Development of New Strategies for Malaria Chemoprophylaxis: From Monoclonal Antibodies to Long-Acting Injectable Drugs
Abstract
:1. Introduction
2. Prophylaxis for Malaria
2.1. The Four Vulnerable Populations: (Pregnant, Children, Travelling and Non-Immune or Malaria-Naïve Populations)
2.2. Children
2.3. Pregnant Women
2.4. Travellers
2.5. General Considerations for Chemoprophylactic Treatments
- TPP1, for the treatment of adults and children for malaria;
- TPP2, for chemoprotection.
- TCP1 drugs target the asexual (disease-causing) blood stage;
- TCP3s target liver hypnozoites (preventing relapse especially of P. vivax, predominantly non-African parasites that can remain dormant for weeks, months or—anecdotally—even years);
- TCP4s, targeting liver schizonts (the liver stage just prior to the blood stage);
- TCP5s, killing gametocytes (which are not pathogenic but transmit the parasites back to mosquitoes, where they mate and develop into infectious sporozoites) and
- TCP6s, endectocides, which are drugs that, when taken up by mosquitoes, kill the insect, or otherwise prevent gametocyte maturation [47].
3. mAbs as Chemoprophylactic Agents for Malaria
3.1. General Considerations
- develop drugs with a safety profile that provides far earlier access to the most vulnerable malaria patients;
- allow Plasmodium parasites to be targeted at stages where they are few, reducing the risks for recurrence and resistance (a frequent problem with TPP1 drugs);
- overcome problems with setting up high-throughput phenotypic screens involving these earlier stages, or validating small-molecule targets;
- prevent both disease and transmission (unlike TPP1 medicines).
3.2. mAbs Optimization
3.3. Costs
3.4. Safety
3.5. Efficacy and Resistance
3.6. Potential Antigens
3.6.1. Targeting the Sporozoite
3.6.2. Targeting the Liver Stages
3.6.3. Targeting Gametocytes
3.6.4. Targeting the Host
4. Small Molecule Drugs as Long-Acting Injectables
4.1. Existing Examples of Long-Acting, Injectable Drugs
- RLAI is a long-acting intramuscular (i.m.) injectable formulation of 25–50 mg risperidone, a microsphere preparation with a release duration of about 14–21 days.
- Paliperidone palmitate is a long-acting i.m. injectable formulation with 25-150 mg doses.
- Olanzapine pamoate is another crystal salt that is injected i.m. with 200–400 mg doses.
- Aripiprazole is simply injected monthly as a 400 mg depot i.m., but this is still an experimental procedure.
4.2. Reformulating Antimalarials as Long-Acting Injectables
4.3. An Outline of a Long-Acting, Chemopreventive Antimalarial
5. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, X.; Patterson, S.; Hawk, E. Chemoprevention—History and general principles. Best Pract. Res. Clin. Gastroenterol. 2011, 25, 445–459. [Google Scholar] [CrossRef] [PubMed]
- de Souza, D.K.; Dorlo, T.P.C. Safe mass drug administration for neglected tropical diseases. Lancet Glob. Health 2018, 6, e1054–e1055. [Google Scholar] [CrossRef] [Green Version]
- Webster, J.P.; Molyneux, D.H.; Hotez, P.; Fenwick, A. The contribution of mass drug administration to global health: Past, present and future. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. World Malaria Report 2019. 2019. Available online: https://www.who.int/publications-detail/world-malaria-report-2019 (accessed on 18 March 2022).
- World Health Organisation. In Proceedings of the Malaria Policy Advisory Committee Meeting, 10–12 April 2019. Available online: https://www.who.int/malaria/mpac/mpac-april2019-session7-erg-mass-admnistration-drug-report.pdf (accessed on 18 March 2022).
- World Health Organisation. WHO Guidelines for Malaria 13 July 2021. 2021. Available online: https://app.magicapp.org/#/guideline/LwRMXj/section/nYKmgj (accessed on 18 March 2022).
- Romphosri, S.; Changruenngam, S.; Chookajorn, T.; Modchang, C. Role of a Concentration Gradient in Malaria Drug Resistance Evolution: A Combined within- and between-Hosts Modelling Approach. Sci. Rep. 2020, 10, 6219. [Google Scholar] [CrossRef] [Green Version]
- Malaria Policy Advisory Committee Meeting; World Health Organization. The Role of Mass Drug Administration, Mass Screening and Treatment, and Focal Screening and Treatment for Malaria. 2015. Available online: http://www.who.int/malaria/mpac/mpac-sept2015-erg-mda-report.pdf (accessed on 18 March 2022).
- Hooft van Huijsduijnen, R.; Kojima, S.; Carter, D.; Okabe, H.; Sato, A.; Akahata, W. Reassessing therapeutic antibodies for neglected and tropical diseases. PLoS Negl. Trop. Dis. 2020, 14, e0007860. [Google Scholar] [CrossRef] [Green Version]
- MacIntyre, F.; Ramachandruni, H.; Burrows, J.N.; Holm, R.; Thomas, A.; Möhrle, J.J.; Duparc, S.; Van Huijsduijnen, R.H.; Greenwood, B.; Gutteridge, W.E.; et al. Injectable anti-malarials revisited: Discovery and development of new agents to protect against malaria. Malar. J. 2018, 17, 402. [Google Scholar] [CrossRef]
- Phillips, M.A.; Burrows, J.N.; Manyando, C.; Hooft van Huijsduijnen, R.; Van Voorhis, W.C.; Wells, T.N.C. Malaria. Nat. Rev. Dis. Primers 2017, 3, 17050. [Google Scholar] [CrossRef]
- Gomes, P.S.; Bhardwaj, J.; Rivera-Correa, J.; Freire-De-Lima, C.G.; Morrot, A. Immune Escape Strategies of Malaria Parasites. Front. Microbiol. 2016, 7, 1617. [Google Scholar] [CrossRef]
- Padilla-Rodríguez, J.C.; Olivera, M.J.; Guevara-García, B.D. Parasite density in severe malaria in Colombia. PLoS ONE 2020, 15, e0235119. [Google Scholar] [CrossRef]
- Desai, M.; Ter Kuile, F.O.; Nosten, F.; McGready, R.; Asamoa, K.; Brabin, B.; Newman, R.D. Epidemiology and burden of malaria in pregnancy. Lancet Infect. Dis. 2007, 7, 93–104. [Google Scholar] [CrossRef]
- Rogerson, S.J.; Desai, M.; Mayor, A.; Sicuri, E.; Taylor, S.M.; van Eijk, A.M. Burden, pathology, and costs of malaria in pregnancy: New developments for an old problem. Lancet Infect. Dis. 2018, 18, e107–e118. [Google Scholar] [CrossRef]
- Airas, L.; Kaaja, R. Pregnancy and multiple sclerosis. Obstet Med. 2012, 5, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Kourtis, A.P.; Read, J.S.; Jamieson, D.J. Pregnancy and infection. N. Engl. J. Med. 2014, 370, 2211–2218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauserman, M.; Conroy, A.L.; North, K.; Patterson, J.; Bose, C.; Meshnick, S. An overview of malaria in pregnancy. Semin. Perinatol. 2019, 43, 282–290. [Google Scholar] [CrossRef] [Green Version]
- Doolan, D.L.; Dobaño, C.; Baird, J.K. Acquired Immunity to Malaria. Clin. Microbiol. Rev. 2009, 22, 13–36. [Google Scholar] [CrossRef] [Green Version]
- Aponte, J.J.; Menendez, C.; Schellenberg, D.; Kahigwa, E.; Mshinda, H.; Vountasou, P.; Tanner, M.; Alonso, P.L. Age interactions in the development of naturally acquired immunity to Plasmodium falciparum and its clinical presentation. PLoS Med. 2007, 4, e242. [Google Scholar]
- Briët, O.J.; Penny, M.A. Repeated mass distributions and continuous distribution of long-lasting insecticidal nets: Modelling sustainability of health benefits from mosquito nets, depending on case management. Malar. J. 2013, 12, 401. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.M.; Smith, D.L.; Cotter, C.; Ward, A.; Yamey, G.; Sabot, O.J.; Moonen, B. Malaria resurgence: A systematic review and assessment of its causes. Malar. J. 2012, 11, 122. [Google Scholar] [CrossRef] [Green Version]
- Mogeni, P.; Williams, T.N.; Fegan, G.; Nyundo, C.; Bauni, E.; Mwai, K.; Omedo, I.; Njuguna, P.; Newton, C.R.; Osier, F.; et al. Age, Spatial, and Temporal Variations in Hospital Admissions with Malaria in Kilifi County, Kenya: A 25-Year Longitudinal Observational Study. PLoS Med. 2016, 13, e1002047. [Google Scholar] [CrossRef] [Green Version]
- Pemberton-Ross, P.; Smith, T.A.; Hodel, E.M.; Kay, K.; Penny, M.A. Age-shifting in malaria incidence as a result of induced immunological deficit: A simulation study. Malar. J. 2015, 14, 287. [Google Scholar] [CrossRef] [Green Version]
- Schellenberg, D.; Menendez, C.; Aponte, J.; Guinovart, C.; Mshinda, H.; Tanner, M.; Alonso, P. The changing epidemiology of malaria in Ifakara Town, southern Tanzania. Trop. Med. Int. Health 2004, 9, 68–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organisation. WHO Technical Consultation to Review the Role of Drugs in Malaria Prevention for People Living in Endemic Settings. In Proceedings of the Malaria Policy Advisory Committee Meeting, 13–14 May 2020; 2020. Available online: https://cdn.who.int/media/docs/default-source/malaria/mpac-documentation/mpac-may2020-session5-chemoprevention-meeting-report_0b60e941-b400-492a-8d53-ce88b678f758.pdf?sfvrsn=ffe6493f_21&download=true (accessed on 18 March 2022).
- Ndiaye, J.L.A.; Ndiaye, Y.; Ba, M.S.; Faye, B.; Ndiaye, M.; Seck, A.; Tine, R.; Thior, P.M.; Atwal, S.; Beshir, K.; et al. Seasonal malaria chemoprevention combined with community case management of malaria in children under 10 years of age, over 5 months, in south-east Senegal: A cluster-randomised trial. PLoS Med. 2019, 16, e1002762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, A.; Guillot, A.; Nepomnyashchiy, L.E.; Graves, J.C.; Maloney, K.; Omoniwa, O.F.; Emegbuonye, L.; Opondo, C.; Kerac, M.; Omoluabi, E.; et al. Seasonal malaria chemoprevention packaged with malnutrition prevention in northern Nigeria: A pragmatic trial (SMAMP study) with nested case-control. PLoS ONE 2019, 14, e0210692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandramohan, D.; Zongo, I.; Sagara, I.; Cairns, M.; Yerbanga, R.S.; Diarra, M.; Nikiema, F.; Tapily, A.; Sompougdou, F.; Issiaka, D.; et al. Seasonal Malaria Vaccination with or without Seasonal Malaria Chemoprevention. N. Engl. J. Med. 2019, 385, 1005–1017. [Google Scholar] [CrossRef]
- Ahmed, R.; Poespoprodjo, J.R.; Syafruddin, D.; Khairallah, C.; Pace, C.; Lukito, T.; Maratina, S.S.; Asih, P.B.S.; Santana-Morales, M.A.; Adams, E.; et al. Efficacy and safety of intermittent preventive treatment and intermittent screening and treatment versus single screening and treatment with dihydroartemisinin–piperaquine for the control of malaria in pregnancy in Indonesia: A cluster-randomised, open-label, superiority trial. Lancet Infect. Dis. 2019, 19, 973–987. [Google Scholar] [CrossRef] [Green Version]
- Gutman, J.R.; Khairallah, C.; Stepniewska, K.; Tagbor, H.; Madanitsa, M.; Cairns, M. Intermittent screening and treatment with artemisinin-combination therapy versus intermittent preventive treatment with sulphadoxine-pyrimethamine for malaria in pregnancy: A systematic review and individual participant data meta-analysis of randomised clinical trials. EClinicalMedicine 2021, 41, 101160. [Google Scholar]
- Harrison, N. In celebration of the Jesuit’s powder: A history of malaria treatment. Lancet Infect. Dis. 2015, 15, 1143. [Google Scholar] [CrossRef]
- Zhou, L.-J.; Xia, J.; Wei, H.-X.; Liu, X.-J.; Peng, H.-J. Risk of drug resistance in Plasmodium falciparum malaria therapy—A systematic review and meta-analysis. Parasitol. Res. 2017, 116, 781–788. [Google Scholar] [CrossRef]
- Felger, I.; Beck, H.-P. Fitness costs of resistance to antimalarial drugs. Trends Parasitol. 2008, 24, 331–333. [Google Scholar] [CrossRef]
- Cammack, N. Exploiting Malaria Drug Resistance to Our Advantage. Science 2011, 333, 705–706. [Google Scholar] [CrossRef]
- Macintyre, F.; Adoke, Y.; Tiono, A.B.; Duong, T.T.; Mombo-Ngoma, G.; Bouyou-Akotet, M. A randomised, double-blind clinical phase II trial of the efficacy, safety, tolerability and pharmacokinetics of a single dose combination treatment with artefenomel and piperaquine in adults and children with uncomplicated Plasmodium falciparum malaria. BMC Med. 2017, 9, 181. [Google Scholar] [CrossRef] [Green Version]
- Adoke, Y.; Zoleko-Manego, R.; Ouoba, S.; Tiono, A.B.; Kaguthi, G.; Bonzela, J.E.; Duong, T.T.; Nahum, A.; Bouyou-Akotet, M.; Ogutu, B.; et al. A randomized, double-blind, phase 2b study to investigate the efficacy, safety, tolerability and pharmacokinetics of a single-dose regimen of ferroquine with artefenomel in adults and children with uncomplicated Plasmodium falciparum malaria. Malar. J. 2021, 20, 222. [Google Scholar] [CrossRef]
- Rao, V.B.; Jensen, T.; Jimenez, B.C.; Robays, J.; Lasry, E.; Sterk, E.; De Smet, M. Malaria in pregnancy: A call for a safe, efficient, and patient-centred approach to first-trimester treatment. Lancet Glob. Health 2018, 6, e607–e608. [Google Scholar] [CrossRef]
- Lu, R.-M.; Hwang, Y.-C.; Liu, I.-J.; Lee, C.-C.; Tsai, H.-Z.; Li, H.-J.; Wu, H.-C. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 2020, 27, 1. [Google Scholar] [CrossRef]
- Manis, J.P. Overview of Therapeutic Monoclonal Antibodies. 2020. Available online: https://www.uptodate.com/contents/overview-of-therapeutic-monoclonal-antibodies/print (accessed on 18 March 2022).
- Kaplon, H.; Reichert, J.M. Antibodies to watch in 2019. mAbs 2019, 11, 219–238. [Google Scholar] [CrossRef] [PubMed]
- Azim, H.A., Jr.; Azim, H.; Peccatori, F.A. Treatment of cancer during pregnancy with monoclonal antibodies: A real challenge. Expert Rev. Clin. Immunol. 2010, 6, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Sarno, M.A.; Mancari, R.; Azim, H.A.; Colombo, N.; Peccatori, F.A. Are monoclonal antibodies a safe treatment for cancer during pregnancy? Immunotherapy 2013, 5, 733–741. [Google Scholar] [CrossRef]
- Stone, R.H.; Hong, J.; Jeong, H. Pharmacokinetics of Monoclonal Antibodies Used for Inflammatory Bowel Diseases in Pregnant Women. J. Clin. Toxicol. 2014, 4, 209. [Google Scholar]
- Burrows, J.N.; Duparc, S.; Gutteridge, W.E.; Van Huijsduijnen, R.H.; Kaszubska, W.; MacIntyre, F.; Mazzuri, S.; Möhrle, J.J.; Wells, T.N.C. New developments in anti-malarial target candidate and product profiles. Malar. J. 2017, 16, 26. [Google Scholar] [CrossRef] [Green Version]
- Burrows, J.N.; van Huijsduijnen, R.H.; Mohrle, J.J.; Oeuvray, C.; Wells, T.N.C. Designing the next generation of medicines for malaria control and eradication. Malar. J. 2013, 12, 187. [Google Scholar] [CrossRef] [Green Version]
- Burrows, J.N.; Slater, H.; MacIntyre, F.; Rees, S.; Thomas, A.; Okumu, F.; Van Huijsduijnen, R.H.; Duparc, S.; Wells, T.N.C. A discovery and development roadmap for new endectocidal transmission-blocking agents in malaria. Malar. J. 2018, 17, 462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, T.N.C.; Hooft van Huijsduijnen, R.; Van Voorhis, W.C. Malaria medicines: A glass half full? Nat. Rev. Drug Discov. 2015, 14, 424–442. [Google Scholar] [CrossRef] [PubMed]
- Camarda, G.; Jirawatcharadech, P.; Priestley, R.S.; Saif, A.; March, S.; Wong, M.H.L.; Leung, S.; Miller, A.B.; Baker, D.A.; Alano, P.; et al. Antimalarial activity of primaquine operates via a two-step biochemical relay. Nat. Commun. 2019, 10, 3226. [Google Scholar] [CrossRef] [PubMed]
- Diarra, A.; Nebie, I.; Tiono, A.; Soulama, I.; Ouedraogo, A.; Konate, A.; Theisen, M.; Dodoo, D.; Traore, A.; Sirima, S.B. Antibodies to malaria vaccine candidates are associated with chloroquine or sulphadoxine/pyrimethamine treatment efficacy in children in an endemic area of Burkina Faso. Malar. J. 2012, 11, 79. [Google Scholar] [CrossRef] [Green Version]
- Goh, Y.S.; Peng, K.; Ni Chia, W.; Siau, A.; Chotivanich, K.; Gruner, A.-C.; Preiser, P.; Mayxay, M.; Pukrittayakamee, S.; Sriprawat, K.; et al. Neutralizing Antibodies against Plasmodium falciparum Associated with Successful Cure after Drug Therapy. PLoS ONE 2016, 11, e0159347. [Google Scholar] [CrossRef]
- Koffi, D.; Varela, M.-L.; Loucoubar, C.; Beourou, S.; Vigan-Womas, I.; Touré, A.; Djaman, J.A.; Touré, A.O.; Perraut, R. Longitudinal analysis of antibody responses in symptomatic malaria cases do not mirror parasite transmission in peri-urban area of Cote d’Ivoire between 2010 and 2013. PLoS ONE 2017, 12, e0172899. [Google Scholar] [CrossRef] [Green Version]
- Hay, M.; Thomas, D.W.; Craighead, J.L.; Economides, C.; Rosenthal, J. Clinical development success rates for investigational drugs. Nat. Biotechnol. 2014, 32, 40–51. [Google Scholar] [CrossRef]
- Campbell, M.C.; Tishkoff, S.A. African Genetic Diversity: Implications for Human Demographic History, Modern Human Origins, and Complex Disease Mapping. Annu. Rev. Genom. Hum. Genet. 2008, 9, 403–433. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, J.M.; Calvete, J.J.; Habib, A.G.; Harrison, R.A.; Williams, D.J.; Warrell, D.A. Snakebite envenoming. Nat. Rev. Dis. Primers 2017, 3, 17079. [Google Scholar] [CrossRef]
- Laustsen, A.H.; Dorrestijn, N. Integrating Engineering, Manufacturing, and Regulatory Considerations in the Development of Novel Antivenoms. Toxins 2018, 10, 309. [Google Scholar] [CrossRef] [Green Version]
- Laustsen, A.H.; Engmark, M.; Milbo, C.; Johannesen, J.; Lomonte, B.; Gutiérrez, J.M.; Lohse, B. From Fangs to Pharmacology: The Future of Snakebite Envenoming Therapy. Curr. Pharm. Des. 2016, 22, 5270–5293. [Google Scholar] [CrossRef] [PubMed]
- Berry, J.D.; Gaudet, R.G. Antibodies in infectious diseases: Polyclonals, monoclonals and niche biotechnology. New Biotechnol. 2011, 28, 489–501. [Google Scholar] [CrossRef] [PubMed]
- Both, L.; Banyard, A.C.; van Dolleweerd, C.; Wright, E.; Ma, J.K.-C.; Fooks, A.R. Monoclonal antibodies for prophylactic and therapeutic use against viral infections. Vaccine 2013, 31, 1553–1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaudinski, M.R.; Berkowitz, N.M.; Idris, A.H.; Coates, E.E.; Holman, L.A.; Mendoza, F.; Gordon, I.J.; Plummer, S.H.; Trofymenko, O.; Hu, Z.; et al. A Monoclonal Antibody for Malaria Prevention. N. Engl. J. Med. 2021, 385, 803–814. [Google Scholar] [CrossRef]
- Kontermann, R.E. Strategies to Extend Plasma Half-Lives of Recombinant Antibodies. BioDrugs 2009, 23, 93–109. [Google Scholar] [CrossRef]
- Kontermann, R.E. Strategies for extended serum half-life of protein therapeutics. Curr. Opin. Biotechnol. 2011, 22, 868–876. [Google Scholar] [CrossRef]
- Liu, J.K. The history of monoclonal antibody development—Progress, remaining challenges and future innovations. Ann. Med. Surg. 2014, 3, 113–116. [Google Scholar] [CrossRef]
- Zhao, J.; Cao, Y.; Jusko, W.J. Across-Species Scaling of Monoclonal Antibody Pharmacokinetics Using a Minimal PBPK Model. Pharm. Res. 2015, 32, 3269–3281. [Google Scholar] [CrossRef]
- Chimalakonda, A.P.; Yadav, R.; Marathe, P. Factors Influencing Magnitude and Duration of Target Inhibition Following Antibody Therapy: Implications in Drug Discovery and Development. AAPS J. 2013, 15, 717–727. [Google Scholar] [CrossRef] [Green Version]
- Davda, J.P.; Hansen, R.J. Properties of a general PK/PD model of antibody-ligand interactions for therapeutic antibodies that bind to soluble endogenous targets. mAbs 2010, 2, 576–588. [Google Scholar] [CrossRef] [Green Version]
- Franzén, L.; Wåhlin, B.; Wahlgren, M.; Åslund, L.; Perlmann, P.; Wigzell, H.; Pettersson, U. Enhancement or inhibition of Plasmodium falciparum erythrocyte reinvasion in vitro by antibodies to an asparagine rich protein. Mol. Biochem. Parasitol. 1989, 32, 201–211. [Google Scholar] [CrossRef]
- Kelley, B. Industrialization of mAb production technology: The bioprocessing industry at a crossroads. mAbs 2009, 1, 443–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klutz, S.; Holtmann, L.; Lobedann, M.; Schembecker, G. Cost evaluation of antibody production processes in different operation modes. Chem. Eng. Sci. 2016, 141, 63–74. [Google Scholar] [CrossRef]
- Garidel, P.; Kuhn, A.B.; Schäfer, L.; Karow-Zwick, A.R.; Blech, M. High-concentration protein formulations: How high is high? Eur. J. Pharm. Biopharm. 2017, 119, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Sicuri, E.; Bocoum, F.Y.; Nonvignon, J.; Alonso, S.; Fakih, B.; Bonsu, G.; Kariuki, S.; Leeuwenkamp, O.; Munguambe, K.; Mrisho, M.; et al. The Costs of Implementing Vaccination With the RTS,S Malaria Vaccine in Five Sub-Saharan African Countries. MDM Policy Pr. 2019, 4, 2381468319896280. [Google Scholar] [CrossRef] [Green Version]
- Wilby, K.J.; Lau, T.T.; Gilchrist, S.E.; Ensom, M.H. Mosquirix (RTS,S): A novel vaccine for the prevention of Plasmodium falciparum malaria. Ann. Pharmacother. 2012, 46, 384–393. [Google Scholar] [CrossRef]
- Mordmüller, B.; Surat, G.; Lagler, H.; Chakravarty, S.; Ishizuka, A.S.; Lalremruata, A.; Gmeiner, M.; Campo, J.J.; Esen, M.; Ruben, A.J.; et al. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine. Nature 2017, 542, 445–449. [Google Scholar] [CrossRef]
- Roestenberg, M.; Walk, J.; van der Boor, S.C.; Langenberg, M.C.; Hoogerwerf, M.A.; Janse, J.J. A double-blind, placebo-controlled phase 1/2a trial of the genetically attenuated malaria vaccine PfSPZ-GA1. Sci. Transl. Med. 2020, 12, eaaz5629. [Google Scholar] [CrossRef]
- Zenklusen, I.; Jongo, S.; Abdulla, S.; Ramadhani, K.; Sim, B.K.L.; Cardamone, H.; Flannery, E.L.; Nguyen, T.; Fishbaugher, M.; Steel, R.W.J.; et al. Immunization of Malaria-Preexposed Volunteers With PfSPZ Vaccine Elicits Long-Lived IgM Invasion-Inhibitory and Complement-Fixing Antibodies. J. Infect. Dis. 2018, 217, 1569–1578. [Google Scholar] [CrossRef]
- Hayward, R.E.; DeRisi, J.L.; Alfadhli, S.; Kaslow, D.C.; Brown, P.O.; Rathod, P.K. Shotgun DNA microarrays and stage-specific gene expression in Plasmodium falciparum malaria. Mol. Microbiol. 2000, 35, 6–14. [Google Scholar] [CrossRef] [Green Version]
- Foquet, L.; Hermsen, C.C.; Van Gemert, G.-J.; Van Braeckel, E.; Weening, K.E.; Sauerwein, R.; Meuleman, P.; Leroux-Roels, G. Vaccine-induced monoclonal antibodies targeting circumsporozoite protein prevent Plasmodium falciparum infection. J. Clin. Investig. 2014, 124, 140–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyen, D.; Torres, J.L.; Wille-Reece, U.; Ockenhouse, C.F.; Emerling, D.; Glanville, J.; Volkmuth, W.; Flores-Garcia, Y.; Zavala, F.; Ward, A.B.; et al. Structural basis for antibody recognition of the NANP repeats in Plasmodium falciparum circumsporozoite protein. Proc. Natl. Acad. Sci. USA 2017, 114, E10438–E10445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, J.; Sack, B.K.; Oyen, D.; Zenklusen, I.; Piccoli, L.; Barbieri, S.; Foglierini, M.; Fregni, C.S.; Marcandalli, J.; Jongo, S.; et al. A public antibody lineage that potently inhibits malaria infection through dual binding to the circumsporozoite protein. Nat. Med. 2018, 24, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Triller, G.; Scally, S.W.; Costa, G.; Pissarev, M.; Kreschel, C.; Bosch, A.; Marois, E.; Sack, B.K.; Murugan, R.; Salman, A.; et al. Natural Parasite Exposure Induces Protective Human Anti-Malarial Antibodies. Immunity 2017, 47, 1197–1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kisalu, N.K.; Idris, A.H.; Weidle, C.; Flores-Garcia, Y.; Flynn, B.J.; Sack, B.K. A human monoclonal antibody prevents malaria infection by targeting a new site of vulnerability on the parasite. Nat. Med. 2018, 24, 408–416. [Google Scholar] [CrossRef]
- Zhang, M.; Mandraju, R.; Rai, U.; Shiratsuchi, T.; Tsuji, M. Monoclonal Antibodies against Plasmodium falciparum Circumsporozoite Protein. Antibodies 2017, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Imkeller, K.; Scally, S.W.; Bosch, A.; Martí, G.P.; Costa, G.; Triller, G.; Murugan, R.; Renna, V.; Jumaa, H.; Kremsner, P.G.; et al. Antihomotypic affinity maturation improves human B cell responses against a repetitive epitope. Science 2018, 360, 1358–1362. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, J.S.; Rückle, T.; Elliott, S.L.; Ballard, E.; Collins, K.A.; Marquart, L.; Griffin, P.; Chalon, S.; Möhrle, J.J. A Single-Dose Combination Study with the Experimental Antimalarials Artefenomel and DSM265 To Determine Safety and Antimalarial Activity against Blood-Stage Plasmodium falciparum in Healthy Volunteers. Antimicrob. Agents Chemother. 2019, 20, e01371-19. [Google Scholar]
- Collins, K.A.; Rückle, T.; Elliott, S.; Marquart, L.; Ballard, E.; Chalon, S.; Griffin, P.; Möhrle, J.J.; McCarthy, J.S. DSM265 at 400 Milligrams Clears Asexual Stage Parasites but Not Mature Gametocytes from the Blood of Healthy Subjects Experimentally Infected with Plasmodium falciparum. Antimicrob. Agents Chemother. 2019, 27, e01837-18. [Google Scholar] [CrossRef] [Green Version]
- Livingstone, M.C.; Bitzer, A.A.; Giri, A.; Luo, K.; Sankhala, R.S.; Choe, M.; Zou, X.; Dennison, S.M.; Li, Y.; Washington, W.; et al. In vitro and in vivo inhibition of malaria parasite infection by monoclonal antibodies against Plasmodium falciparum circumsporozoite protein (CSP). Sci. Rep. 2021, 11, 5318. [Google Scholar] [CrossRef]
- Kristoff, J. Malaria Stage-Specific Vaccine Candidates. Curr. Pharm. Des. 2007, 13, 1989–1999. [Google Scholar] [CrossRef]
- Tucker, K.; Noe, A.R.; Kotraiah, V.; Phares, T.W.; Tsuji, M.; Nardin, E.H.; Gutierrez, G.M. Pre-Erythrocytic Vaccine Candidates in Malaria. In Current Topics in Malaria; Rodriguez-Morales, A.J., Ed.; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef] [Green Version]
- Espinosa, D.A.; Vega-Rodriguez, J.; Flores-Garcia, Y.; Noe, A.; Muñoz, C.; Coleman, R.; Bruck, T.; Haney, K.; Stevens, A.; Retallack, D.; et al. The Plasmodium falciparum Cell-Traversal Protein for Ookinetes and Sporozoites as a Candidate for Preerythrocytic and Transmission-Blocking Vaccines. Infect. Immun. 2017, 85, e00498-16. [Google Scholar] [CrossRef] [Green Version]
- Bergmann-Leitner, E.S.; Mease, R.M.; De La Vega, P.; Savranskaya, T.; Polhemus, M.; Ockenhouse, C.; Angov, E. Immunization with Pre-Erythrocytic Antigen CelTOS from Plasmodium falciparum Elicits Cross-Species Protection against Heterologous Challenge with Plasmodium berghei. PLoS ONE 2010, 5, e12294. [Google Scholar] [CrossRef] [Green Version]
- Rawlinson, T.A.; Barber, N.M.; Mohring, F.; Cho, J.S.; Kosaisavee, V.; Gérard, S.F.; Alanine, D.G.W.; Labbé, G.M.; Elias, S.; Silk, S.E.; et al. Structural basis for inhibition of Plasmodium vivax invasion by a broadly neutralizing vaccine-induced human antibody. Nat. Microbiol. 2019, 4, 1497–1507. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.T.; Pereira, L.S.; Kiyuka, P.K.; Schön, A.; Kisalu, N.K.; Vistein, R.; Dillon, M.; Bonilla, B.G.; Molina-Cruz, A.; Barillas-Mury, C.; et al. Protective effects of combining monoclonal antibodies and vaccines against the Plasmodium falciparum circumsporozoite protein. PLoS Pathog. 2021, 17, e1010133. [Google Scholar] [CrossRef]
- Pichyangkul, S.; Kum-Arb, U.; Yongvanitchit, K.; Limsalakpetch, A.; Gettayacamin, M.; Lanar, D.E.; Ware, L.A.; Stewart, V.A.; Heppner, D.G.; Mettens, P.; et al. Preclinical Evaluation of the Safety and Immunogenicity of a Vaccine Consisting of Plasmodium falciparum Liver-Stage Antigen 1 with Adjuvant AS01B Administered Alone or Concurrently with the RTS,S/AS01B Vaccine in Rhesus Primates. Infect. Immun. 2008, 76, 229–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scally, S.W.; McLeod, B.; Bosch, A.; Miura, K.; Liang, Q.; Carroll, S.; Reponen, S.; Nguyen, N.; Giladi, E.; Rämisch, S.; et al. Molecular definition of multiple sites of antibody inhibition of malaria transmission-blocking vaccine antigen Pfs25. Nat. Commun. 2017, 8, 1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheru, L.; Wu, Y.; Diouf, A.; Moretz, S.E.; Muratova, O.V.; Song, G.; Fay, M.P.; Miller, L.H.; Long, C.A.; Miura, K. The IC50 of anti-Pfs25 antibody in membrane-feeding assay varies among species. Vaccine 2010, 28, 4423–4429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, R.; Angov, E.; Kumar, N. Potent Malaria Transmission-Blocking Antibody Responses Elicited by Plasmodium falciparum Pfs25 Expressed in Escherichia coli after Successful Protein Refolding. Infect. Immun. 2014, 82, 1453–1459. [Google Scholar] [CrossRef] [Green Version]
- Lobo, C.A.; Dhar, R.; Kumar, N. Immunization of mice with DNA-based Pfs25 elicits potent malaria transmission-blocking antibodies. Infect. Immun. 1999, 67, 1688–1693. [Google Scholar] [CrossRef]
- McLeod, B.; Miura, K.; Scally, S.W.; Bosch, A.; Nguyen, N.; Shin, H.; Kim, D.; Volkmuth, W.; Rämisch, S.; Chichester, J.A.; et al. Potent antibody lineage against malaria transmission elicited by human vaccination with Pfs25. Nat. Commun. 2019, 10, 4328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canepa, G.; Molina-Cruz, A.; Yenkoidiok-Douti, L.; Calvo, E.; Williams, A.E.; Burkhardt, M.; Peng, F.; Narum, D.; Boulanger, M.J.; Valenzuela, J.G.; et al. Antibody targeting of a specific region of Pfs47 blocks Plasmodium falciparum malaria transmission. NPJ Vaccines 2018, 3, 26. [Google Scholar] [CrossRef] [PubMed]
- Zenonos, Z.A.; Dummler, S.K.; Müller-Sienerth, N.; Chen, J.; Preiser, P.R.; Rayner, J.C.; Wright, G.J. Basigin is a druggable target for host-oriented antimalarial interventions. J. Exp. Med. 2015, 212, 1145–1151. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.A.; Kamp, M.; Olansky, S.; Price, E.V. Benzathine penicillin G in the treatment of syphilis. Bull. World Health Organ. 1956, 15, 1087–1096. [Google Scholar]
- Rauch, A.-S.; Fleischhacker, W.W. Long-Acting Injectable Formulations of New-Generation Antipsychotics: A Review from a Clinical Perspective. CNS Drugs 2013, 27, 637–652. [Google Scholar] [CrossRef]
- Baert, L.; van‘t Klooster, G.; Dries, W.; François, M.; Wouters, A.; Basstanie, E.; Iterbekeb, K.; Stappersb, F.; Stevens, P.; Schueller, L.; et al. Development of a long-acting injectable formulation with nanoparticles of rilpivirine (TMC278) for HIV treatment. Eur. J. Pharm. Biopharm. 2009, 72, 502–508. [Google Scholar] [CrossRef]
- Zhou, T.; Su, H.; Dash, P.; Lin, Z.; Shetty, B.L.D.; Kocher, T.; Szlachetka, A.; Lamberty, B.; Fox, H.S.; Poluektova, L.; et al. Creation of a nanoformulated cabotegravir prodrug with improved antiretroviral profiles. Biomaterials 2018, 151, 53–65. [Google Scholar] [CrossRef]
- Cortez, J.M.; Quintero, R.; Moss, J.; Beliveau, M.; Smith, T.J.; Baum, M. Pharmacokinetics of Injectable, Long-Acting Nevirapine for HIV Prophylaxis in Breastfeeding Infants. Antimicrob. Agents Chemother. 2014, 59, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Yee, K.L.; Mittal, S.; Fan, L.; Triantafyllou, I.; Dockendorf, M.F.; Fackler, P.H.; Stoch, S.A.; Khalilieh, S.G.; Iwamoto, M. Pharmacokinetics, safety and tolerability of long-acting parenteral intramuscular injection formulations of doravirine. J. Clin. Pharm. Ther. 2020, 45, 1098–1105. [Google Scholar] [CrossRef]
- Kirby, T. Cabotegravir, a new option for PrEP. Lancet Infect. Dis. 2020, 20, 781. [Google Scholar] [CrossRef]
- Chughlay, M.F.; Rossignol, E.; Donini, C.; El Gaaloul, M.; Lorch, U.; Coates, S.; Langdon, G.; Hammond, T.; Möhrle, J.; Chalon, S. First-in-human clinical trial to assess the safety, tolerability and pharmacokinetics of P218, a novel candidate for malaria chemoprotection. Br. J. Clin. Pharmacol. 2020, 86, 1113–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ditzinger, F.; Price, D.J.; Ilie, A.-R.; Köhl, N.J.; Jankovic, S.; Tsakiridou, G.; Aleandri, S.; Kalantzi, L.; Holm, R.; Nair, A.; et al. Lipophilicity and hydrophobicity considerations in bio-enabling oral formulations approaches—A PEARRL review. J. Pharm. Pharmacol. 2019, 71, 464–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adler-Moore, J.P.; Gangneux, J.-P.; Pappas, P.G. Comparison between liposomal formulations of amphotericin B. Med. Mycol. 2016, 54, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Pfizer. Product Monograph Penicillin G Benzathine. 2017. Available online: https://www.pfizer.ca/sites/g/files/g10037206/f/201710/Bicillin_PM.pdf (accessed on 18 March 2022).
- Shretta, R.; Liu, J.; Cotter, C.; Cohen, J.; Dolenz, C.; Makomva, K.; Newby, G.; Menard, D.; Phillips, A.; Tatarsky, A. Malaria Elimination and Eradication. In Major Infectious Diseases, 3rd ed.; Holmes, K.K., Bertozzi, S., Bloom, B.R., Eds.; 2017. Available online: https://www.ncbi.nlm.nih.gov/books/NBK525190/ (accessed on 18 March 2022).
- Antonio-Nkondjio, C.; Fossog, B.T.; Kopya, E.; Poumachu, Y.; Djantio, B.M.; Ndo, C.; Tchuinkam, T.; Awono-Ambene, P.; Wondji, C.S. Rapid evolution of pyrethroid resistance prevalence in Anopheles gambiae populations from the cities of Douala and Yaoundé (Cameroon). Malar. J. 2015, 14, 155. [Google Scholar] [CrossRef] [Green Version]
- Uwimana, A.; Umulisa, N.; Venkatesan, M.; Svigel, S.S.; Zhou, Z.; Munyaneza, T.; Habimana, R.M.; Rucogoza, A.; Moriarty, L.F.; Sandford, R.; et al. Association of Plasmodium falciparum kelch13 R561H genotypes with delayed parasite clearance in Rwanda: An open-label, single-arm, multicentre, therapeutic efficacy study. Lancet Infect. Dis. 2021, 21, 1120–1128. [Google Scholar] [CrossRef]
- Balikagala, B.; Fukuda, N.; Ikeda, M.; Katuro, O.T.; Tachibana, S.I.; Yamauchi, M. Evidence of Artemisinin-Resistant Malaria in Africa. N. Engl. J. Med. 2021, 385, 1163–1171. [Google Scholar] [CrossRef]
- Abeyasinghe, R.R.; Galappaththy, G.N.L.; Gueye, C.S.; Kahn, J.G.; Feachem, R.G.A. Malaria Control and Elimination in Sri Lanka: Documenting Progress and Success Factors in a Conflict Setting. PLoS ONE 2012, 7, e43162. [Google Scholar] [CrossRef]
- Karunaweera, N.D.; Galappaththy, G.N.; Wirth, D.F. On the road to eliminate malaria in Sri Lanka: Lessons from history, challenges, gaps in knowledge and research needs. Malar. J. 2014, 13, 59. [Google Scholar] [CrossRef] [Green Version]
- Ning, L.; Abagna, H.B.; Jiang, Q.; Liu, S.; Huang, J. Development and application of therapeutic antibodies against COVID-19. Int. J. Biol. Sci. 2021, 17, 1486–1496. [Google Scholar] [CrossRef]
Disease That Is to Be Prevented | Biomarker, Condition | Drug Administration | |
---|---|---|---|
Non-infectious disease | Coronary artery disease, heart failure | Hypercholesteremia | Low-density lipoprotein-lowering drugs, e.g., statins |
Cardiovascular disease | Hypertension | Anti-hypertensives, e.g., angiotensin-converting-enzyme inhibitors | |
Diabetes (type II) | Fasting-state hyperglycemia | Antidiabetics, e.g., metformin | |
Cancer | Resection of primary cancer with risk for recurrence | Chemotherapy or chemoprevention (cytostatic drugs) | |
Infectious disease | Malaria | Healthy individuals at risk for infection | Mass drug administration, seasonal malaria chemoprevention, intermittent protection in pregnancy or children and chemoprophylaxis in travelers with antimalarials |
River blindness (Onchocerca volvulus infection) | Healthy individuals at risk for infection | Mass drug administration with ivermectin |
Term | Definition |
---|---|
chemoprophylaxis | Generic term for treatments aimed at preventing malaria-in travelers and other non-immunes exposed to malaria transmission |
chemoprevention | The administration of full curative treatment courses, typically administered during seasonal chemoprevention (SMC)or intermittent treatment in pregnancy (IPTp) and infants (IPTi) |
Mass Drug Administration | The administration to all age groups of a defined population (except those for whom the drugs are contraindicated) at the same time regardless of infection status, to accelerate malaria elimination through rapid and sustained reduction of transmission and to reduce mortality and morbidity in emergency situations |
preventive therapy | Umbrella term for chemoprophylaxis, intermittent preventive treatment of infants and pregnant women, seasonal malaria chemoprevention and mass drug administration |
Population | Type of Chemoprophylaxis | Treatments |
---|---|---|
Children under 5 years of age | seasonal malaria chemoprevention (SMC) | sulfadoxine-pyrimethamine + amodiaquine 2 |
Intermittent preventive treatment in infants | sulfadoxine-pyrimethamine 3 | |
Pregnant women | intermittent preventive treatment in pregnancy | sulfadoxine-pyrimethamine 3 |
intermittent screening and treatment | dihydroartemisinin–piperaquine 4 | |
Travelers | chemoprophylaxis | atovaquone/proguanil (Malarone); chloroquine; doxycycline; mefloquine; primaquine; Tafenoquine 1 |
Sporozoites | Liver Stages | Blood Stages | Gametocytes |
---|---|---|---|
CSP-1 | LSA-1 | SERA | P125 |
TRAP | CelTOS | EBA-175 | P1230 |
STARP | EXP-1 | AMA-1 | Pfg27 |
SALSA | LSA-3 | RAP-2 | Pfs45/48 |
SP-2 | STARP | RAP-1 | Pvs28 |
CelTOS | TRAP | GLURP | Pvs25 |
DPB | MSP-1 | Pfs16 | |
RESA | Pfs28 | ||
MSP-2 | |||
EMP-1 | |||
MSP-3 | |||
Pd35 | |||
MSP-5 | |||
P155 | |||
hRH5 | |||
Ripr | |||
CyRPA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moehrle, J.J. Development of New Strategies for Malaria Chemoprophylaxis: From Monoclonal Antibodies to Long-Acting Injectable Drugs. Trop. Med. Infect. Dis. 2022, 7, 58. https://doi.org/10.3390/tropicalmed7040058
Moehrle JJ. Development of New Strategies for Malaria Chemoprophylaxis: From Monoclonal Antibodies to Long-Acting Injectable Drugs. Tropical Medicine and Infectious Disease. 2022; 7(4):58. https://doi.org/10.3390/tropicalmed7040058
Chicago/Turabian StyleMoehrle, Joerg J. 2022. "Development of New Strategies for Malaria Chemoprophylaxis: From Monoclonal Antibodies to Long-Acting Injectable Drugs" Tropical Medicine and Infectious Disease 7, no. 4: 58. https://doi.org/10.3390/tropicalmed7040058
APA StyleMoehrle, J. J. (2022). Development of New Strategies for Malaria Chemoprophylaxis: From Monoclonal Antibodies to Long-Acting Injectable Drugs. Tropical Medicine and Infectious Disease, 7(4), 58. https://doi.org/10.3390/tropicalmed7040058