Are Malaria Risk Factors Based on Gender? A Mixed-Methods Survey in an Urban Setting in Ghana
Abstract
:1. Introduction
2. Aims
- To ascertain whether sociodemographic characteristics, clinical symptoms, and laboratory parameters of P. falciparum malaria in adult cases differ by sex;
- To analyze the factors influencing differences in P. falciparum malaria awareness, exposure behaviors, and preventive measures in adult cases according, to sex.
- A secondary objective was to investigate malaria treatment-seeking behaviors within households with regard to gender dynamics, using qualitative research methods.
3. Methods
3.1. Study Site and Patients
3.2. Quantitative Methods
3.2.1. Prospective Assessment of Malaria Cases in Adults
3.2.2. Evaluation of Sociodemographic Characteristics, Awareness, Exposure Behaviors and Preventive Measures in Malaria Cases
3.2.3. Focus Group Discussions (FGDs) and In-Depth Interviews (IDIs)
3.3. Statistical Analysis
3.4. Ethical Considerations
4. Results
4.1. Quantitative Results
4.1.1. Clinical and Laboratory Features of P. falciparum Malaria Infection
4.1.2. Gender Differences of Factors Possibly Influencing P. falciparum Malaria Incidence and Severity
4.1.3. Focus Group Discussions (FGDs) and In-Depth Interviews (IDIs)
- (a)
- General knowledge about malaria symptoms and transmission.
- (b)
- Exposure and vulnerability towards malaria.
- (c)
- Malaria comorbidities and severe malaria.
- (d)
- Gender-related habits and malaria.
- (e)
- Conventional drugs versus homemade remedies for malaria prevention and treatment.
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Malaria Report 2020: 20 Years of Global Progress and Challenges; WHO: Geneva, Switzerland, 2020; ISBN 978-92-4-001579-1. [Google Scholar]
- World Health Organization. World Malaria Report 2019; WHO: Geneva, Switzerland, 2019; ISBN 978-92-4-156572-1. [Google Scholar]
- World Health Organization. High Burden to High Impact: A Targeted Malaria Response; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Pell, C.; Straus, L.; Andrew, E.V.W.; Meñaca, A.; Pool, R. Social and cultural factors affecting uptake of interventions for malaria in pregnancy in Africa: A systematic review of the qualitative research. PLoS ONE 2011, 6, e22452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolhurst, R.; Nyonator, F.K. Looking within the household: Gender roles and responses to malaria in Ghana. Trans. R. Soc. Trop. Med. Hyg. 2006, 100, 321–326. [Google Scholar] [CrossRef]
- Wilson, M.L.; Krogstad, D.J.; Arinaitwe, E.; Arevalo-Herrera, M.; Chery, L.; Ferreira, M.U.; Ndiaye, D.; Mathanga, D.P.; Eapen, A. Urban Malaria: Understanding its Epidemiology, Ecology, and Transmission Across Seven Diverse ICEMR Network Sites. Am. J. Trop. Med. Hyg. 2015, 93, 110–123. [Google Scholar] [CrossRef] [Green Version]
- Klinkenberg, E.; McCall, P.J.; Wilson, M.D.; Amerasinghe, F.P.; Donnelly, M.J. Impact of urban agriculture on malaria vectors in Accra, Ghana. Malar. J. 2008, 7, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karg, H.; Hologa, R.; Schlesinger, J.; Drescher, A.; Kranjac-Berisavljevic, G.; Glaser, R. Classifying and Mapping Periurban Areas of Rapidly Growing Medium-Sized Sub-Saharan African Cities: A Multi-Method Approach Applied to Tamale, Ghana. Land 2019, 8, 40. [Google Scholar] [CrossRef] [Green Version]
- De Allegri, M.; Sieleunou, I.; Abiiro, G.A.; Ridde, V. How far is mixed methods research in the field of health policy and systems in Africa? A scoping review. Health Policy Plan. 2018, 33, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Kreuels, B.; Kobbe, R.; Adjei, S.; Kreuzberg, C.; Von Reden, C.; Bäter, K.; Klug, S.; Busch, W.; Adjei, O.; May, J. Spatial variation of malaria incidence in young children from a geographically homogeneous area with high endemicity. J. Infect. Dis. 2008, 197, 85–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghana Statistical Service (GSS). Ghana Poverty Mapping Report; GSS: Accra, Ghana, 2015. Available online: https://www2.statsghana.gov.gh/docfiles/publications/POVERTY%20MAP%20FOR%20GHANA-05102015.pdf (accessed on 5 May 2019).
- World Health Organization. Guidelines for the Treatment of Malaria, 3rd ed.; WHO: Geneva, Switzerland, 2015; ISBN 9789241549127. [Google Scholar]
- Roll Back Malaria Partnership to End Malaria. RBM—Partneship To End Malaria. Available online: https://www.worldmalariaday2018.org/toolkit/ (accessed on 30 June 2019).
- Asenso-Okyere, W.K.; Dzator, J.A. Household cost of seeking malaria care. A retrospective study of two districts in Ghana. Soc. Sci. Med. 1997, 45, 659–667. [Google Scholar] [CrossRef]
- Dunn, C.E.; Le Mare, A.; Makungu, C. Malaria risk behaviours, socio-cultural practices and rural livelihoods in southern Tanzania: Implications for bednet usage. Soc. Sci. Med. 2011, 72, 408–417. [Google Scholar] [CrossRef]
- Accorsi, S.; Somigliana, E.; Farese, P.; Ademe, T.; Desta, Y.; Putoto, G.; Manenti, F. Gender Inequalities in Remote Settings: Analysis of 105,025 Medical Records of a Rural Hospital in Ethiopia (2005–2015). J. Community Health 2017, 42, 806–812. [Google Scholar] [CrossRef] [PubMed]
- Wong, L.P. Focus Group Discussion: A Tool for Health and Medical Research. Singap. Med. J. 2008, 49, 256. Available online: http://smj.sma.org.sg/4903/4903me1.pdf (accessed on 21 October 2020).
- Castro-Sánchez, E.; Chang, P.W.S.; Vila-Candel, R.; Escobedo, A.A.; Holmes, A.H. Health literacy and infectious diseases: Why does it matter? Int. J. Infect. Dis. 2016, 43, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Ghana Statistical Service (GSS). Ghana Multiple Indicator Cluster Survey (MICS2017/18), Survey Findings Report; GSS: Accra, Ghana, 2018; pp. 157–160. Available online: https://mics-surveys-prod.s3.amazonaws.com/MICS6/West%20and%20Central Africa/Ghana/2017-2018/Survey%20findings/Ghana 2017-18 MICS Survey (accessed on 14 December 2020).
- Ghana Statistical Service (GSS). Snapshots on Key Findings Ghana Multiple Indicator Cluster Survey 2017/18; GSS: Accra, Ghana, 2017. Available online: https://www.unicef.org/ghana/media/576/file/Ghana%20Multiple%20Cluster%20Indicator%20Survey.pdf (accessed on 14 December 2020).
- Roll Back Malaria Partnership. Fact Sheets on Malaria and SDGs—Gender and Malaria. Available online: https://endmalaria.org/sites/default/files/RBM_Gender_Fact_Sheet_170915.pdf (accessed on 15 March 2018).
- Olapeju, B.; Choiriyyah, I.; Lynch, M.; Acosta, A.; Blaufuss, S.; Filemyr, E.; Harig, H.; Monroe, A.; Selby, R.A.; Kilian, A.; et al. Age and gender trends in insecticide-treated net use in sub-Saharan Africa: A multi-country analysis. Malar. J. 2018, 17, 423. [Google Scholar] [CrossRef]
- Tapera, O. Determinants of long-lasting insecticidal net ownership and utilization in malaria transmission regions: Evidence from Zimbabwe Demographic and Health Surveys. Malar. J. 2019, 18, 278. [Google Scholar] [CrossRef]
- Tusting, L.S.; Bottomley, C.; Gibson, H.; Kleinschmidt, I.; Tatem, A.J.; Lindsay, S.W.; Gething, P.W. Housing Improvements and Malaria Risk in Sub-Saharan Africa: A Multi-Country Analysis of Survey Data. PLoS Med. 2017, 14, e1002234. [Google Scholar] [CrossRef] [Green Version]
- Auta, A. Demographic factors associated with insecticide treated net use among nigerian women and children. N. Am. J. Med. Sci. 2012, 4, 40–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghana Statistical Service (GSS). 2010 Population and Housing Census Report—Urbanisation in Ghana; GSS: Accra, Ghana, 2014. Available online: https://statsghana.gov.gh/gssmain/fileUpload/pressrelease/UrbanisationinGhana.pdf (accessed on 16 June 2020).
- Yamamoto, S.; Louis, V.R.; Sié, A.; Sauerborn, R. Household risk factors for clinical malaria in a semi-urban area of Burkina Faso: A case–control study. Trans. R. Soc. Trop. Med. Hyg. 2010, 104, 61–65. [Google Scholar] [CrossRef]
- Agyepong, I.A. Malaria: Ethnomedical perceptions and practice in an Adangbe farming community and implications for control. Soc. Sci. Med. 1992, 35, 131–137. [Google Scholar] [CrossRef]
- Febir, L.G.; Asante, K.P.; Afari-Asiedu, S.; Abokyi, L.N.; Kwarteng, A.; Ogutu, B.; Gyapong, M.; Owusu-Agyei, S. Seeking treatment for uncomplicated malaria: Experiences from the Kintampo districts of Ghana. Malar. J. 2016, 15, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabuti, J.R.S.; Kukunda, C.B.; Kaweesi, D.; Kasilo, O.M.J. Herbal medicine use in the districts of Nakapiripirit, Pallisa, Kanungu, and Mukono in Uganda. J. Ethnobiol. Ethnomed. 2012, 8, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamorde, M.; Tabuti, J.R.S.; Obua, C.; Kukunda-Byobona, C.; Lanyero, H.; Byakika-Kibwika, P.; Bbosa, G.S.; Lubega, A.; Ogwal-Okeng, J.; Ryan, M.; et al. Medicinal plants used by traditional medicine practitioners for the treatment of HIV/AIDS and related conditions in Uganda. J. Ethnopharmacol. 2010, 130, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Dalaba, M.A.; Welaga, P.; Oduro, A.; Danchaka, L.L.; Matsubara, C. Cost of malaria treatment and health seeking behaviour of children under-five years in the Upper West Region of Ghana. PLoS ONE 2018, 13, e0195533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malaria in urban and rural areas of southern Ghana: A survey of parasitaemia, antibodies, and antimalarial practices. Bull. World Health Organ. 1984, 62, 607–613.
- Amoah, L.E.; Nuvor, S.V.; Obboh, E.K.; Acquah, F.K.; Asare, K.; Singh, S.K.; Boampong, J.N.; Theisen, M.; Williamson, K.C. Natural antibody responses to Plasmodium falciparum MSP3 and GLURP(R0) antigens are associated with low parasite densities in malaria patients living in the Central Region of Ghana. Parasites Vectors 2017, 10, 395. [Google Scholar] [CrossRef] [PubMed]
- Coene, J. Malaria in urban and rural Kinshasa: The entomological input. Med. Vet. Entomol. 1993, 7, 127–137. [Google Scholar] [CrossRef]
- Byrne, N. Urban malaria risk in sub-Saharan Africa: Where is the evidence? Travel Med. Infect. Dis. 2007, 5, 135–137. [Google Scholar] [CrossRef]
- Sequeira, J.; Louçã, J.; Mendes, A.M.; Lind, P.G. A model for assessing the quantitative effects of heterogeneous affinity in malaria transmission along with ivermectin mass administration. Appl. Sci. 2020, 10, 8696. [Google Scholar] [CrossRef]
- Sequeira, J.; Louçã, J.; Mendes, A.M.; Lind, P.G. Transition from endemic behavior to eradication of malaria due to combined drug therapies: An agent-model approach. J. Theor. Biol. 2020, 484, 110030. [Google Scholar] [CrossRef] [PubMed]
- Marais, F.; Minkler, M.; Gibson, N.; Mwau, B.; Mehtar, S.; Ogunsola, F.; Banya, S.S.; Corburn, J. A community-engaged infection prevention and control approach to Ebola. Health Promot. Int. 2016, 31, 440–449. [Google Scholar] [CrossRef] [Green Version]
Male | Female | Total | |
---|---|---|---|
n = 47 (%) | n = 77 (%) | n = 124 (%) | |
Age (years) | |||
18–29 | 19 (40.4) | 29 (37.7) | 48 (38.7) |
30–49 | 21 (44.7) | 32 (41.6) | 53 (42.7) |
>50 | 7 (14.9) | 16 (20.8) | 23 (18.6) |
Place of Residence | |||
catchment area | 16 (34.0) | 33 (42.9) | 49 (39.5) |
outside catchment area | 31 (66.0) | 44 (57.1) | 75 (60.5) |
Education * | |||
no education | 2 (4.3) | 14 (18.2) | 16 (12.9) |
educated | 45 (95.7) | 63 (81.2) | 108 (87.1) |
school attendance | |||
primary | 13 (28.9) | 31 (49.2) | 44 (40.8) |
secondary | 24 (53.3) | 24 (38.1) | 48 (44.4) |
higher | 8 (17.8) | 8 (12.7) | 16 (14.8) |
Literacy * | |||
poor | 10 (21.3) | 38 (49.4) | 48 (38.7) |
good | 35 (74.5) | 36 (46.8) | 71 (57.3) |
visually impaired | 2 (4.3) | 3 (3.9) | 5 (4.0) |
Occupation * | |||
skilled labors | 7 (14.9) | 7 (9.1) | 14 (11.3) |
students | 12 (25.5) | 8 (10.4) | 20 (16.1) |
arts and crafts | 3 (6.4) | 14 (18.2) | 17 (13.7) |
cooking and catering | 2 (4.3) | 6 (7.8) | 8 (6.5) |
traders and retailers | 5 (10.7) | 30 (39.0) | 35 (28.2) |
transport | 5 (10.6) | - | 5 (4.0) |
farmers | 5 (10.6) | 2 (2.6) | 7 (5.7) |
unskilled labors | 4 (8.5) | 4 (5.2) | 8 (6.5) |
others | 4 (8.5) | 6 (7.8) | 10 (8.1) |
Male | Female | |||
---|---|---|---|---|
n | Mean | n | Mean | |
Parasite density (p/µL) * | 47 | 2344.4 (1374.3–3999.1) | 77 | 1422.6 (848.1–2386.5) |
Hemoglobin (g/dL) | 47 | 14.1 (±1.2) | 70 | 12.0 (±1.4) |
Glycemia (mmol/L) | 44 | 6.2 (±1.8) | 67 | 6.9 (±3.6) |
Male | Female | Total | |
---|---|---|---|
n = 47 (%) | n = 77 (%) | n = 124 (%) | |
Malaria Awareness | |||
knowledge about malaria | 45 (95.7) | 75 (97.4) | 120 (96.8) |
advertisements (television, radio, poster/billboard, newspapers) | 43 (91.5) | 71 (92.2) | 114 (91.9) |
community based approaches (CHWs, community health events, hospital) | 13 (27.7) | 33 (42.9) | 46 (37.1) |
anywhere else (school, information center, etc…) | 13 (27.7) | 26 (33.8) | 39 (31.5) |
Malaria medication self-initiation | 20 (42.6) | 20 (26.0) | 40 (32.3) |
Malaria preventive measures | |||
mosquito coil | 14 (29.8) | 32 (41.6) | 46 (37.1) |
indoor spray | 19 (40.4) | 29 (37.7) | 48 (38.7) |
windows screen | 27 (57.5) | 40 (52.0) | 67 (54.0) |
door screen | 9 (19.2) | 18 (23.3) | 27 (21.8) |
ITN ownership | 20 (42.6) | 29 (37.7) | 49 (39.6) |
ITN use | |||
always | 11 (55.0) | 13 (44.8) | 24 (49.0) |
sometimes-never | 9 (45.0) | 16 (55.2) | 25 (51.0) |
ITN maintenance | |||
fully intact | 17 (85.0) | 19 (65.5) | 36 (73.5) |
damaged | 3 (15.0) | 10 (34.5) | 13 (26.5) |
Malaria exposure behaviors | |||
first step-out in open space | |||
earlier than 6 a.m. | 17 (36.2) | 46 (59.7) | 63 (52.1) |
later than 6 a.m. | 29 (61.7) | 29 (37.7) | 58 (47.9) |
unknown | 1 (2.1) | 2 (2.6) | 3 (2.4) |
going in open space, during the night hours (10 p.m.–6 a.m.) | 33 (70.2) | 43 (55.9) | 76 (61.3) |
socializing in open space after the sun set | |||
often | 36 (76.6) | 56 (72.7) | 92 (74.2) |
sometimes–never | 11 (23.4) | 21 (27.3) | 32 (25.8) |
last month gathering and sleeping outside | 25 (53.2) | 38 (49.4) | 63 (50.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quaresima, V.; Agbenyega, T.; Oppong, B.; Awunyo, J.A.D.A.; Adu Adomah, P.; Enty, E.; Donato, F.; Castelli, F. Are Malaria Risk Factors Based on Gender? A Mixed-Methods Survey in an Urban Setting in Ghana. Trop. Med. Infect. Dis. 2021, 6, 161. https://doi.org/10.3390/tropicalmed6030161
Quaresima V, Agbenyega T, Oppong B, Awunyo JADA, Adu Adomah P, Enty E, Donato F, Castelli F. Are Malaria Risk Factors Based on Gender? A Mixed-Methods Survey in an Urban Setting in Ghana. Tropical Medicine and Infectious Disease. 2021; 6(3):161. https://doi.org/10.3390/tropicalmed6030161
Chicago/Turabian StyleQuaresima, Virginia, Tsiri Agbenyega, Bismark Oppong, Julia Ann D. A. Awunyo, Priscilla Adu Adomah, Eunice Enty, Francesco Donato, and Francesco Castelli. 2021. "Are Malaria Risk Factors Based on Gender? A Mixed-Methods Survey in an Urban Setting in Ghana" Tropical Medicine and Infectious Disease 6, no. 3: 161. https://doi.org/10.3390/tropicalmed6030161
APA StyleQuaresima, V., Agbenyega, T., Oppong, B., Awunyo, J. A. D. A., Adu Adomah, P., Enty, E., Donato, F., & Castelli, F. (2021). Are Malaria Risk Factors Based on Gender? A Mixed-Methods Survey in an Urban Setting in Ghana. Tropical Medicine and Infectious Disease, 6(3), 161. https://doi.org/10.3390/tropicalmed6030161