The Risk of Emerging of Dengue Fever in Romania, in the Context of Global Warming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Working Protocol
2.1.1. Vectors
2.1.2. Virus
2.1.3. Measurement of Climatological Parameters
2.1.4. Bioclimatic Indices
- Potential development period index of Ae. albopictus (MPI)
- Potential Infestation Index of dengue virus (PII)
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Dengue and Severe Dengue. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 10 August 2022).
- CDC. About Dengue: What You Need to Know. 2021. Available online: https://www.cdc.gov/dengue/about/index.html (accessed on 12 July 2022).
- Yang, X.; Quam, M.B.; Zhang, T.; Sang, S. Global burden for dengue and the evolving pattern in the past 30 years. Travel Med. 2021, 28, taab146. [Google Scholar] [CrossRef] [PubMed]
- Yip, S.; Him, N.C.; Jamil, N.I.; He, D.; Sahu, S.K. Spatio-temporal detection for dengue outbreaks in the Central Region of Malaysia using climatic drivers at mesoscale and synoptic scale. Clim. Risk Manag. 2022, 36, 100429. [Google Scholar] [CrossRef]
- Global and European Temperatures. 2022. Available online: https://www.eea.europa.eu/ims/global–and-european-temperatures (accessed on 25 September 2022).
- Diniz, D.F.A.; Romãoa, T.P.; Helvécioa, E.; Carvalho-Leandro, D.; Xavier, M.N.; Peixotoa, C.A.; Melo Netoa, O.P.; Melo-Santos, M.A.V.; Ayres, C.F.J. A comparative analysis of Aedes albopictus and Aedes aegypti subjected to diapause-inducing conditions reveals conserved and divergent aspects associated with diapause, as well as novel genes associated with its onset. Curr. Res. Insect Sci. 2022, 2, 100047. [Google Scholar] [CrossRef]
- Krockel, U.; Rose, A.; Eiras, A.E.; Geier, M. New tools for surveillance of adult yellow fever mosquitoes: Comparison of trap catches with human landing rates in an urban environment. J. Am. Mosq. Control Assoc. 2006, 22, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Achee, N.L.; Gould, F.; Perkins, T.A.; Reiner, R.C., Jr.; Morrison, A.C.; Ritchie, S.A.; Gubler, D.J.; Teyssou, R.; Scott, T.W. A Critical Assessment of Vector Control for Dengue Prevention. PLoS Negl. Trop. Dis. 2015, 9, e0003655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Sustaining the Drive to Overcome the Global Impact of Neglected Tropical Diseases: Second WHO Report on Neglected Diseases; World Health Organ: Geneva, Switzerland, 2013; Available online: http://www.who.int/iris/handle/10665/77950 (accessed on 6 April 2022).
- Lambrechts, L.; Scott, T.W.; Gubler, D.J. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl. Trop. Dis. 2010, 4, e646. [Google Scholar] [CrossRef]
- World Health Organization. Dengue Guidelines for Diagnosis, Treatment, Prevention and Control; World Health Organ: Geneva, Switzerland, 2009. [Google Scholar]
- Clark, G.G.; Seda, H.; Gubler, D.J. Use of the “CDC backpack aspirator” for surveillance of Aedes aegypti in San Juan, Puerto Rico. J. Am. Mosq. Control Assoc. 1994, 10, 119–124. [Google Scholar]
- Vazquez-Prokopec, G.M.; Galvin, W.A.; Kelly, R.; Kitron, U. A new, cost-effective, battery-powered aspirator for adult mosquito collections. J. Med. Entomol. 2009, 46, 1256–1259. [Google Scholar] [CrossRef]
- Morrison, A.C.; Zielinski-Gutierrez, E.; Scott, T.W.; Rosenberg, R. Defining challenges and proposing solutions for control of the virus vector Aedes aegypti. PLoS Med. 2008, 5, 362–366. [Google Scholar] [CrossRef] [Green Version]
- Kamal, M.; Kenawy, M.A.; Rady, M.H.; Khaled, A.S.; Samy, A.M. Mapping the global potential distributions of two arboviral vectors Aedes aegypti and Ae. albopictus under changing climate. PLoS ONE 2018, 13, e0210122. [Google Scholar] [CrossRef]
- Morin, C.W.; Comrie, A.C.; Ernst, K. Climate and dengue transmission: Evidence and implications Environ. Health Perspect. 2013, 121, 1264–1272. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.A.; Dominici, F. GlassLocal and global effects of climate on dengue transmission in Puerto Rico. PLoS. Negl. Trop. Dis. 2009, 3, e382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cazelles, B.; Chavez, M.; McMichael, A.J.; Hales, S. Nonstationary influence of El Nino on the synchronous dengue epidemics in Thailand. PLoS Med. 2005, 2, e106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hii, Y.L.; Zaki, R.A.; Aghamohammadi, N.; Rocklöv, J. Research on climate and dengue in Malaysia: A systematic review. Curr. Environ. Health Rep. 2016, 3, 81–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopp, M.J.; Foley, J.A. Worldwide fluctuations in dengue fever cases related to climate variability. Climate Research 2003, 25, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Hurtado-Dı´az, M.; Riojas-Rodrı´guez, H.; Rothenberg, S.J.; Gomez-Dante´s, H.; Cifuentes, E. Short communication: Impact of climate variability on the incidence of dengue in Mexico. Trop. Med. Int. Health 2007, 12, 1327–1337. [Google Scholar] [CrossRef]
- Yu, H.L.; Yang, S.J.; Yen, H.J.; Christakos, G. A spatio-temporal climate-based model of early dengue fever warning in southern Taiwan. Stoch Envrion. Res. Risk Assess. 2011, 25, 485–494. [Google Scholar] [CrossRef]
- Vasquez, P.; Loría, A.; Sanchez, F.; Barboza, L. Climate-driven statistical models as effective predictors of local dengue incidence in Costa Rica: A generalized additive model and random forest approach. Rev. De Mater. Teoría Y Apl. 2019, 27, 1e21. [Google Scholar] [CrossRef] [Green Version]
- Valdez, L.D.; Sibona, G.J.; Condat, C.A. Impact of rainfall on Aedes aegypti populations. Ecol. Model. 2018, 385, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Thomas, S.M.; Obermay, U.; Fischer, D.; Kreyling, J.; Beierkuhnlein, C. Low-temperature threshold for egg survival of a post-diapause and non-diapause European aedine strain, Aedes albopictus (Diptera: Culicidae). Parasites Vectors 2012, 5, 100. Available online: http://www.parasitesandvectors.com/content/5/1/100 (accessed on 8 January 2023). [CrossRef] [PubMed]
- Surveillance Atlas of Infectious Disease. Available online: https://atlas.ecdc.europa.eu/public/index.aspx (accessed on 5 January 2021).
- Klein Tank, A.M.G.; Wijngaard, J.B.; Können, G.P.; Böhm, R.; Demarée, G.; Gocheva, A.; Mileta, M.; Pashiardis, L.; Hejkrlik, C.; Kern-Hansen, R.; et al. Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int. J. Climatol. 2002, 22, 1441–1453. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (Scenario IP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef] [Green Version]
- Fălcuţă, E.; Prioteasa, L.F.; Horváth, L.; Păstrav, I.R.; Schaffner, F.; Mihalca, A.D. The invasive Asian tiger mosquito Aedes albopictus in Romania: Towards a country-wide colonization? Parasitol. Res. 2020, 119, 841–845. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Z.; Lai, Z.; Zhou, T.; Jia, Z.; Gu, J.; Wu, K.; Chen, X.G. Temperature Increase Enhances Aedes albopictus Competence to Transmit Dengue Virus. Front. Microbiol. 2017, 8, 2337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, J.B.; Murari, T.B.; Filho, A.S.; Saba, H.; Moret, M.A.; Cardoso, C.A. Paradox between adequate sanitation and rainfall in dengue fever cases. Sci. Total Environ. 2023, 860, 160491. [Google Scholar] [CrossRef]
- Lindsay, P.; Campbell, L.P.; Luther, C.; Moo-Llanes, D.; Ramsey, M.J.; Danis-Lozano, R.; Peterson, A.T. Climate change influences on global distributions of dengue and chikungunyavirus vectors. Phil. Trans. R. Soc. 2015, B370, 20140135. [Google Scholar] [CrossRef]
- RyanI, S.J.; Carlson, C.J.; Mordecai, E.A.; Johnson, L.R. Global expansion and redistribution of Aedesborne virus transmission risk with climate change. PLoS Negl. Trop. Dis. 2019, 13, e0007213. [Google Scholar]
- Mercier, A.; Obadia, T.; Carraretto, D.; daVelo, E.; Gabiane, G.; Bino, S.; Vazeille, M.; Gasperi, G.; Dauga, C.; Malacrid, A.R.; et al. Impact of temperature on dengue and chikungunya transmission by the mosquito Aedes albopictus. Sci. Rep. 2022, 12, 1–3. [Google Scholar] [CrossRef]
- Oliveira, S.; Rocha, J.; Sousa, C.A.; Capinha, C. Wide and increasing suitability for Aedes albopictus in Europe is congruent across distribution models. Sci. Rep. 2021, 11, 9916. [Google Scholar] [CrossRef]
Region | Index | January | February | March | April | May | June | July | August | September | October | November | December | Annual |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Moldavian Plateau | Tmonth (average 1991–2020) | −1.9 | 0.2 | 5.1 | 11.4 | 16.8 | 20.8 | 22.6 | 22.0 | 16.7 | 10.6 | 5.3 | 0.0 | 10.8 |
Tmonth (estimation 2100—LS) | −0.5 | 1.2 | 4.8 | 11.7 | 17.3 | 21.4 | 23.0 | 22.2 | 16.6 | 11.4 | 4.8 | 0.2 | 11.2 | |
Tmonth (estimation 2100—HS) | 1.7 | 3.4 | 7.0 | 13.9 | 19.5 | 23.6 | 25.2 | 24.4 | 18.8 | 13.6 | 7.0 | 2.4 | 13.4 | |
MPIm (1991–2020) | 0 | 0 | 0 | 9 | 27 | 30 | 31 | 31 | 23 | 5 | 0 | 0 | 156 | |
PIIm (1991–2020) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 2 | 0 | 0 | 0 | 4 | |
PIIm (estimation 2100—LS) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 3 | 0 | 0 | 0 | 6 | |
PIIm (estimation 2100—HS) | 0 | 0 | 0 | 0 | 0 | 1 | 5 | 9 | 7 | 0 | 0 | 0 | 23 | |
East of Romanian Plain | Tmonth (average 1991–2020) | −1.2 | 1.4 | 6.4 | 12.1 | 17.5 | 21.7 | 23.9 | 23.6 | 18.1 | 11.8 | 6.3 | 0.7 | 11.9 |
Tmonth (estimation 2100—LS) | 0.1 | 1.9 | 6.2 | 12.7 | 18.2 | 22.7 | 24.4 | 23.7 | 18.1 | 12.5 | 5.9 | 0.8 | 12.3 | |
Tmonth (estimation 2100—HS) | 2.3 | 4.1 | 8.4 | 14.9 | 20.4 | 24.9 | 26.6 | 25.9 | 20.3 | 14.7 | 8.1 | 3.0 | 14.5 | |
MPIm (1991–2020) | 0 | 0 | 0 | 12 | 29 | 30 | 31 | 31 | 27 | 9 | 1 | 0 | 169 | |
PIIm (1991–2020) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 4 | 3 | 0 | 0 | 0 | 8 | |
PIIm (estimation 2100—LS) | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 7 | 5 | 0 | 0 | 0 | 15 | |
PIIm (estimation 2100—HS) | 0 | 0 | 0 | 0 | 0 | 1 | 8 | 15 | 12 | 1 | 0 | 0 | 37 | |
Oltenia Plain | Tmonth (average 1991–2020) | −0.2 | 2.1 | 6.9 | 12.6 | 17.4 | 21.4 | 23.5 | 23.3 | 18.0 | 12.0 | 6.5 | 1.2 | 12.1 |
Tmonth (estimation 2100—LS) | 0.8 | 2.8 | 6.8 | 12.8 | 18.0 | 22.3 | 24.0 | 23.7 | 18.1 | 12.8 | 6.3 | 1.5 | 12.5 | |
Tmonth (estimation 2100—HS) | 3.0 | 5.0 | 9.0 | 15.0 | 20.2 | 24.5 | 26.2 | 25.9 | 20.3 | 15.0 | 8.5 | 3.7 | 14.7 | |
MPIm (1991–2020) | 0 | 0 | 1 | 13 | 28 | 30 | 31 | 31 | 27 | 10 | 1 | 0 | 171 | |
PIIm (1991–2020) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 4 | 4 | 0 | 0 | 0 | 9 | |
PIIm (estimation 2100—LS) | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 5 | 6 | 0 | 0 | 0 | 13 | |
PIIm (estimation 2100—HS) | 0 | 0 | 0 | 0 | 0 | 1 | 7 | 13 | 12 | 1 | 0 | 0 | 34 | |
Danube Valley | Tmonth (average 1991-2020) | −0.2 | 2.0 | 6.7 | 12.4 | 17.8 | 22.1 | 24.3 | 23.8 | 18.4 | 12.3 | 7.0 | 1.6 | 12.4 |
Tmonth (estimation 2100—LS) | 0.9 | 2.6 | 6.3 | 12.8 | 18.4 | 22.7 | 24.6 | 23.9 | 18.4 | 13.0 | 6.6 | 1.7 | 12.7 | |
Tmonth (estimation 2100—HS) | 3.1 | 4.8 | 8.5 | 15.0 | 20.6 | 24.9 | 26.8 | 26.1 | 20.6 | 15.2 | 8.8 | 3.9 | 14.9 | |
MPIm (1991–2020) | 0 | 0 | 1 | 12 | 29 | 30 | 31 | 31 | 28 | 10 | 1 | 0 | 173 | |
PIIm (1991–2020) | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 4 | 4 | 0 | 0 | 0 | 10 | |
PIIm (estimation 2100—LS) | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 6 | 6 | 0 | 0 | 0 | 14 | |
PIIm (estimation 2100—HS) | 0 | 0 | 0 | 0 | 0 | 1 | 8 | 16 | 12 | 1 | 0 | 0 | 38 | |
Transylvania Plateau | Tmonth (average 1991–2020) | −1.7 | 0.6 | 5.2 | 11.1 | 15.8 | 19.5 | 21.2 | 20.9 | 15.7 | 10.3 | 5.1 | −0.1 | 10.3 |
Tmonth (estimation 2100—LS) | −0.8 | 0.6 | 4.9 | 11.0 | 16.1 | 19.8 | 21.3 | 21.1 | 15.8 | 10.8 | 5.1 | 0.1 | 10.5 | |
Tmonth (estimation 2100—HS) | 1.4 | 2.8 | 7.1 | 13.2 | 18.3 | 22.0 | 23.5 | 23.3 | 18.0 | 13.0 | 7.3 | 2.3 | 12.7 | |
MPIm (1991–2020) | 0 | 0 | 0 | 9 | 23 | 30 | 31 | 30 | 21 | 5 | 0 | 0 | 149 | |
PIIm (1991–2020) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 2 | |
PIIm (estimation 2100—LS) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 3 | |
PIIm (estimation 2100—HS) | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 4 | 4 | 0 | 0 | 0 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanescu, L.M.; Bodale, I.; Grigore-Hristodorescu, S.; Martinescu, G.; Andronic, B.; Matiut, S.; Azoicai, D.; Miron, L. The Risk of Emerging of Dengue Fever in Romania, in the Context of Global Warming. Trop. Med. Infect. Dis. 2023, 8, 65. https://doi.org/10.3390/tropicalmed8010065
Ivanescu LM, Bodale I, Grigore-Hristodorescu S, Martinescu G, Andronic B, Matiut S, Azoicai D, Miron L. The Risk of Emerging of Dengue Fever in Romania, in the Context of Global Warming. Tropical Medicine and Infectious Disease. 2023; 8(1):65. https://doi.org/10.3390/tropicalmed8010065
Chicago/Turabian StyleIvanescu, Larisa Maria, Ilie Bodale, Smaranda Grigore-Hristodorescu, Gabriela Martinescu, Bianca Andronic, Simona Matiut, Doina Azoicai, and Liviu Miron. 2023. "The Risk of Emerging of Dengue Fever in Romania, in the Context of Global Warming" Tropical Medicine and Infectious Disease 8, no. 1: 65. https://doi.org/10.3390/tropicalmed8010065
APA StyleIvanescu, L. M., Bodale, I., Grigore-Hristodorescu, S., Martinescu, G., Andronic, B., Matiut, S., Azoicai, D., & Miron, L. (2023). The Risk of Emerging of Dengue Fever in Romania, in the Context of Global Warming. Tropical Medicine and Infectious Disease, 8(1), 65. https://doi.org/10.3390/tropicalmed8010065