cycles and forecasts of cutaneous leishmaniasis, a nonstationary vector-borne disease. PLoS Med. 2006, 3, e295. [Google Scholar] [CrossRef]
- Ministry of Health, Pakistan; World Health Organization; Health Net International. Guidelines for the Treatment and Prevention of Cutaneous Leishmaniasis in Pakistan; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Akram, A.; Khan, H.A.; Qadir, A.; Sabir, A.M. A cross-sectional survey of knowledge, attitude and practices related to cutaneous leishmaniasis and sand flies in Punjab, Pakistan. PLoS ONE 2015, 10, e0130929. [Google Scholar] [CrossRef] [PubMed]
Variable | Description | Case no. | Percentage (%) | p Value |
---|---|---|---|---|
Gender | Male | 2003 | 62.8 | <0.001 |
Female | 1185 | 37.2 | ||
Age group | 1–20 | 1800 | 56.5 | <0.001 |
21–40 | 872 | 27.4 | ||
41–60 | 409 | 12.8 | ||
>60 | 107 | 3.4 | ||
Season * | Winter | 1443 | 45.3 | <0.001 |
Spring | 666 | 20.9 | ||
Summer | 633 | 19.9 | ||
Autumn | 446 | 14.0 | ||
Lesion site | Face | 1151 | 36.1 | <0.001 |
Hand | 1068 | 33.5 | ||
Foot | 633 | 19.9 | ||
Multiple | 336 | 10.5 | ||
Lesion type | Dry | 2746 | 86.1 | <0.001 |
Wet | 442 | 13.9 | ||
Lesion number | One | 1540 | 48.3 | <0.001 |
Two | 626 | 19.6 | ||
Three | 470 | 14.7 | ||
>Three | 552 | 17.3 | ||
Northern region | Chitral | 150 | 4.7 | <0.001 |
Dir Lower | 421 | 13.2 | ||
Malakand | 250 | 7.8 | ||
Swat | 44 | 1.4 | ||
Central region | Mardan | 411 | 12.9 | <0.001 |
Charsadda | 64 | 2.0 | ||
Noshehra | 228 | 7.2 | ||
Peshawar | 119 | 3.7 | ||
Southern region | Bannu | 633 | 19.9 | <0.001 |
DI Khan | 215 | 6.7 | ||
Lakki Marwat | 354 | 11.1 | ||
Tank | 299 | 9.4 |
District | Season | n | % | p Value | Female | Male | ||||
---|---|---|---|---|---|---|---|---|---|---|
n | % | p Value | n | % | p Value | |||||
Bannu | Winter | 217 | 34.3 | <0.001 | 89 | 38.9 | < 0.001 | 128 | 31.7 | <0.001 |
Spring | 172 | 27.2 | 67 | 29.3 | 105 | 26.0 | ||||
Summer | 170 | 26.9 | 51 | 22.3 | 119 | 29.5 | ||||
Autumn | 74 | 11.7 | 22 | 9.6 | 52 | 12.9 | ||||
Charsadda | Winter | 37 | 57.8 | 0.211 | 7 | 41.2 | 0.467 | 30 | 63.8 | 0.058 |
Spring | 27 | 42.2 | 10 | 58.8 | 17 | 36.2 | ||||
Summer | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | ||||
Autumn | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | ||||
Chitral | Winter | 102 | 68.0 | <0.001 | 14 | 77.8 | 0.018 | 88 | 66.7 | <0.001 |
Spring | 43 | 28.7 | 4 | 22.2 | 39 | 29.5 | ||||
Summer | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | ||||
Autumn | 5 | 3.3 | 0 | 0.0 | 5 | 3.8 | ||||
DI Khan | Winter | 96 | 44.7 | < 0.001 | 41 | 47.1 | <0.001 | 55 | 43.0 | <0.001 |
Spring | 47 | 21.9 | 16 | 18.4 | 31 | 24.2 | ||||
Summer | 28 | 13.0 | 12 | 13.8 | 16 | 12.5 | ||||
Autumn | 44 | 20.5 | 18 | 20.7 | 26 | 20.3 | ||||
Dir Lower | Winter | 221 | 52.5 | < 0.001 | 95 | 55.2 | <0.001 | 126 | 50.6 | <0.001 |
Spring | 2 | 0.5 | 2 | 1.2 | 0 | 0.0 | ||||
Summer | 131 | 31.1 | 57 | 33.1 | 74 | 29.7 | ||||
Autumn | 67 | 15.9 | 18 | 10.5 | 49 | 19.7 | ||||
Lakki Marwat | Winter | 139 | 39.3 | <0.001 | 49 | 39.2 | 0.002 | 90 | 39.3 | <0.001 |
Spring | 78 | 22.0 | 30 | 24.0 | 48 | 21.0 | ||||
Summer | 64 | 18.1 | 22 | 17.6 | 42 | 18.3 | ||||
Autumn | 73 | 20.6 | 24 | 19.2 | 49 | 21.4 | ||||
Malakand | Winter | 69 | 27.6 | <0.001 | 36 | 33.0 | < 0.001 | 33 | 23.4 | <0.001 |
Spring | 107 | 42.8 | 43 | 39.4 | 64 | 45.4 | ||||
Summer | 43 | 17.2 | 13 | 11.9 | 30 | 21.3 | ||||
Autumn | 31 | 12.4 | 17 | 15.6 | 14 | 9.9 | ||||
Mardan | Winter | 134 | 32.6 | <0.001 | 56 | 36.6 | < 0.001 | 78 | 30.2 | <0.001 |
Spring | 89 | 21.7 | 40 | 26.1 | 49 | 19.0 | ||||
Summer | 130 | 31.6 | 43 | 28.1 | 87 | 33.7 | ||||
Autumn | 58 | 14.1 | 14 | 9.2 | 44 | 17.1 | ||||
Noshehra | Winter | 86 | 37.7 | <0.001 | 40 | 43.5 | 0.001 | 46 | 33.8 | <0.001 |
Spring | 34 | 14.9 | 20 | 21.7 | 14 | 10.3 | ||||
Summer | 42 | 18.4 | 16 | 17.4 | 26 | 19.1 | ||||
Autumn | 66 | 28.9 | 16 | 17.4 | 50 | 36.8 | ||||
Peshawar | Winter | 30 | 25.2 | <0.001 | 2 | 66.7 | 0.564 | 28 | 24.1 | <0.001 |
Spring | 57 | 47.9 | 1 | 33.3 | 56 | 48.3 | ||||
Summer | 11 | 9.2 | 0 | 0.0 | 11 | 9.5 | ||||
Autumn | 21 | 17.6 | 0 | 0.0 | 21 | 18.1 | ||||
Swat | Winter | 13 | 29.5 | 0.436 | 6 | 24.0 | 0.706 | 7 | 36.8 | 0.443 |
Spring | 10 | 22.7 | 7 | 28.0 | 3 | 15.8 | ||||
Summer | 14 | 31.8 | 8 | 32.0 | 6 | 31.6 | ||||
Autumn | 7 | 15.9 | 4 | 16.0 | 3 | 15.8 | ||||
Tank | Winter | 299 | 100.0 | 155 | 100.0 | 144 | 100.0 | |||
Spring | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | ||||
Summer | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | ||||
Autumn | 0 | 0.0 | 0 | 0 | 0 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, W.; Yen, T.-Y.; Niaz, S.; Nasreen, N.; Tsai, Y.-F.; Rodriguez-Vivas, R.I.; Khan, A.; Tsai, K.-H. Distribution and Risk of Cutaneous Leishmaniasis in Khyber Pakhtunkhwa, Pakistan. Trop. Med. Infect. Dis. 2023, 8, 128. https://doi.org/10.3390/tropicalmed8020128
Ullah W, Yen T-Y, Niaz S, Nasreen N, Tsai Y-F, Rodriguez-Vivas RI, Khan A, Tsai K-H. Distribution and Risk of Cutaneous Leishmaniasis in Khyber Pakhtunkhwa, Pakistan. Tropical Medicine and Infectious Disease. 2023; 8(2):128. https://doi.org/10.3390/tropicalmed8020128
Chicago/Turabian StyleUllah, Wasia, Tsai-Ying Yen, Sadaf Niaz, Nasreen Nasreen, Yu-Feng Tsai, Roger Ivan Rodriguez-Vivas, Adil Khan, and Kun-Hsien Tsai. 2023. "Distribution and Risk of Cutaneous Leishmaniasis in Khyber Pakhtunkhwa, Pakistan" Tropical Medicine and Infectious Disease 8, no. 2: 128. https://doi.org/10.3390/tropicalmed8020128
APA StyleUllah, W., Yen, T. -Y., Niaz, S., Nasreen, N., Tsai, Y. -F., Rodriguez-Vivas, R. I., Khan, A., & Tsai, K. -H. (2023). Distribution and Risk of Cutaneous Leishmaniasis in Khyber Pakhtunkhwa, Pakistan. Tropical Medicine and Infectious Disease, 8(2), 128. https://doi.org/10.3390/tropicalmed8020128