Diagnostic Methods of Common Intestinal Protozoa: Current and Future Immunological and Molecular Methods
Abstract
:1. Introduction
2. Challenges in Identification of Human Intestinal Eukaryotic Diversity
3. The Development of Immunological Methods
3.1. Immunodiagnostic Methods for Amoebiasis
3.2. Immunodiagnostic Methods for Giardiasis
3.3. Immunodiagnostic Methods for Cryptosporidiosis
4. The Establishment and Expansion of Molecular Methods
4.1. Polymerase Chain Reaction (PCR)-Based Methods
4.1.1. PCR for the Diagnosis of Amoebiasis
4.1.2. PCR for Giardiasis
4.1.3. PCR for Cryptosporidiosis
4.1.4. Real-Time PCR
4.2. Next-Generation Sequencing (NGS)
5. The Future of Intestinal Protozoa Diagnosis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torgerson, P.R.; Devleesschauwer, B.; Praet, N.; Speybroeck, N.; Willingham, A.L.; Kasuga, F.; Rokni, M.B.; Zhou, X.N.; Fevre, E.M.; Sripa, B.; et al. World Health Organization Estimates of the Global and Regional Disease Burden of 11 Foodborne Parasitic Diseases, 2010: A Data Synthesis. PLoS Med. 2015, 12, e1001920. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.L.; Gilchrist, C.A.; Lynn, T.C.; Petri, W.A., Jr. Parasitic Protozoa and Interactions with the Host Intestinal Microbiota. Infect Immun. 2017, 85, e00101-17. [Google Scholar] [CrossRef] [PubMed]
- Barcelos, N.B.; Silva, L.F.E.; Dias, R.F.G.; Menezes Filho, H.R.; Rodrigues, R.M. Opportunistic and non-opportunistic intestinal parasites in HIV/AIDS patients in relation to their clinical and epidemiological status in a specialized medical service in Goias, Brazil. Rev. Inst. Med. Trop. Sao Paulo 2018, 60, e13. [Google Scholar] [CrossRef] [PubMed]
- McHardy, I.H.; Wu, M.; Shimizu-Cohen, R.; Couturier, M.R.; Humphries, R.M. Detection of intestinal protozoa in the clinical laboratory. J. Clin. Microbiol. 2014, 52, 712–720. [Google Scholar] [CrossRef]
- Hirt, R.P. Mucosal microbial parasites/symbionts in health and disease: An integrative overview. Parasitology 2019, 146, 1109–1115. [Google Scholar] [CrossRef]
- Osman, M.; El Safadi, D.; Cian, A.; Benamrouz, S.; Nourrisson, C.; Poirier, P.; Pereira, B.; Razakandrainibe, R.; Pinon, A.; Lambert, C.; et al. Prevalence and Risk Factors for Intestinal Protozoan Infections with Cryptosporidium, Giardia, Blastocystis and Dientamoeba among Schoolchildren in Tripoli, Lebanon. PLoS Negl. Trop. Dis. 2016, 10, e0004496. [Google Scholar] [CrossRef]
- Deere, J.R.; Schaber, K.L.; Foerster, S.; Gilby, I.C.; Feldblum, J.T.; VanderWaal, K.; Wolf, T.M.; Travis, D.A.; Raphael, J.; Lipende, I.; et al. Gregariousness is associated with parasite species richness in a community of wild chimpanzees. Behav. Ecol. Sociobiol. 2021, 75, 1–11. [Google Scholar] [CrossRef]
- Bartley, P.M.; Roehe, B.K.; Thomson, S.; Shaw, H.J.; Peto, F.; Innes, E.A.; Katzer, F. Detection of potentially human infectious assemblages of Giardia duodenalis in fecal samples from beef and dairy cattle in Scotland. Parasitology 2019, 146, 1123–1130. [Google Scholar] [CrossRef]
- Jiang, W.; Roellig, D.M.; Lebbad, M.; Beser, J.; Troell, K.; Guo, Y.; Li, N.; Xiao, L.; Feng, Y. Subtype distribution of zoonotic pathogen Cryptosporidium felis in humans and animals in several countries. Emerg. Microbes Infect. 2020, 9, 2446–2454. [Google Scholar] [CrossRef]
- van Gestel, R.S.; Kusters, J.G.; Monkelbaan, J.F. A clinical guideline on Dientamoeba fragilis infections. Parasitology 2019, 146, 1131–1139. [Google Scholar] [CrossRef]
- Parija, S.C.; Mandal, J.; Ponnambath, D.K. Laboratory methods of identification of Entamoeba histolytica and its differentiation from look-alike Entamoeba spp. Trop. Parasitol. 2014, 4, 90–95. [Google Scholar] [CrossRef]
- Singh, A.; Houpt, E.; Petri, W.A. Rapid Diagnosis of Intestinal Parasitic Protozoa, with a Focus on Entamoeba histolytica. Interdiscip. Perspect. Infect. Dis. 2009, 2009, 547090. [Google Scholar] [CrossRef]
- Fotedar, R.; Stark, D.; Beebe, N.; Marriott, D.; Ellis, J.; Harkness, J. Laboratory diagnostic techniques for Entamoeba species. Clin. Microbiol. Rev. 2007, 20, 511–532. [Google Scholar] [CrossRef]
- Hira, P.R.; Iqbal, J.; Al-Ali, F.; Philip, R.; Grover, S.; D’Almeida, E.; Al-Eneizi, A.A. Invasive amebiasis: Challenges in diagnosis in a non-endemic country (Kuwait). Am. J. Trop. Med. Hyg. 2001, 65, 341–345. [Google Scholar] [CrossRef]
- Haque, R.; Kabir, M.; Noor, Z.; Rahman, S.M.; Mondal, D.; Alam, F.; Rahman, I.; Al Mahmood, A.; Ahmed, N.; Petri, W.A., Jr. Diagnosis of amebic liver abscess and amebic colitis by detection of Entamoeba histolytica DNA in blood, urine, and saliva by a real-time PCR assay. J. Clin. Microbiol. 2010, 48, 2798–2801. [Google Scholar] [CrossRef]
- Mirelman, D.; Nuchamowitz, Y.; Stolarsky, T. Comparison of use of enzyme-linked immunosorbent assay-based kits and PCR amplification of rRNA genes for simultaneous detection of Entamoeba histolytica and E. dispar. J. Clin. Microbiol. 1997, 35, 2405–2407. [Google Scholar] [CrossRef]
- Abd-Alla, M.D.; Ravdin, J.I. Diagnosis of amoebic colitis by antigen capture ELISA in patients presenting with acute diarrhoea in Cairo, Egypt. Trop. Med. Int. Health 2002, 7, 365–370. [Google Scholar] [CrossRef]
- Haque, R.; Ali, I.K.; Akther, S.; Petri, W.A., Jr. Comparison of PCR, isoenzyme analysis, and antigen detection for diagnosis of Entamoeba histolytica infection. J. Clin. Microbiol. 1998, 36, 449–452. [Google Scholar] [CrossRef]
- Haque, R.; Kress, K.; Wood, S.; Jackson, T.F.; Lyerly, D.; Wilkins, T.; Petri, W.A., Jr. Diagnosis of pathogenic Entamoeba histolytica infection using a stool ELISA based on monoclonal antibodies to the galactose-specific adhesin. J. Infect. Dis. 1993, 167, 247–249. [Google Scholar] [CrossRef]
- Haque, R.; Mollah, N.U.; Ali, I.K.; Alam, K.; Eubanks, A.; Lyerly, D.; Petri, W.A., Jr. Diagnosis of amebic liver abscess and intestinal infection with the TechLab Entamoeba histolytica II antigen detection and antibody tests. J. Clin. Microbiol. 2000, 38, 3235–3239. [Google Scholar] [CrossRef] [Green Version]
- van Doorn, H.R.; Hofwegen, H.; Koelewijn, R.; Gilis, H.; Peek, R.; Wetsteyn, J.C.; van Genderen, P.J.; Vervoort, T.; van Gool, T. Use of rapid dipstick and latex agglutination tests and enzyme-linked immunosorbent assay for serodiagnosis of amebic liver abscess, amebic Colitis, and Entamoeba histolytica Cyst Passage. J. Clin. Microbiol. 2005, 43, 4801–4806. [Google Scholar] [CrossRef] [PubMed]
- Garcia, L.S.; Shimizu, R.Y.; Bernard, C.N. Detection of Giardia lamblia, Entamoeba histolytica/Entamoeba dispar, and Cryptosporidium parvum antigens in human fecal specimens using the triage parasite panel enzyme immunoassay. J. Clin. Microbiol. 2000, 38, 3337–3340. [Google Scholar] [CrossRef] [PubMed]
- Singhal, S.; Mittal, V.; Khare, V.; Singh, Y.I. Comparative analysis of enzyme-linked immunosorbent assay and direct microscopy for the diagnosis of Giardia intestinalis in fecal samples. Indian J. Pathol. Microbiol. 2015, 58, 69–71. [Google Scholar] [CrossRef] [PubMed]
- Johnston, S.P.; Ballard, M.M.; Beach, M.J.; Causer, L.; Wilkins, P.P. Evaluation of three commercial assays for detection of Giardia and Cryptosporidium organisms in fecal specimens. J. Clin. Microbiol. 2003, 41, 623–626. [Google Scholar] [CrossRef]
- Gotfred-Rasmussen, H.; Lund, M.; Enemark, H.L.; Erlandsen, M.; Petersen, E. Comparison of sensitivity and specificity of 4 methods for detection of Giardia duodenalis in feces: Immunofluorescence and PCR are superior to microscopy of concentrated iodine-stained samples. Diagn. Microbiol. Infect. Dis. 2016, 84, 187–190. [Google Scholar] [CrossRef]
- Vanathy, K.; Parija, S.C.; Mandal, J.; Hamide, A.; Krishnamurthy, S. Cryptosporidiosis: A mini review. Trop. Parasitol. 2017, 7, 72–80. [Google Scholar] [CrossRef]
- Ebrahimzade, E.; Shayan, P.; Asghari, Z.; Jafari, S.; Omidian, Z. Isolation of Small Number of Cryptosporidium parvum Oocyst Using Immunochromatography. Iran. J. Parasitol. 2014, 9, 482–490. [Google Scholar]
- World Organisation for Animal Health. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2022; WOAH: Paris, France, 2022; p. 17. [Google Scholar]
- Verweij, J.J.; Stensvold, C.R. Molecular testing for clinical diagnosis and epidemiological investigations of intestinal parasitic infections. Clin. Microbiol. Rev. 2014, 27, 371–418. [Google Scholar] [CrossRef]
- Stark, D.; Fotedar, R.; van Hal, S.; Beebe, N.; Marriott, D.; Ellis, J.T.; Harkness, J. Prevalence of enteric protozoa in human immunodeficiency virus (HIV)-positive and HIV-negative men who have sex with men from Sydney, Australia. Am. J. Trop. Med. Hyg. 2007, 76, 549–552. [Google Scholar] [CrossRef]
- Fotedar, R.; Stark, D.; Beebe, N.; Marriott, D.; Ellis, J.; Harkness, J. PCR detection of Entamoeba histolytica, Entamoeba dispar, and Entamoeba moshkovskii in stool samples from Sydney, Australia. J. Clin. Microbiol. 2007, 45, 1035–1037. [Google Scholar] [CrossRef]
- Liang, S.Y.; Chan, Y.H.; Hsia, K.T.; Lee, J.L.; Kuo, M.C.; Hwa, K.Y.; Chan, C.W.; Chiang, T.Y.; Chen, J.S.; Wu, F.T.; et al. Development of loop-mediated isothermal amplification assay for detection of Entamoeba histolytica. J. Clin. Microbiol. 2009, 47, 1892–1895. [Google Scholar] [CrossRef] [Green Version]
- Hooshyar, H.; Rostamkhani, P.; Arbabi, M.; Delavari, M. Giardia lamblia infection: Review of current diagnostic strategies. Gastroenterol. Hepatol. Bed. Bench 2019, 12, 3–12. [Google Scholar]
- Morgan, U.M.; Constantine, C.C.; Forbes, D.A.; Thompson, R.C. Differentiation between human and animal isolates of Cryptosporidium parvum using rDNA sequencing and direct PCR analysis. J. Parasitol. 1997, 83, 825–830. [Google Scholar] [CrossRef]
- Morgan, U.M.; Pallant, L.; Dwyer, B.W.; Forbes, D.A.; Rich, G.; Thompson, R.C. Comparison of PCR and microscopy for detection of Cryptosporidium parvum in human fecal specimens: Clinical trial. J. Clin. Microbiol. 1998, 36, 995–998. [Google Scholar] [CrossRef]
- Karanis, P.; Thekisoe, O.; Kiouptsi, K.; Ongerth, J.; Igarashi, I.; Inoue, N. Development and preliminary evaluation of a loop-mediated isothermal amplification procedure for sensitive detection of cryptosporidium oocysts in fecal and water samples. Appl. Environ. Microbiol. 2007, 73, 5660–5662. [Google Scholar] [CrossRef]
- Bakheit, M.A.; Torra, D.; Palomino, L.A.; Thekisoe, O.M.; Mbati, P.A.; Ongerth, J.; Karanis, P. Sensitive and specific detection of Cryptosporidium species in PCR-negative samples by loop-mediated isothermal DNA amplification and confirmation of generated LAMP products by sequencing. Vet. Parasitol. 2008, 158, 11–22. [Google Scholar] [CrossRef]
- Bandyopadhyay, K.; Kellar, K.L.; Moura, I.; Casaqui Carollo, M.C.; Graczyk, T.K.; Slemenda, S.; Johnston, S.P.; da Silva, A.J. Rapid microsphere assay for identification of cryptosporidium hominis and cryptosporidium parvum in stool and environmental samples. J. Clin. Microbiol. 2007, 45, 2835–2840. [Google Scholar] [CrossRef]
- Llewellyn, S.; Inpankaew, T.; Nery, S.V.; Gray, D.J.; Verweij, J.J.; Clements, A.C.; Gomes, S.J.; Traub, R.; McCarthy, J.S. Application of a Multiplex Quantitative PCR to Assess Prevalence and Intensity Of Intestinal Parasite Infections in a Controlled Clinical Trial. PLoS Negl. Trop. Dis. 2016, 10, e0004380. [Google Scholar] [CrossRef]
- Taniuchi, M.; Verweij, J.J.; Noor, Z.; Sobuz, S.U.; Lieshout, L.; Petri, W.A., Jr.; Haque, R.; Houpt, E.R. High throughput multiplex PCR and probe-based detection with Luminex beads for seven intestinal parasites. Am. J. Trop. Med. Hyg. 2011, 84, 332–337. [Google Scholar] [CrossRef]
- Mejia, R.; Vicuna, Y.; Broncano, N.; Sandoval, C.; Vaca, M.; Chico, M.; Cooper, P.J.; Nutman, T.B. A novel, multi-parallel, real-time polymerase chain reaction approach for eight gastrointestinal parasites provides improved diagnostic capabilities to resource-limited at-risk populations. Am. J. Trop. Med. Hyg. 2013, 88, 1041–1047. [Google Scholar] [CrossRef]
- Easton, A.V.; Oliveira, R.G.; O’Connell, E.M.; Kepha, S.; Mwandawiro, C.S.; Njenga, S.M.; Kihara, J.H.; Mwatele, C.; Odiere, M.R.; Brooker, S.J.; et al. Multi-parallel qPCR provides increased sensitivity and diagnostic breadth for gastrointestinal parasites of humans: Field-based inferences on the impact of mass deworming. Parasit. Vectors 2016, 9, 38. [Google Scholar] [CrossRef]
- ten Hove, R.J.; van Esbroeck, M.; Vervoort, T.; van den Ende, J.; van Lieshout, L.; Verweij, J.J. Molecular diagnostics of intestinal parasites in returning travellers. Eur. J. Clin. Microbiol. Infect. Dis. 2009, 28, 1045–1053. [Google Scholar] [CrossRef] [Green Version]
- Weinreich, F.; Hahn, A.; Eberhardt, K.A.; Feldt, T.; Sarfo, F.S.; Di Cristanziano, V.; Frickmann, H.; Loderstadt, U. Comparison of Three Real-Time PCR Assays Targeting the SSU rRNA Gene, the COWP Gene and the DnaJ-Like Protein Gene for the Diagnosis of Cryptosporidium spp. in Stool Samples. Pathogens 2021, 10, 1131. [Google Scholar] [CrossRef]
- Hamady, M.; Knight, R. Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome Res. 2009, 19, 1141–1152. [Google Scholar] [CrossRef]
- DeMone, C.; Hwang, M.H.; Feng, Z.; McClure, J.T.; Greenwood, S.J.; Fung, R.; Kim, M.; Weese, J.S.; Shapiro, K. Application of next generation sequencing for detection of protozoan pathogens in shellfish. Food Waterborne Parasitol. 2020, 21, e00096. [Google Scholar] [CrossRef]
- Mitchell, C.J.; O’Sullivan, C.M.; Pinloche, E.; Wilkinson, T.; Morphew, R.M.; McEwan, N.R. Using next-generation sequencing to determine diversity of horse intestinal worms: Identifying the equine “nemabiome”. J. Equine Sci. 2019, 30, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Moreno, Y.; Moreno-Mesonero, L.; Amoros, I.; Perez, R.; Morillo, J.A.; Alonso, J.L. Multiple identification of most important waterborne protozoa in surface water used for irrigation purposes by 18S rRNA amplicon-based metagenomics. Int. J. Hyg. Environ. Health 2018, 221, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Bailly, E.; Valot, S.; Vincent, A.; Duffourd, Y.; Grangier, N.; Chevarin, M.; Costa, D.; Razakandrainibe, R.; Favennec, L.; Basmaciyan, L.; et al. Evaluation of Next-Generation Sequencing Applied to Cryptosporidium parvum and Cryptosporidium hominis Epidemiological Study. Pathogens 2022, 11, 938. [Google Scholar] [CrossRef] [PubMed]
- Maloney, J.G.; Molokin, A.; Santin, M. Next generation amplicon sequencing improves detection of Blastocystis mixed subtype infections. Infect. Genet. Evol. 2019, 73, 119–125. [Google Scholar] [CrossRef]
- Hublin, J.S.Y.; Maloney, J.G.; George, N.S.; Molokin, A.; Lombard, J.E.; Urie, N.J.; Shivley, C.B.; Santin, M. Enhanced detection of Giardia duodenalis mixed assemblage infections in pre-weaned dairy calves using next generation sequencing. Vet. Parasitol. 2022, 304, 109702. [Google Scholar] [CrossRef]
- Mthethwa, N.P.; Amoah, I.D.; Reddy, P.; Bux, F.; Kumari, S. A review on application of next-generation sequencing methods for profiling of protozoan parasites in water: Current methodologies, challenges, and perspectives. J. Microbiol. Methods 2021, 187, 106269. [Google Scholar] [CrossRef]
- Miller, R.R.; Montoya, V.; Gardy, J.L.; Patrick, D.M.; Tang, P. Metagenomics for pathogen detection in public health. Genome Med. 2013, 5, 81. [Google Scholar] [CrossRef] [Green Version]
- Lear, G.; Dickie, I.; Banks, J.; Boyer, S.; Buckley, H.L.; Buckley, T.R.; Cruickshank, R.; Dopheide, A.; Handley, K.M.; Hermans, S.; et al. Methods for the extraction, storage, amplification and sequencing of DNA from environmental samples. N. Z. J. Ecol. 2018, 42, 10–50A. [Google Scholar] [CrossRef]
- Kibegwa, F.M.; Bett, R.C.; Gachuiri, C.K.; Stomeo, F.; Mujibi, F.D. A Comparison of Two DNA Metagenomic Bioinformatic Pipelines While Evaluating the Microbial Diversity in Feces of Tanzanian Small Holder Dairy Cattle. Biomed. Res. Int. 2020, 2020, 2348560. [Google Scholar] [CrossRef]
- Quince, C.; Walker, A.W.; Simpson, J.T.; Loman, N.J.; Segata, N. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 2017, 35, 833–844. [Google Scholar] [CrossRef]
- Tanaka, R.; Hino, A.; Tsai, I.J.; Palomares-Rius, J.E.; Yoshida, A.; Ogura, Y.; Hayashi, T.; Maruyama, H.; Kikuchi, T. Assessment of helminth biodiversity in wild rats using 18S rDNA based metagenomics. PLoS ONE 2014, 9, e110769. [Google Scholar] [CrossRef]
- Uyaguari-Diaz, M.I.; Chan, M.; Chaban, B.L.; Croxen, M.A.; Finke, J.F.; Hill, J.E.; Peabody, M.A.; Van Rossum, T.; Suttle, C.A.; Brinkman, F.S.; et al. A comprehensive method for amplicon-based and metagenomic characterization of viruses, bacteria, and eukaryotes in freshwater samples. Microbiome 2016, 4, 20. [Google Scholar] [CrossRef]
- Maritz, J.M.; Ten Eyck, T.A.; Elizabeth Alter, S.; Carlton, J.M. Patterns of protist diversity associated with raw sewage in New York City. ISME J. 2019, 13, 2750–2763. [Google Scholar] [CrossRef]
- Popovic, A.; Bourdon, C.; Wang, P.W.; Guttman, D.S.; Voskuijl, W.; Grigg, M.E.; Bandsma, R.H.J.; Parkinson, J. Design and application of a novel two-amplicon approach for defining eukaryotic microbiota. Microbiome 2018, 6, 228. [Google Scholar] [CrossRef]
- Stamps, B.W.; Leddy, M.B.; Plumlee, M.H.; Hasan, N.A.; Colwell, R.R.; Spear, J.R. Characterization of the Microbiome at the World’s Largest Potable Water Reuse Facility. Front. Microbiol. 2018, 9, 2435. [Google Scholar] [CrossRef]
- Hadziavdic, K.; Lekang, K.; Lanzen, A.; Jonassen, I.; Thompson, E.M.; Troedsson, C. Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PLoS ONE 2014, 9, e87624. [Google Scholar] [CrossRef]
- Pawlowski, J.; Lejzerowicz, F.; Apotheloz-Perret-Gentil, L.; Visco, J.; Esling, P. Protist metabarcoding and environmental biomonitoring: Time for change. Eur. J. Protistol. 2016, 55, 12–25. [Google Scholar] [CrossRef] [Green Version]
- Bradley, I.M.; Pinto, A.J.; Guest, J.S. Design and Evaluation of Illumina MiSeq-Compatible, 18S rRNA Gene-Specific Primers for Improved Characterization of Mixed Phototrophic Communities. Appl. Environ. Microbiol. 2016, 82, 5878–5891. [Google Scholar] [CrossRef]
- Thomas, T.; Gilbert, J.; Meyer, F. Metagenomics—A guide from sampling to data analysis. Microb. Inform. Exp. 2012, 2, 3. [Google Scholar] [CrossRef]
- Escobar-Zepeda, A.; Vera-Ponce de Leon, A.; Sanchez-Flores, A. The Road to Metagenomics: From Microbiology to DNA Sequencing Technologies and Bioinformatics. Front. Genet. 2015, 6, 348. [Google Scholar] [CrossRef]
- Ambardar, S.; Gupta, R.; Trakroo, D.; Lal, R.; Vakhlu, J. High Throughput Sequencing: An Overview of Sequencing Chemistry. Indian J. Microbiol. 2016, 56, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Shokralla, S.; Spall, J.L.; Gibson, J.F.; Hajibabaei, M. Next-generation sequencing technologies for environmental DNA research. Mol. Ecol. 2012, 21, 1794–1805. [Google Scholar] [CrossRef] [PubMed]
- Maritz, J.M.; Rogers, K.H.; Rock, T.M.; Liu, N.; Joseph, S.; Land, K.M.; Carlton, J.M. An 18S rRNA Workflow for Characterizing Protists in Sewage, with a Focus on Zoonotic Trichomonads. Microb. Ecol. 2017, 74, 923–936. [Google Scholar] [CrossRef] [PubMed]
- Zahedi, A.; Greay, T.L.; Paparini, A.; Linge, K.L.; Joll, C.A.; Ryan, U.M. Identification of eukaryotic microorganisms with 18S rRNA next-generation sequencing in wastewater treatment plants, with a more targeted NGS approach required for Cryptosporidium detection. Water Res. 2019, 158, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Fungal Barcoding, C.; Fungal Barcoding Consortium Author, L. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fitri, L.E.; Candradikusuma, D.; Setia, Y.D.; Wibawa, P.A.; Iskandar, A.; Winaris, N.; Pawestri, A.R. Diagnostic Methods of Common Intestinal Protozoa: Current and Future Immunological and Molecular Methods. Trop. Med. Infect. Dis. 2022, 7, 253. https://doi.org/10.3390/tropicalmed7100253
Fitri LE, Candradikusuma D, Setia YD, Wibawa PA, Iskandar A, Winaris N, Pawestri AR. Diagnostic Methods of Common Intestinal Protozoa: Current and Future Immunological and Molecular Methods. Tropical Medicine and Infectious Disease. 2022; 7(10):253. https://doi.org/10.3390/tropicalmed7100253
Chicago/Turabian StyleFitri, Loeki Enggar, Didi Candradikusuma, Yulia Dwi Setia, Purwa Adrianta Wibawa, Agustin Iskandar, Nuning Winaris, and Aulia Rahmi Pawestri. 2022. "Diagnostic Methods of Common Intestinal Protozoa: Current and Future Immunological and Molecular Methods" Tropical Medicine and Infectious Disease 7, no. 10: 253. https://doi.org/10.3390/tropicalmed7100253
APA StyleFitri, L. E., Candradikusuma, D., Setia, Y. D., Wibawa, P. A., Iskandar, A., Winaris, N., & Pawestri, A. R. (2022). Diagnostic Methods of Common Intestinal Protozoa: Current and Future Immunological and Molecular Methods. Tropical Medicine and Infectious Disease, 7(10), 253. https://doi.org/10.3390/tropicalmed7100253