End-User Perspectives on Using Quantitative Real-Time PCR and Genomic Sequencing in the Field
Abstract
:1. Introduction
2. Methods/Background, Design Distribution of Questionnaire
3. Results
3.1. Survey Respondents
3.2. User Experience
3.3. Qualitative Assessment
4. Challenges in Field-Forward Settings
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parsons, A.; Matero, P.; Adams, M.; Yeh, K. Examining the utility and readiness of mobile and field transportable laboratories for biodefence and global health security-related purposes. Glob. Secur. Health Sci. Policy 2018, 3, 113. [Google Scholar] [CrossRef] [Green Version]
- Barros, R.S. Actions of military veterinarians from other nations in Chemical, Biological, Radiological and Nuclear Defense: A subsidy to modernize the Brazilian Army doctrine. Coleção Meira Mattos 2020, 14, 151–173. [Google Scholar]
- Appelt, S.; Rohleder, A.M.; Invernizzi, C.; Mikulak, R.; Brinkmann, A.; Nitsche, A.; Krüger, M.; Dorner, M.B.; Dorner, B.G.; Scholz, H.C.; et al. Strengthening the United Nations Secretary-General’s Mechanism to an alleged use of bioweapons through a quality-assured laboratory response. Nat. Commun. 2021, 12, 3078. [Google Scholar] [CrossRef]
- Broadhurst, M.J.; Brooks, T.J.; Pollock, N.R. Diagnosis of Ebola virus disease: Past, present, and future. Clin. Microbiol. Rev. 2016, 29, 773–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheridan, C. Fast, portable tests come online to curb coronavirus pandemic. Nat. Biotechnol. 2020, 38, 515–518. [Google Scholar] [CrossRef]
- FDA. Coronavirus Disease (COVID-19) Updates from FDA. Coronavirus Disease 2019 (COVID-19) EUA Information. 2020. Available online: https://www.fda.gov/emergency-preparedness-and-response/mcm-legal-regulatory-and-policy-framework/emergency-use-authorization (accessed on 11 September 2021).
- Slatko, B.E.; Gardner, A.F.; Ausubel, F.M. Overview of Next-Generation Sequencing Technologies. Curr. Protoc. Mol. Biol. 2018, 122, e59. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Chitnis, N.; Monos, D.; Dinh, A. Next-generation sequencing technologies: An overview. Hum. Immunol. 2021, 82, 801–811. [Google Scholar] [CrossRef] [PubMed]
- Quail, M.A.; Smith, M.; Coupland, P.; Otto, T.D.; Harris, S.R.; Connor, T.R.; Bertoni, A.; Swerdlow, H.P.; Gu, Y. A tale of three next generation sequencing platforms: Comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genom. 2012, 13, 341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheka, D.; Alabi, N.; Gordon, P.M.K. Oxford nanopore sequencing in clinical microbiology and infection diagnostics. Brief. Bioinform. 2021, 22, bbaa403. [Google Scholar] [CrossRef]
- Petersen, L.M.; Martin, I.W.; Moschetti, W.E.; Kershaw, C.M.; Tsongalis, G.J. Third-Generation Sequencing in the Clinical Laboratory: Exploring the Advantages and Challenges of Nanopore Sequencing. J. Clin. Microbiol. 2019, 58, e01315-19. [Google Scholar] [CrossRef]
- Minogue, T.D.; Koehler, J.W.; Stefan, C.P.; Conrad, T.A. Next-generation sequencing for biodefense: Biothreat detection, forensics, and the clinic. Clin. Chem. 2019, 65, 383–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deurenberg, R.H.; Bathoorn, E.; Chlebowicz, M.A.; Couto, N.; Ferdous, M.; García-Cobos, S.; Kooistra-Smid, A.M.; Raangs, E.C.; Rosema, S.; Veloo, A.C.; et al. Application of next generation sequencing in clinical microbiology and infection prevention. J. Biotechnol. 2017, 243, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Miller, S.; Chiu, C.Y. Clinical Metagenomic Next-Generation Sequencing for Pathogen Detection. Annu. Rev. Pathol. 2019, 14, 319–338. [Google Scholar] [CrossRef]
- Walper, S.A.; Aragonés, G.L.; Sapsford, K.E.; Brown, C.W., III; Rowland, C.E.; Breger, J.C.; Medintz, I.L. Detecting biothreat agents: From current diagnostics to developing sensor technologies. ACS Sens. 2018, 3, 1894–2024. [Google Scholar] [CrossRef] [Green Version]
- Matero, P. Identification of Bacterial Biothreat Agents and Pathogens by Rapid Molecular Amplification Methods. Ph.D. Thesis, University of Helsinki, Helsinki, Finland, 2017. [Google Scholar]
- Doggett, N.A.; Mukundan, H.; Lefkowitz, E.J.; Slezak, T.R.; Chain, P.S.; Morse, S.; Anderson, K.; Hodge, D.R.; Pillai, S. Culture-Independent Diagnostics for Health Security. Health Secur. 2016, 14, 122–142. [Google Scholar] [CrossRef] [PubMed]
- Yeh, K.B.; Wood, H.; Scullion, M.; Russell, J.A.; Parker, K.; Gnade, B.T.; Jones, A.R.; Whittier, C.; Mereish, K. Molecular Detection of Biological Agents in the Field: Then and Now. mSphere 2019, 4, e00695-19. [Google Scholar] [CrossRef] [Green Version]
- Mari, G.; Giraudi, G.; Bellino, M.; Pazienza, M.; Garibaldi, C.; Lancia, C. CBRN mobile laboratories in Italy. In Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing X; SPIE: Bellingham, WC, USA, 2009; Volume 7304. [Google Scholar] [CrossRef]
- Lee, W. Review and Analysis of Bioidentification Systems for Mobile Laboratory and Field Use. 2016. Available online: https://cradpdf.drdc-rddc.gc.ca/PDFS/unc252/p804734_A1b.pdf (accessed on 11 September 2021).
- Bates, J. Commercial platforms for Security Sensitive Biological Agents testing. Microbiol. Aust. 2020, 41, 143–145. [Google Scholar] [CrossRef]
- Parida, M.M.; Dash, P.K.; Shukla, J. Advance detection technologies for select biothreat agents. In Handbook on Biological Warfare Preparedness; Academic Press: Cambridge, MA, USA, 2020; pp. 83–102. [Google Scholar]
- Mirski, T.; Bartoszcze, M.; Bielawska-Drózd, A.; Cieslik, P.; Michalski, A.J.; Niemcewicz, M.; Kocik, J.; Chomiczewski, K. Review of methods used for identification of biothreat agents in environmental protection and human health aspects. Ann. Agric. Environ. Med. 2014, 21, 224–234. [Google Scholar] [CrossRef]
- Fatah, A.A.; Barrett, J.A.; Arcilesi, R.D., Jr.; Ewing, K.J.; Lattin, C.H.; Moshier, L.T. An Introduction to Biological Agent Detection Equipment for Emergency First Responders: NIJ Guide 101-00; National Institute of Justice: Washington, DC, USA, 2001. Available online: https://www.ncjrs.gov/pdffiles1/nij/190747.pdf (accessed on 11 September 2021).
- Emanuel, P.A. Biological Detectors: Market Survey; Edgewood Chemical Biological Center: Aberdeen Proving Ground, MD, USA, 2007; Available online: https://www.wmddetectorselector.army.mil/library/MS_BD_2007.pdf (accessed on 11 September 2021).
- Emanuel, P.; Caples, M. Chemical, Biological, Radiological Technology Survey; US Army RDECOM: Aberdeen Proving Ground, MD, USA, 2011; Available online: https://www.wmddetectorselector.army.mil/library/technology_survey_2011_05_02.pdf (accessed on 11 September 2021).
- Betters, J.; Dorsey, R.; Emanuel, P.; Rivers, B.; Schaffer, E.; Skowronski, E. Edgewood Biosensors Test Bed Hand-Held and Man-Portable Edition; Army Edgewood Chemical Biological Center Apg Md Research and Technology Dir: Aberdeen Proving Ground, MD, USA, 2013; Available online: https://apps.dtic.mil/dtic/tr/fulltext/u2/a586522.pdf (accessed on 11 September 2021).
- WMD Detector Selector. 2015. Available online: https://www.wmddetectorselector.army.mil/ (accessed on 11 September 2021).
- CBRNE Tech Index. 2015. Available online: https://www.cbrnetechindex.com/ (accessed on 11 September 2021).
- Ozanich, R.M.; Bruckner-Lea, C.J.; Bartholomew, R.A. National Laboratory Support for First Responders’ Biodetection Needs; Pacific Northwest National Lab. (PNNL): Richland, WA, USA, 2015. Available online: https://community.pnnl.gov/sites/Biodetection/Lists/Reports/Attachments/9/Biodetection_Technologies_for_First_Responders_May2015.pdf (accessed on 11 September 2021).
- Emanuel, P.A.; Hankla, L.W. Recommendations on the Use of Diagnostic Devices in Far-Forward Military Operations; Army Edgewood Chemical Biological Center: Aberdeen Proving Ground, MD, USA, 2016; Available online: https://apps.dtic.mil/dtic/tr/fulltext/u2/1019410.pdf (accessed on 11 September 2021).
- Emanuel, P.; Caples, M. Global CBRN Detector Market Survey; Edgewood Chemical Biological Center: Aberdeen Proving Ground, MD, USA, 2017; Available online: https://apps.dtic.mil/sti/pdfs/AD1040693.pdf (accessed on 11 September 2021).
- Bacchus, P.; Nissen, K.; Berg, J.; Bråve, A.; Gyll, J.; Larsson, C.; Muradrasoli, S.; Tellström, A.; Salaneck, E. Civil–Military Collaboration to Facilitate Rapid Deployment of a Mobile Laboratory in Early Response to COVID-19: A High-Readiness Exercise. Health Secur. 2021, 19, 488–497. [Google Scholar] [CrossRef] [PubMed]
- Moehling, T.J.; Choi, G.; Dugan, L.C.; Salit, M.; Meagher, R.J. LAMP Diagnostics at the Point-of-Care: Emerging Trends and Perspectives for the Developer Community. Expert Rev. Mol. Diagn. 2021, 21, 43–61. [Google Scholar] [CrossRef]
- Li, J.; Macdonald, J.; von Stetten, F. Review: A comprehensive summary of a decade development of the recombinase polymerase amplification. Analyst 2019, 144, 31–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Dongen, J.E.; Berendsen, J.T.W.; Steenbergen, R.D.M.; Wolthuis, R.M.F.; Eijkel, J.C.T.; Segerink, L.I. Point-of-care CRISPR/Cas nucleic acid detection: Recent advances, challenges and opportunities. Biosens. Bioelectron. 2020, 166, 112445. [Google Scholar] [CrossRef]
- Jiang, M.; Pan, W.; Arasthfer, A.; Fang, W.; Ling, L.; Fang, H.; Daneshnia, F.; Yu, J.; Liao, W.; Pei, H.; et al. Development and Validation of a Rapid, Single-Step Reverse Transcriptase Loop-Mediated Isothermal Amplification (RT-LAMP) System Potentially to Be Used for Reliable and High-Throughput Screening of COVID-19. Front. Cell. Infect. Microbiol. 2020, 10, 331. [Google Scholar] [CrossRef]
- Cherkaoui, D.; Huang, D.; Miller, B.S.; Turbé, V.; McKendry, R.A. Harnessing recombinase polymerase amplification for rapid multi-gene detection of SARS-CoV-2 in resource-limited settings. Biosens. Bioelectron. 2021, 189, 113328. [Google Scholar] [CrossRef] [PubMed]
- Palaz, F.; Kalkan, A.K.; Tozluyurt, A.; Ozsoz, M. CRISPR-based tools: Alternative methods for the diagnosis of COVID-19. Clin. Biochem. 2021, 89, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ganbaatar, U.; Liu, C. CRISPR-Based COVID-19 Testing: Toward Next-Generation Point-of-Care Diagnostics. Front. Cell. Infect. Microbiol. 2021, 11, 373. [Google Scholar] [CrossRef] [PubMed]
Title, (Year Published), and [Reference Number] | Google Scholar Citations (11 September 2021) |
---|---|
An Introduction to Biological Agent Detection Equipment for First Responders (2001) [24] | 30 |
Biological Detectors Market Survey (2007) [25] | 4 |
Chemical, Biological, Radiological Technology Survey (2011) [26] | 7 |
Edgewood Biosensors Test Bed Handheld and Man-portable edition (2013) [27] | 1 |
WMD Detector Selector (2015) [28] | Website only, not available |
CBRNE Tech Index (2015) [29] | Website only, not available |
Biodetection Technologies for First Responders (2015) [30] | 9 |
Recommendations on the use of diagnostics devices in far-forward military operations (2016) [31] | 1 |
Global CBRN Detector Market Survey (2017) [32] | 2 |
Criteria | Definition |
---|---|
Ease of Use | The ability to be used by operators with limited training. |
Time to Results | The ability to quickly produce actionable results. |
Sensitivity | Analytical sensitivity; ability to measure a low number of copies, genomic equivalents, etc. |
Specificity | Analytical specificity; ability to detect a particular target. Sequencing accuracy |
Reproducibility | Ability to generate similar results consistently across sequential runs. |
Portability | Ability to move instrument from one location to another without impacting instrument integrity. |
Ruggedness | Ability of instrumentation to withstand significant movement, vibrations, environmental impacts. |
Discovery Power | Ability to detect novel variants, unknown targets |
Scalability | The number of samples able to be processed simultaneously, low (1–8) to high (96 or greater). |
Low cost per test | The cost to process a sample, inclusive of reagents. |
Category | Instrument Type | Definition | Example |
---|---|---|---|
Real-time PCR | High-throughput instruments | Platforms with 96-well format or greater | ABI 7500 Fast, Bio-Rad CFX96, QuantStudio™ |
Lower throughput instruments | Platforms with less than 96-well format | Cepheid GeneXpert | |
“Point of Use” instruments | Platforms with potential use in doctor’s office, clinic, etc. | Abbott ID Now, BioFire Film Array | |
Ruggedized instruments | Platforms designed to MIL-810 STD | Idaho Technologies Razor, RAPID | |
Hand-held, portable instruments | Platforms used in field-forward or mobile laboratory | Biomeme Franklin | |
Sequencing | Capillary electrophoresis platforms | First generation sequencing platforms | Sanger Sequencing |
Next-generation sequencing platforms | Second generation sequencing platforms | Illumina MiSeq, 454, Ion Torrent | |
Nanopore sequencing platforms | Third generation sequencing platforms | Oxford Nanopore Technologies Prometheon, GridION, MinION | |
“Point of Use” platforms | Platforms with consolidated function, consummables | Oxford Nanopore Technologies MK1C, Illumina iSeq |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parker, K.; Forman, J.; Bonheyo, G.; Knight, B.; Bartholomew, R.; Ozanich, R.; Yeh, K.B. End-User Perspectives on Using Quantitative Real-Time PCR and Genomic Sequencing in the Field. Trop. Med. Infect. Dis. 2022, 7, 6. https://doi.org/10.3390/tropicalmed7010006
Parker K, Forman J, Bonheyo G, Knight B, Bartholomew R, Ozanich R, Yeh KB. End-User Perspectives on Using Quantitative Real-Time PCR and Genomic Sequencing in the Field. Tropical Medicine and Infectious Disease. 2022; 7(1):6. https://doi.org/10.3390/tropicalmed7010006
Chicago/Turabian StyleParker, Kyle, Jonathan Forman, George Bonheyo, Brittany Knight, Rachel Bartholomew, Richard Ozanich, and Kenneth B. Yeh. 2022. "End-User Perspectives on Using Quantitative Real-Time PCR and Genomic Sequencing in the Field" Tropical Medicine and Infectious Disease 7, no. 1: 6. https://doi.org/10.3390/tropicalmed7010006
APA StyleParker, K., Forman, J., Bonheyo, G., Knight, B., Bartholomew, R., Ozanich, R., & Yeh, K. B. (2022). End-User Perspectives on Using Quantitative Real-Time PCR and Genomic Sequencing in the Field. Tropical Medicine and Infectious Disease, 7(1), 6. https://doi.org/10.3390/tropicalmed7010006