Semi-Quantitative, Duplexed qPCR Assay for the Detection of Leishmania spp. Using Bisulphite Conversion Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimens Tested
2.2. DNA Conversion and Quality Control
2.3. PCR Primer and Probe Design
2.4. PCR Preparation, Conditions, and Interpretation
3. Results
3.1. Specificity of the Real-Time PCR Assay Using Quantitated Cultured Cell or Purified DNA Standards
3.2. Specificity of the Real-Time PCR Assay Using Negative Control Samples
3.3. Specificity of the Real-Time PCR Assay Using Cross-Reactivity Specimens
3.4. Limit of Detection of the Real-Time PCR Assay Using Quantitated Standards
3.5. Sensitivity of the Real-Time PCR Assay Using Clinical Sample DNA
3.6. Precision of the Real-Time PCR Assay Using Quantitated Standards
3.7. Internal Control Reaction
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organisation. Control of the Leishmaniases; WHO Technical Report Series 949; World Health Organisation: Geneva, Switzerland, 2010. [Google Scholar]
- Hotez, P.J. Human Parasitology and Parasitic Diseases: Heading Towards. Adv. Parasitol. 2018, 100, 29–38. [Google Scholar] [PubMed]
- Gualda, K.P.; Marcussi, L.M.; Neitzke-Abreu, H.C.; Aristides, S.M.A.; Lonardoni, M.V.C.; Cardoso, R.F.; Silveira, T.G.V. New Primers for Detection of Leishmania infantumusing Polymerase Chain Reaction. Rev. Inst. Med. Trop. Sao Paulo 2015, 57, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Ranasinghe, S.; Wickremasinghe, R.; Hulangamuwa, S.; Sirimanna, G.; Opathella, N.; Maingon, R.D.; Chandrasekharan, V. Polymerase chain reaction detection of Leishmania DNA in skin biopsy samples in Sri Lanka where the causative agent of cutaneous leishmaniasis is Leishmania donovani. Memórias Inst. Oswaldo. Cruz 2015, 110, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- De Cassia-Pires, R.; de Melo, M.F.; Barbosa, R.D.; Roque, A.L. Multiplex PCR as a tool for the diagnosis of Leishmania skDNA and the gapdh housekeeping gene of mammal hosts. PLoS ONE 2017, 12, e0173922. [Google Scholar] [CrossRef]
- Srivastava, P.; Mehrotra, S.; Tiwary, P.; Chakravarty, J.; Sundar, S. Diagnosis of Indian Visceral Leishmaniasis by Nucleic Acid Detection Using PCR. PLoS ONE 2011, 6, e19304. [Google Scholar] [CrossRef]
- Tuon, F.F.; Neto, V.A.; Amato, V.S. Leishmania: origin, evolution and future since the Precambrian. FEMS Immunol. Med. Microbiol. 2008, 54, 158–166. [Google Scholar] [CrossRef]
- Schönian, G.; Nasereddin, A.; Dinse, N.; Schweynoch, C.; Schallig, H.D.F.H.; Presber, W.; Jaffe, C.L. PCR diagnosis and characterization of Leishmania in local and imported clinical samples. Diagn. Microbiol. Infect. Dis. 2003, 47, 349–358. [Google Scholar] [CrossRef]
- Roberts, T.; Barratt, J.; Sandaradura, I.; Lee, R.; Harkness, J.; Marriott, D.; Ellis, J.; Stark, D. Molecular Epidemiology of Imported Cases of Leishmaniasis in Australia from 2008 to 2014. PLoS ONE 2015, 10, e0119212. [Google Scholar] [CrossRef]
- Lee, R.; Marriott, D.; Stark, D.; Van Hal, S.; Harkness, J. Leishmaniasis, an Emerging Imported Infection: Report of 20 Cases from Australia: Table. J. Travel Med. 2008, 15, 351–354. [Google Scholar]
- Larrisey, M.P. EP17-A2 Evaluation of Detection Capability for Clinical Laboratory Measurement Procedures. Approved Guideline—Second Edition; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012; pp. 2–18. [Google Scholar]
- Töz, S.; Özensoy; Çulha, G.; Zeyrek, F.Y.; Ertabaklar, H.; Alkan, M.Z.; Vardarlı, A.T.; Gunduz, C.; Özbel, Y. A Real-Time ITS1-PCR Based Method in the Diagnosis and Species Identification of Leishmania Parasite from Human and Dog Clinical Samples in Turkey. PLoS Neglected Trop. Dis. 2013, 7, e2205. [Google Scholar]
- Gonçalves-de-Albuquerque, S.D.C.; Pessoa-e-Silva, R.; Trajano-Silva, L.A.M.; de Morais, R.C.S.; Brandao-Filho, S.P.; de Paiva-Cavalcanti, M. Inclusion of quality controls on leishmaniases molecular tests to increase diagnostic accuracy in research and reference laboratories. Mol. Biotechnol. 2015, 57, 318–324. [Google Scholar] [CrossRef] [PubMed]
- León, C.M.; Muñoz, M.; Hernández, C.; Ayala, M.S.; Flórez, C.; Teherán, A.; Cubides, J.R.; Ramírez, J.D. Analytical Performance of Four Polymerase Chain Reaction (PCR) and Real Time PCR (qPCR) Assays for the Detection of Six Leishmania Species DNA in Colombia. Front. Microbiol. 2017, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Vaish, M.; Mehrotra, S.; Chakravarty, J.; Sundar, S. Noninvasive Molecular Diagnosis of Human Visceral Leishmaniasis. J. Clin. Microbiol. 2011, 49, 2003–2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Eys, G.J.J.M.; Schoone, G.J.; Kroon, N.C.; Ebeling, S.B. Sequence analysis of small subunit ribosomal RNA genes and its use for detection and identification of Leishmania parasites. Mol. Biochem. Parasitol. 1992, 51, 133–142. [Google Scholar]
- Siah, S.P.; Merif, J.; Kaur, K.; Nair, J.; Huntington, P.G.; Karagiannis, T.; Stark, D.; Rawlinson, W.; Olma, T.; Thomas, L.; et al. Improved detection of gastrointestinal pathogens using generalised sample processing and amplification panels. Pathology 2014, 46, 53–59. [Google Scholar] [CrossRef]
- Baleriola, C.; Millar, D.; Melki, J.; Coulston, N.; Altman, P.; Rismanto, N.; Rawlinson, W. Comparison of a novel HPV test with the Hybrid Capture II (hcII) and a reference PCR method shows high specificity and positive predictive value for 13 high-risk human papillomavirus infections. J. Clin. Virol. 2008, 42, 22–26. [Google Scholar] [CrossRef]
- Stark, D.; Roberts, T.; Ellis, J.; Marriott, D.; Harkness, J. Evaluation of the EasyScreen™ Enteric Parasite Detection Kit for the detection of Blastocystis spp., Cryptosporidium spp., Dientamoeba fragilis, Entamoeba complex, and Giardia intestinalis from clinical stool samples. Diagn. Microbiol. Infect. Dis. 2014, 78, 149–152. [Google Scholar] [CrossRef]
- Akhoundi, M.; Downing, T.; Votýpka, J.; Kuhls, K.; Lukeš, J.; Cannet, A.; Ravel, C.; Marty, P.; Delaunay, P.; Kasbari, M.; et al. Leishmania infections: Molecular targets and diagnosis. Mol. Asp. Med. 2017, 57, 1–29. [Google Scholar] [CrossRef]
- Kjelland, V.; Stuen, S.; Skarpaas, T.; Slettan, A. Prevalence and genotypes of Borrelia burgdorferi sensu lato infection in Ixodes ricinus ticks in southern Norway. Scand. J. Infect. Dis. 2010, 42, 579–585. [Google Scholar] [CrossRef]
- Saab, M.; El Hage, H.; Charafeddine, K.; Habib, R.H.; Khalifeh, I. Diagnosis of Cutaneous Leishmaniasis: Why Punch When You Can Scrape? Am. J. Trop. Med. Hyg. 2015, 92, 518–522. [Google Scholar] [CrossRef] [Green Version]
- Haddad, M.H.F.; Ghasemi, E.; Maraghi, S.; Tavala, M. Identification of Leishmania Species Isolated from Human Cutaneous Leishmaniasis in Mehran, Western Iran Using Nested PCR. Iran. J. Parasitol. 2016, 11, 65–72. [Google Scholar]
- Namazi, M.J.; Dehkordi, A.B.; Haghighi, F.; Mohammadzadeh, M.; Zarean, M.; Hasanabad, M.H. Molecular detection of Leishmania species in northeast of Iran. Comp. Haematol. Int. 2018, 27, 729–733. [Google Scholar] [CrossRef]
- De Almeida, M.E.; Koru, O.; Steurer, F.; Herwaldt, B.L.; da Silva, A.J. Detection and Differentiation of Leishmania sin Clinical Specimens by Use of a SYBR Green-Based Real-Time PCR Assay. J Clin. Microbiol. 2017, 55, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Mohammadiha, A.; Mohebali, M.; Haghighi, A.; Mahdian, R.; Abadi, A.; Zarei, Z.; Yeganeh, F.; Kazemi, B.; Taghipour, N.; Akhoundi, B. Comparison of real-time PCR and conventional PCR with two DNA targets for detection of Leishmania (Leishmania) infantum infection in human and dog blood samples. Exp. Parasitol. 2013, 133, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Sudarshan, M.; Singh, T.; Chakravarty, J.; Sundar, S. A Correlative Study of Splenic Parasite Score and Peripheral Blood Parasite Load Estimation by Quantitative PCR in Visceral Leishmaniasis. J. Clin. Microbiol. 2015, 53, 3905–3907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterkers, Y.; Varlet-Marie, E.; Cassaing, S.; Brenier-Pinchart, M.-P.; Brun, S.; Dalle, F.; Delhaes, L.; Filisetti, D.; Pelloux, H.; Yera, H.; et al. Multicentric Comparative Analytical Performance Study for Molecular Detection of Low Amounts of Toxoplasma gondii from Simulated Specimens. J. Clin. Microbiol. 2010, 48, 3216–3222. [Google Scholar] [CrossRef]
- Eroglu, F.; Koltas, I.S.; Uzun, S. Comparison of Clinical Samples and Methods in Chronic Cutaneous Leishmaniasis. Am. J. Trop. Med. Hyg. 2014, 91, 895–900. [Google Scholar] [CrossRef] [Green Version]
Specimen Number | Organism |
---|---|
1 | Acinetobacter baumanni |
2 | Bacillus cereus |
3 | Bacillus subtilis |
4 | Clostridium perfringens |
5 | Clostridium sordelli |
6 | Escherichia coli |
7 | Haemophilus influenzae |
8 | Klebsiella oxytoca |
9 | Klebsiella pneumoniae |
10 | Moraxella cattaharalis |
11 | Proteus mirabilis |
12 | Proteus vulgaris |
13 | Pseudomonas aeruginosa |
14 | Staphylococcus aureus |
15 | Staphylococcus hominis |
16 | Streptococcus pyogenes |
17 | Streptococcus sp. (mutans) |
18 | Yersinia sp. |
19 | Mycobacteria abscessus |
20 | Mycobacteria marinum |
21 | Mycobacteria sp. |
22 | Herpes Simplex Virus Type I |
23 | Herpes Simplex Virus Type II |
24 | Varicella Zoster Virus |
25 | Trichophyton tonsurans |
26 | Trichophyton mentagrophytes |
27 | Microsporum canis |
28 | Aspergillus fumigatus |
29 | Acromium pulluans |
30 | Acromium strictum |
31 | Aspergillus sp. |
32 | Bipolaris sp. |
33 | Fusarium sp. |
34 | Penicillium sp. |
35 | Scedosporium prolificans |
36 | Trichophyton rubrum |
37 | Bovine |
38 | Human |
39 | Trypanosoma cruzi |
40 | Crithidia lucilae |
41 | Trichomonas vaginalis |
42 | Giardia intestinalis |
43 | Entamoeba histolytica |
Species | Supplier | Schönian Method | Novel Method |
---|---|---|---|
L. donovani | ATCC | 100 cells/PCR | 10 cells/PCR |
L. braziliensis | ATCC | 100 cells/PCR | 10 cells/PCR |
L. tropica | ATCC | 100 cells/PCR | 10 cells/PCR |
L. amazonensis | ATCC | 100 cells/PCR | 10 cells/PCR |
L. mexicana | ATCC | 100 cells/PCR | 100 cells/PCR |
L. major | ATCC | 10 cells/PCR | 10 cells/PCR |
L. infantum | Vircell | 1000 copies/PCR | 10 copies/PCR |
Leishmania Species and Copy Number | Mean (Ct) | SD (Ct) | CV (%) |
---|---|---|---|
L. donovani 1000 c/PCR | 30.26 | 0.88 | 2.92 |
L. donovani 100 c/PCR | 33.28 | 0.99 | 2.98 |
L. braziliensis 100 c/PCR | 30.78 | 0.87 | 2.84 |
L. braziliensis 10 c/PCR | 33.71 | 0.67 | 1.99 |
L. tropica 100 c/PCR | 34.07 | 0.95 | 2.80 |
L. tropica 10 c/PCR1 | 37.83 | 2.31 | 6.11 |
L. amazonensis 100 c/PCR | 31.29 | 1.09 | 3.50 |
L. amazonensis 10 c/PCR | 34.24 | 2.19 | 6.39 |
L. mexicana 1000 c/PCR | 33.08 | 1.19 | 3.61 |
L. mexicana 100 c/PCR | 36.22 | 1.52 | 4.19 |
L. major 100 c/PCR | 31.96 | 0.84 | 2.62 |
L. major 10 c/PCR | 35.09 | 0.74 | 2.10 |
L. infantum 1000 c/PCR | 29.44 | 1.22 | 4.13 |
L. infantum 100 c/PCR | 32.23 | 1.47 | 4.57 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gow, I.; Millar, D.; Ellis, J.; Melki, J.; Stark, D. Semi-Quantitative, Duplexed qPCR Assay for the Detection of Leishmania spp. Using Bisulphite Conversion Technology. Trop. Med. Infect. Dis. 2019, 4, 135. https://doi.org/10.3390/tropicalmed4040135
Gow I, Millar D, Ellis J, Melki J, Stark D. Semi-Quantitative, Duplexed qPCR Assay for the Detection of Leishmania spp. Using Bisulphite Conversion Technology. Tropical Medicine and Infectious Disease. 2019; 4(4):135. https://doi.org/10.3390/tropicalmed4040135
Chicago/Turabian StyleGow, Ineka, Douglas Millar, John Ellis, John Melki, and Damien Stark. 2019. "Semi-Quantitative, Duplexed qPCR Assay for the Detection of Leishmania spp. Using Bisulphite Conversion Technology" Tropical Medicine and Infectious Disease 4, no. 4: 135. https://doi.org/10.3390/tropicalmed4040135