Air Pollution-Related Respiratory Diseases and Associated Environmental Factors in Chiang Mai, Thailand, in 2011–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Analyses
3. Results
3.1. General Information of Climate and Air Pollutants
3.2. Incidence Rates and Seasonal Decomposition of Time Series of Influenza and Pneumonia
3.3. Association between Influenza and Pneumonia Incidences and Environmental Factors
4. Discussion
4.1. Influenza and Associated Environmental Factors
4.2. Pneumonia and Associated Environmental Factors
4.3. The Role of PMs in Respiratory Diseases in the Northern Region of Thailand
4.4. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, Y.; Zhu, T. Health effects of fine particles (PM2.5) in ambient air. Sci. China Life Sci. 2015, 58, 624–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, F.J.; Fussell, J.C. Air pollution and public health: Emerging hazards and improved understanding of risk. Environ. Geochem. Health 2015, 37, 631–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravishankara, A.R.; David, L.M.; Pierce, J.R.; Venkataraman, C. Outdoor air pollution in India is not only an urban problem. Proc. Natl. Acad. Sci. USA 2020, 117, 28640–28644. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021.
- Nakharutai, N.; Traisathit, P.; Thongsak, N.; Supasri, T.; Srikummoon, P.; Thumronglaohapun, S.; Hemwan, P.; Chitapanarux, I. Impact of residential concentration of PM2.5 analyzed as time-varying covariate on the survival rate of lung cancer patients: A 15-year hospital-based study in upper northern Thailand. Int. J. Environ. Res. Public Health 2022, 19, 4521. [Google Scholar] [CrossRef]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Vichit-Vadakan, N.; Vajanapoom, N.; Ostro, B. The public health and air pollution in Asia (PAPA) project: Estimating the mortality effects of particulate matter in Bangkok, Thailand. Environ. Health Perspect. 2008, 116, 1179–1182. [Google Scholar] [CrossRef]
- Somayaji, R.; Neradilek, M.B.; Szpiro, A.A.; Lofy, K.H.; Jackson, M.L.; Goss, C.H.; Duchin, J.S.; Neuzil, K.M.; Ortiz, J.R. Effects of Air Pollution and Other Environmental Exposures on Estimates of Severe Influenza Illness, Washington, USA. Emerg. Infect. Dis. 2020, 26, 920–929. [Google Scholar] [CrossRef]
- Tamerius, J.; Nelson, M.I.; Zhou, S.Z.; Viboud, C.; Miller, M.A.; Alonso, W.J. Global influenza seasonality: Reconciling patterns across temperate and tropical regions. Environ. Health Perspect. 2011, 119, 439–445. [Google Scholar] [CrossRef] [Green Version]
- Lowen, A.C.; Steel, J. Roles of humidity and temperature in shaping influenza seasonality. J. Virol. 2014, 88, 7692–7695. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Barroso, D.; León-Gómez, I.; Delgado-Sanz, C.; Larrauri, A. Climatic Factors and Influenza Transmission, Spain, 2010–2015. Int. J. Environ. Res. Public Health 2017, 14, 1469. [Google Scholar] [CrossRef]
- Chong, K.C.; Goggins, W.; Zee, B.C.; Wang, M.H. Identifying meteorological drivers for the seasonal variations of influenza infections in a subtropical city—Hong Kong. Int. J. Environ. Res. Public Health 2015, 12, 1560–1576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altamimi, A.; Ahmed, A.E. Climate factors and incidence of Middle East respiratory syndrome coronavirus. J. Infect. Public Health 2020, 13, 704–708. [Google Scholar] [CrossRef] [PubMed]
- Nichols, G.L.; Gillingham, E.L.; Macintyre, H.L.; Vardoulakis, S.; Hajat, S.; Sarran, C.E.; Amankwaah, D.; Phalkey, R. Coronavirus seasonality, respiratory infections and weather. BMC Infect. Dis. 2021, 21, 1101. [Google Scholar] [CrossRef] [PubMed]
- Moreira, R.P.; Costa, A.C.; Gomes, T.F.; de Oliveira Ferreira, G. Climate and climate-sensitive diseases in semi-arid regions: A systematic review. Int J. Public Health 2020, 65, 1749–1761. [Google Scholar] [CrossRef] [PubMed]
- Pun, V.C.; Kazemiparkouhi, F.; Manjourides, J.; Suh, H.H. Long-Term PM2.5 Exposure and Respiratory, Cancer, and Cardiovascular Mortality in Older US Adults. Am. J. Epidemiol. 2017, 186, 961–969. [Google Scholar] [CrossRef] [Green Version]
- Tasci, S.S.; Kavalci, C.; Kayipmaz, A.E. Relationship of Meteorological and Air Pollution Parameters with Pneumonia in Elderly Patients. Emerg. Med. Int. 2018, 2018, 4183203. [Google Scholar] [CrossRef] [Green Version]
- Saleh, S.; Shepherd, W.; Jewell, C.; Lam, N.L.; Balmes, J.; Bates, M.N.; Lai, P.S.; Ochieng, C.A.; Chinouya, M.; Mortimer, K. Air pollution interventions and respiratory health: A systematic review. Int J. Tuberc Lung Dis 2020, 24, 150–164. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Chai, P.; Wang, J.; Ye, Z.; Shen, P.; Lu, H.; Jin, M.; Gu, M.; Li, D.; Lin, H.; et al. Association of particulate matter air pollution and hospital visits for respiratory diseases: A time-series study from China. Environ. Sci. Pollut. Res. Int. 2019, 26, 12280–12287. [Google Scholar] [CrossRef]
- Priyankara, S.; Senarathna, M.; Jayaratne, R.; Morawska, L.; Abeysundara, S.; Weerasooriya, R.; Knibbs, L.D.; Dharmage, S.C.; Yasaratne, D.; Bowatte, G. Ambient PM2.5 and PM10 Exposure and Respiratory Disease Hospitalization in Kandy, Sri Lanka. Int. J. Environ. Res. Public Health 2021, 18, 9617. [Google Scholar] [CrossRef]
- Pinichka, C.; Makka, N.; Sukkumnoed, D.; Chariyalertsak, S.; Inchai, P.; Bundhamcharoen, K. Burden of disease attributed to ambient air pollution in Thailand: A GIS-based approach. PLoS ONE 2017, 12, e0189909. [Google Scholar] [CrossRef]
- Pollution Control Department. Thailand Situation and Management of Air and Noise Pollutions 2019 (in Thai); Ministry of Natural Resources and Environment: Bangkok, Thailand, 2020.
- Department of Disease Control. Annual Epidemiological Surveillance Report 2018; Ministry of Public Health: Bangkok, Thailand, 2019.
- Bureau of Epidemiology. BOE Apps: Population. Available online: https://apps-doe.moph.go.th (accessed on 24 June 2022).
- National Statistical Office. Demographic Statistics and Housing. Available online: http://statbbi.nso.go.th/staticreport/page/sector/th/01.aspx (accessed on 24 June 2022).
- Provincial Strategy and Information Development Division. General Information of Chiang Mai (in Thai); Chiang Mai Provincial Hall: Chiang Mai, Thailand, 2017. [Google Scholar]
- Department of Disease Control. Annual Epidemiological Surveillance Report. Available online: https://apps-doe.moph.go.th/boeeng/annual.php (accessed on 24 June 2022).
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A seasonal-trend decomposition. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg Med. 2018, 18, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Dave, K.; Lee, P.C. Global Geographical and Temporal Patterns of Seasonal Influenza and Associated Climatic Factors. Epidemiol. Rev. 2019, 41, 51–68. [Google Scholar] [CrossRef] [PubMed]
- Department of Disease Control. Annual Epidemiological Surveillance Report 2020; Ministry of Public Health: Bangkok, Thailand, 2021.
- Feng, C.; Li, J.; Sun, W.; Zhang, Y.; Wang, Q. Impact of ambient fine particulate matter (PM2.5) exposure on the risk of influenza-like-illness: A time-series analysis in Beijing, China. Environ. Health 2016, 15, 17. [Google Scholar] [CrossRef] [Green Version]
- Comunian, S.; Dongo, D.; Milani, C.; Palestini, P. Air Pollution and COVID-19: The Role of Particulate Matter in the Spread and Increase of COVID-19’s Morbidity and Mortality. Int. J. Environ. Res. Public Health 2020, 17, 4487. [Google Scholar] [CrossRef]
- Yan, J.; Grantham, M.; Pantelic, J.; Bueno de Mesquita, P.J.; Albert, B.; Liu, F.; Ehrman, S.; Milton, D.K. Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community. Proc. Natl. Acad. Sci. USA 2018, 115, 1081–1086. [Google Scholar] [CrossRef] [Green Version]
- Gralton, J.; Tovey, E.R.; McLaws, M.L.; Rawlinson, W.D. Respiratory virus RNA is detectable in airborne and droplet particles. J. Med. Virol. 2013, 85, 2151–2159. [Google Scholar] [CrossRef]
- Milton, D.K.; Fabian, M.P.; Cowling, B.J.; Grantham, M.L.; McDevitt, J.J. Influenza virus aerosols in human exhaled breath: Particle size, culturability, and effect of surgical masks. PLoS Pathog. 2013, 9, e1003205. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.I.; Saravia, J.; You, D.; Shrestha, B.; Jaligama, S.; Hebert, V.Y.; Dugas, T.R.; Cormier, S.A. Exposure to combustion generated environmentally persistent free radicals enhances severity of influenza virus infection. Part. Fibre Toxicol. 2014, 11, 57. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Cai, J.; Liu, X.; Wang, B.; Yan, L.; Liu, R.; Nie, Y.; Wang, Y.; Zhang, X.; Zhang, X. Impact of PM2.5 and ozone on incidence of influenza in Shijiazhuang, China: A time-series study. Environ. Sci. Pollut. Res. Int. 2022, 1–18. [Google Scholar] [CrossRef]
- Hsiao, T.C.; Cheng, P.C.; Chi, K.H.; Wang, H.Y.; Pan, S.Y.; Kao, C.; Lee, Y.L.; Kuo, H.P.; Chung, K.F.; Chuang, H.C. Interactions of chemical components in ambient PM2.5 with influenza viruses. J. Hazard. Mater. 2022, 423, 127243. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, K.; Tran, C.L. Inflammation caused by particles and fibers. Inhal. Toxicol. 2002, 14, 5–27. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, J.; Wang, W.; Liang, J.J.; Deng, Z.H.; Du, J.; Xie, M.Z.; Wang, X.R.; Liu, Y.; Cui, F.; et al. Air pollutants and outpatient visits for influenza-like illness in Beijing, China. PeerJ 2021, 9, e11397. [Google Scholar] [CrossRef]
- Liu, J.; Chen, E.; Zhang, Q.; Shi, P.; Gao, Y.; Chen, Y.; Liu, W.; Qin, Y.; Shen, Y.; Shi, C. The correlation between atmospheric visibility and influenza in Wuxi city, China. Medicine 2020, 99, e21469. [Google Scholar] [CrossRef] [PubMed]
- Deyle, E.R.; Maher, M.C.; Hernandez, R.D.; Basu, S.; Sugihara, G. Global environmental drivers of influenza. Proc. Natl. Acad. Sci. USA 2016, 113, 13081–13086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloom-Feshbach, K.; Alonso, W.J.; Charu, V.; Tamerius, J.; Simonsen, L.; Miller, M.A.; Viboud, C. Latitudinal variations in seasonal activity of influenza and respiratory syncytial virus (RSV): A global comparative review. PLoS ONE 2013, 8, e54445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caini, S.; Andrade, W.; Badur, S.; Balmaseda, A.; Barakat, A.; Bella, A.; Bimohuen, A.; Brammer, L.; Bresee, J.; Bruno, A.; et al. Temporal Patterns of Influenza A and B in Tropical and Temperate Countries: What Are the Lessons for Influenza Vaccination? PLoS ONE 2016, 11, e0152310. [Google Scholar] [CrossRef] [PubMed]
- Lowen, A.C.; Mubareka, S.; Steel, J.; Palese, P. Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog. 2007, 3, 1470–1476. [Google Scholar] [CrossRef]
- Iha, Y.; Kinjo, T.; Parrott, G.; Higa, F.; Mori, H.; Fujita, J. Comparative epidemiology of influenza A and B viral infection in a subtropical region: A 7-year surveillance in Okinawa, Japan. BMC Infect. Dis. 2016, 16, 650. [Google Scholar] [CrossRef] [Green Version]
- Emukule, G.O.; Mott, J.A.; Spreeuwenberg, P.; Viboud, C.; Commanday, A.; Muthoka, P.; Munywoki, P.K.; Nokes, D.J.; van der Velden, K.; Paget, J.W. Influenza activity in Kenya, 2007–2013: Timing, association with climatic factors, and implications for vaccination campaigns. Influenza Other Respir. Viruses 2016, 10, 375–385. [Google Scholar] [CrossRef] [Green Version]
- He, D.; Dushoff, J.; Eftimie, R.; Earn, D.J. Patterns of spread of influenza A in Canada. Proc. Biol. Sci. 2013, 280, 20131174. [Google Scholar] [CrossRef] [PubMed]
- Ruchiraset, A.; Tantrakarnapa, K. Association of climate factors and air pollutants with pneumonia incidence in Lampang province, Thailand: Findings from a 12-year longitudinal study. Int. J. Environ. Health Res. 2022, 32, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Yi, L.; Wang, P.; Wang, B.; Li, M. The effect of air temperature on hospital admission of adults with community acquired pneumonia in Baotou, China. Sci. Rep. 2021, 11, 9353. [Google Scholar] [CrossRef] [PubMed]
- Miyayo, S.F.; Owili, P.O.; Muga, M.A.; Lin, T.H. Ana.alysis of Pneumonia Occurrence in Relation to Climate Change in Tanga, Tanzania. Int. J. Environ. Res. Public Health 2021, 18, 4731. [Google Scholar] [CrossRef] [PubMed]
- Pirozzi, C.S.; Jones, B.E.; VanDerslice, J.A.; Zhang, Y.; Paine, R., 3rd; Dean, N.C. Short-Term Air Pollution and Incident Pneumonia. A Case-Crossover Study. Ann. Am. Thorac Soc. 2018, 15, 449–459. [Google Scholar] [CrossRef]
- Yee, J.; Cho, Y.A.; Yoo, H.J.; Yun, H.; Gwak, H.S. Short-term exposure to air pollution and hospital admission for pneumonia: A systematic review and meta-analysis. Environ. Health 2021, 20, 6. [Google Scholar] [CrossRef] [PubMed]
- Nhung, N.T.T.; Amini, H.; Schindler, C.; Kutlar Joss, M.; Dien, T.M.; Probst-Hensch, N.; Perez, L.; Künzli, N. Short-term association between ambient air pollution and pneumonia in children: A systematic review and meta-analysis of time-series and case-crossover studies. Environ. Pollut 2017, 230, 1000–1008. [Google Scholar] [CrossRef]
- Makri, A.; Stilianakis, N.I. Vulnerability to air pollution health effects. Int. J. Hyg. Environ. Health 2008, 211, 326–336. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, S.; Dou, Q.; Huang, Z.; Lv, C.; Liao, J.; Tao, F.; Liu, Y.; Ma, L. Association between Ambient Air Pollutants and Pneumonia in Wuhan, China, 2014–2017. Atmosphere 2022, 13, 578. [Google Scholar] [CrossRef]
- Cao, C.; Jiang, W.; Wang, B.; Fang, J.; Lang, J.; Tian, G.; Jiang, J.; Zhu, T.F. Inhalable Microorganisms in Beijing’s PM2.5 and PM10 Pollutants during a Severe Smog Event. Environ. Sci. Technol. 2014, 48, 1499–1507. [Google Scholar] [CrossRef]
- Sukkhum, S.; Lim, A.; Ingviya, T.; Saelim, R. Seasonal patterns and trends of air pollution in the upper northern Thailand from 2004 to 2018. Aerosol. Air Qual. Res. 2022, 22, 210318. [Google Scholar] [CrossRef]
- Chuang, H.-C.; Hsiao, T.-C.; Wang, S.-H.; Tsay, S.-C.; Lin, N.-H. Characterization of Particulate Matter Profiling and Alveolar Deposition from Biomass Burning in Northern Thailand: The 7-SEAS Study. Aerosol. Air Qual. Res. 2016, 16, 2897–2906. [Google Scholar] [CrossRef] [Green Version]
- Pongpiachan, S.; Choochuay, C.; Chalachol, J.; Kanchai, P.; Phonpiboon, T.; Wongsuesat, S.; Chomkhae, K.; Kittikoon, I.; Hiranyatrakul, P.; Cao, J.; et al. Chemical characterisation of organic functional group compositions in PM2.5 collected at nine administrative provinces in northern Thailand during the haze episode in 2013. Asian Pac. J. Cancer Prev. 2013, 14, 3653–3661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youssouf, H.; Liousse, C.; Roblou, L.; Assamoi, E.M.; Salonen, R.O.; Maesano, C.; Banerjee, S.; Annesi-Maesano, I. Non-accidental health impacts of wildfire smoke. Int. J. Environ. Res. Public Health 2014, 11, 11772–11804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, C.E.; Brauer, M.; Johnston, F.H.; Jerrett, M.; Balmes, J.R.; Elliott, C.T. Critical Review of Health Impacts of Wildfire Smoke Exposure. Environ. Health Perspect. 2016, 124, 1334–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cascio, W.E. Wildland fire smoke and human health. Sci. Total Environ. 2018, 624, 586–595. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Z.; Su, H.; Ho, H.C.; Song, Y.; Zheng, H.; Hossain, M.Z.; Khan, M.A.; Bogale, D.; Zhang, H.; et al. Ambient particulate matter (PM1, PM2.5, PM10) and childhood pneumonia: The smaller particle, the greater short-term impact? Sci. Total Environ. 2021, 772, 145509. [Google Scholar] [CrossRef]
- Liu, J.C.; Pereira, G.; Uhl, S.A.; Bravo, M.A.; Bell, M.L. A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. Environ. Res. 2015, 136, 120–132. [Google Scholar] [CrossRef] [Green Version]
- Leikauf, G.D.; Kim, S.H.; Jang, A.S. Mechanisms of ultrafine particle-induced respiratory health effects. Exp. Mol. Med. 2020, 52, 329–337. [Google Scholar] [CrossRef]
- Yue, W.; Tong, L.; Liu, X.; Weng, X.; Chen, X.; Wang, D.; Dudley, S.C.; Weir, E.K.; Ding, W.; Lu, Z.; et al. Short term PM2.5 exposure caused a robust lung inflammation, vascular remodeling, and exacerbated transition from left ventricular failure to right ventricular hypertrophy. Redox Biol. 2019, 22, 101161. [Google Scholar] [CrossRef]
Season | Month | Temperature (°C) a | Relative Humidity (%) a | Total Precipitation (mm) a,b | PM2.5 (µg/m3) c | PM10 (µg/m3) |
---|---|---|---|---|---|---|
Dry, Cool | Jan | 22.9 | 68.7 | 21.8 | 32.6 | 48.9 |
Feb | 25.1 | 58.6 | 7.8 | 49.5 | 68.6 | |
Hot | Mar | 28.0 | 53.5 | 13.5 | 80.9 | 101.7 |
Apr | 30.0 | 56.8 | 45.2 | 57.6 | 74.4 | |
May | 29.6 | 67.8 | 172.4 | 25.1 | 38.8 | |
Rainy | Jun | 28.7 | 73.4 | 114.4 | 14.7 | 24.9 |
Jul | 28.0 | 76.5 | 154.9 | 14.6 | 25.1 | |
Aug | 27.6 | 79.6 | 220.9 | 14.6 | 26.1 | |
Sep | 27.8 | 78.5 | 189.4 | 14.2 | 26.4 | |
Oct | 27.2 | 76.0 | 131.5 | 18.1 | 31.8 | |
Dry, Cool | Nov | 26.1 | 72.7 | 40.9 | 20.9 | 34.2 |
Dec | 23.3 | 71.1 | 9.4 | 28.6 | 44.3 | |
Average | 27.0 | 69.4 | 93.5 | 22.0 d | 35.8 d | |
Standard [22] | - | - | - | 50 e/25 f | 120/50 |
Month | Influenza IRR (95%CI) | Pneumonia IRR (95%CI) |
---|---|---|
Jan | 12.01 (5.51, 26.19) * | 1.64 (1.31, 2.04) * |
Feb | 12.18 (5.58, 26.57) * | 1.59 (1.27, 1.98) * |
Mar | 6.53 (2.99, 14.25) * | 1.46 (1.17, 1.82) * |
Apr | 1.73 (0.79, 3.78) | 1.12 (0.90, 1.40) |
May | Reference = 1 | 1.01 (0.81, 1.27) |
Jun | 1.68 (0.77, 3.67) | Reference = 1 |
Jul | 2.93 (1.34, 6.39) * | 1.01 (0.81, 1.27) |
Aug | 5.52 (2.53, 12.05) * | 1.38 (1.10, 1.72) * |
Sep | 6.80 (3.12, 14.84) * | 1.71 (1.37, 2.14) * |
Oct | 5.16 (2.36, 11.25) * | 1.50 (1.20, 1.87) * |
Nov | 5.80 (2.66, 12.66) * | 1.31 (1.05, 1.64) * |
Dec | 6.31 (2.89, 13.76) * | 1.20 (0.96, 1.50) |
Model | Input Predictors | Model Equation | Adjusted IRR | 95%CI | p-Value |
---|---|---|---|---|---|
Influenza final NBR models | |||||
1 | PM2.5 lag1, | lnIF =−8.10 + 0.03(PM2.5l1) − 0.0004(PM2.5l1sq) * | 1.027 | 0.989, 1.067 | 0.164 |
PM2.5 lag1_sq | 1.000 | 0.999, 1.000 | 0.023 | ||
2 | PM10 | lnIF = −8.41 + 0.01(PM10) ** | 1.012 | 1.004, 1.021 | 0.004 |
3 | Temperature lag1 | lnIF = −1.29 − 0.25(Templ1) *** | 0.781 | 0.711, 0.858 | <0.001 |
Pneumonia final NBR models | |||||
4 | PM10 | lnPN = −7.83 + 0.002(PM10) * | 1.002 | 1.000, 1.004 | 0.033 |
5 | Temperature | lnPN = −6.84 − 0.03(Temp) * | 0.967 | 0.940, 0.995 | 0.021 |
6 | Temperature lag1, | lnPN = −6.87 − 0.05(Templ1) ** + 0.01(Rhl1) ** | 0.951 | 0.919, 0.983 | 0.003 |
Relative humidity lag1 | 1.007 | 1.002, 1.012 | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jainonthee, C.; Wang, Y.-L.; Chen, C.W.K.; Jainontee, K. Air Pollution-Related Respiratory Diseases and Associated Environmental Factors in Chiang Mai, Thailand, in 2011–2020. Trop. Med. Infect. Dis. 2022, 7, 341. https://doi.org/10.3390/tropicalmed7110341
Jainonthee C, Wang Y-L, Chen CWK, Jainontee K. Air Pollution-Related Respiratory Diseases and Associated Environmental Factors in Chiang Mai, Thailand, in 2011–2020. Tropical Medicine and Infectious Disease. 2022; 7(11):341. https://doi.org/10.3390/tropicalmed7110341
Chicago/Turabian StyleJainonthee, Chalita, Ying-Lin Wang, Colin W. K. Chen, and Karuna Jainontee. 2022. "Air Pollution-Related Respiratory Diseases and Associated Environmental Factors in Chiang Mai, Thailand, in 2011–2020" Tropical Medicine and Infectious Disease 7, no. 11: 341. https://doi.org/10.3390/tropicalmed7110341