Clostridium difficile in Asia: Opportunities for One Health Management
Abstract
:1. Introduction
2. Epidemiology of CDI in Asia
2.1. Diagnostic Practices in Asia
2.2. Estimated Prevalence and Incidence of CDI in Asia
2.3. Burden of CDI in Asia
2.4. Molecular Epidemiology of CDI in Asia
2.4.1. A-B+ C. difficile Strains
2.4.2. Binary Toxin-Positive C. difficile Strains
2.4.3. A+B+ C. difficile Strains
2.4.4. Non-Toxigenic C. difficile Strains
3. Prevalence and Molecular Epidemiology of C. difficile among Production Animals in Asia
3.1. Prevalence of C. difficile Colonisation and Strain Types in Asian Production Animals
3.2. Possible International Sources of C. difficile among Asian Production Animals
4. Discussion
4.1. Systematic Testing Is Required to Identify True CDI Cases in Asia
4.2. One Health Implications of CDI in Asia
4.2.1. C. difficile in Asian Production Animals Warrants Close Observation
4.2.2. Live Animal Imports and Exports: Plausible International Routes of Transmission of C. difficile
5. Conclusions
Funding
Conflicts of Interest
References
- Moono, P.; Foster, N.F.; Hampson, D.J.; Knight, D.R.; Bloomfield, L.E.; Riley, T.V. Clostridium difficile infection in production animals and avian species: A review. Foodborne Pathog. Dis. 2016, 13, 647–655. [Google Scholar] [CrossRef]
- Eglow, R.; Pothoulakis, C.; Itzkowitz, S.; Israel, E.J.; O’Keane, C.J.; Gong, D.; Gao, N.; Xu, Y.L.; Walker, W.A.; LaMont, J.T. Diminished Clostridium difficile toxin A sensitivity in newborn rabbit ileum is associated with decreased toxin A receptor. J. Clin. Investig. 1992, 90, 822–829. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.S.; Monaghan, T.M.; Wilcox, M.H. Clostridium difficile infection: Epidemiology, diagnosis and understanding transmission. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Polage, C.R.; Gyorke, C.E.; Kennedy, M.A.; Leslie, J.L.; Chin, D.L.; Wang, S.; Nguyen, H.H.; Huang, B.; Tang, Y.W.; Lee, L.W.; et al. Overdiagnosis of Clostridium difficile infection in the molecular test era. JAMA Intern. Med. 2015, 175, 1792–1801. [Google Scholar] [CrossRef] [PubMed]
- Slimings, C.; Armstrong, P.; Beckingham, W.D.; Bull, A.L.; Hall, L.; Kennedy, K.J.; Marquess, J.; McCann, R.; Menzies, A.; Mitchell, B.G.; et al. Increasing incidence of Clostridium difficile infection, Australia, 2011–2012. Med. J. Aust. 2014, 200, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Lessa, F.C.; Mu, Y.; Bamberg, W.M.; Beldavs, Z.G.; Dumyati, G.K.; Dunn, J.R.; Farley, M.M.; Holzbauer, S.M.; Meek, J.I.; Phipps, E.C.; et al. Burden of Clostridium difficile infection in the United States. N. Engl. J. Med. 2015, 372, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Eyre, D.W.; Cule, M.L.; Wilson, D.J.; Griffiths, D.; Vaughan, A.; O’Connor, L.; Ip, C.L.; Golubchik, T.; Batty, E.M.; Finney, J.M.; et al. Diverse sources of C. difficile infection identified on whole-genome sequencing. N. Engl. J. Med. 2013, 369, 1195–1205. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [Green Version]
- Moono, P.; Lim, S.C.; Riley, T.V. High prevalence of toxigenic Clostridium difficile in public space lawns in Western Australia. Sci. Rep. 2017, 7, 41196. [Google Scholar] [CrossRef]
- Lim, S.C.; Androga, G.O.; Knight, D.R.; Moono, P.; Foster, N.F.; Riley, T.V. Antimicrobial susceptibility of Clostridium difficile isolated from food and environmental sources in Western Australia. Int. J. Antimicrob. Agents 2018, 52, 411–415. [Google Scholar] [CrossRef]
- Lim, S.C.; Foster, N.F.; Elliott, B.; Riley, T.V. High prevalence of Clostridium difficile on retail root vegetables, Western Australia. J. Appl. Microbiol. 2018, 124, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Knight, D.R.; Squire, M.M.; Collins, D.A.; Riley, T.V. Genome analysis of Clostridium difficile PCR ribotype 014 lineage in Australian pigs and humans reveals a diverse genetic repertoire and signatures of long-range interspecies transmission. Front. Microbiol. 2017, 7, 2138. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Miyajima, F.; Roberts, P.; Ellison, L.; Pickard, D.J.; Martin, M.J.; Connor, T.R.; Harris, S.R.; Fairley, D.; Bamford, K.B.; et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat. Genet. 2013, 45, 109–113. [Google Scholar] [CrossRef] [PubMed]
- al-Barrak, A.; Embil, J.; Dyck, B.; Olekson, K.; Nicoll, D.; Alfa, M.; Kabani, A. An outbreak of toxin A negative, toxin B positive Clostridium difficile-associated diarrhea in a Canadian tertiary-care hospital. Can. Commun. Dis. Rep. 1999, 25, 65–69. [Google Scholar] [PubMed]
- Kuijper, E.J.; de Weerdt, J.; Kato, H.; Kato, N.; van Dam, A.P.; van der Vorm, E.R.; Weel, J.; van Rheenen, C.; Dankert, J. Nosocomial outbreak of Clostridium difficile-associated diarrhoea due to a clindamycin-resistant enterotoxin A-negative strain. Eur. J. Clin. Microbiol. Infect. Dis. 2001, 20, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Drudy, D.; Harnedy, N.; Fanning, S.; Hannan, M.; Kyne, L. Emergence and control of fluoroquinolone-resistant, toxin A-negative, toxin B-positive Clostridium difficile. Infect. Control. Hosp. Epidemiol. 2007, 28, 932–940. [Google Scholar] [CrossRef]
- Cairns, M.D.; Preston, M.D.; Hall, C.L.; Gerding, D.N.; Hawkey, P.M.; Kato, H.; Kim, H.; Kuijper, E.J.; Lawley, T.D.; Pituch, H.; et al. Comparative genome analysis and global phylogeny of the toxin variant Clostridium difficile PCR ribotype 017 reveals the evolution of two independent sublineages. J. Clin. Microbiol. 2017, 55, 865–876. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Antibiotic Resistance Threats in the United States, 2013; CDC: Atlanta, GA, USA, 2013.
- Bauer, M.P.; Notermans, D.W.; van Benthem, B.H.; Brazier, J.S.; Wilcox, M.H.; Rupnik, M.; Monnet, D.L.; van Dissel, J.T.; Kuijper, E.J.; ECDIS Study Group. Clostridium difficile infection in Europe: A hospital-based survey. Lancet 2011, 377, 63–73. [Google Scholar] [CrossRef]
- Tickler, I.A.; Goering, R.V.; Whitmore, J.D.; Lynn, A.N.; Persing, D.H.; Tenover, F.C.; Healthcare Associated Infection Consortium. Strain types and antimicrobial resistance patterns of Clostridium difficile isolates from the United States, 2011 to 2013. Antimicrob. Agents Chemother. 2014, 58, 4214–4218. [Google Scholar] [CrossRef]
- Freeman, J.; Vernon, J.; Morris, K.; Nicholson, S.; Todhunter, S.; Longshaw, C.; Wilcox, M.H.; Pan-European Longitudinal Surveillance of Antibiotic Resistance among Prevalent Clostridium difficile Ribotypes’ Study Group. Pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes. Clin. Microbiol. Infect. 2015, 21, 248.e9–248.e16. [Google Scholar] [CrossRef]
- Collins, D.A.; Putsathit, P.; Elliott, B.; Riley, T.V. Laboratory-based surveillance of Clostridium difficile strains circulating in the Australian healthcare setting in 2012. Pathology 2017, 49, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Collins, D.A.; Hawkey, P.M.; Riley, T.V. Epidemiology of Clostridium difficile infection in Asia. Antimicrob. Resist. Infect. Control 2013, 2, 21. [Google Scholar] [CrossRef] [PubMed]
- Larsen, J. China’s Growing Hunger for Meat Shown by Move to Buy Smithfield, World’s Leading Pork Producer. In Data Highlights; Earth Policy Institute: Washington, DC, USA, 2013. [Google Scholar]
- Van Boeckel, T.P.; Gandra, S.; Ashok, A.; Caudron, Q.; Grenfell, B.T.; Levin, S.A.; Laxminarayan, R. Global antibiotic consumption 2000 to 2010: An analysis of national pharmaceutical sales data. Lancet Infect. Dis. 2014, 14, 742–750. [Google Scholar] [CrossRef]
- McDonald, L.C.; Gerding, D.N.; Johnson, S.; Bakken, J.S.; Carroll, K.C.; Coffin, S.E.; Dubberke, E.R.; Garey, K.W.; Gould, C.V.; Kelly, C.; et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 2018, 66, e1–e48. [Google Scholar] [CrossRef] [PubMed]
- Borren, N.Z.; Ghadermarzi, S.; Hutfless, S.; Ananthakrishnan, A.N. The emergence of Clostridium difficile infection in Asia: A systematic review and meta-analysis of incidence and impact. PLoS ONE 2017, 12, e0176797. [Google Scholar] [CrossRef] [PubMed]
- Collins, D.A.; Gasem, M.H.; Habibie, T.H.; Arinton, I.G.; Hendriyanto, P.; Hartana, A.P.; Riley, T.V. Prevalence and molecular epidemiology of Clostridium difficile infection in Indonesia. New Microbe New Infect. 2017, 18, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Riley, T.V.; Collins, D.A.; Karunakaran, R.; Kahar, M.A.; Adnan, A.; Hassan, S.A.; Zainul, N.H.; Rustam, F.R.M.; Wahab, Z.A.; Ramli, R.; et al. High prevalence of toxigenic and nontoxigenic Clostridium difficile strains in Malaysia. J. Clin. Microbiol. 2018, 56. [Google Scholar] [CrossRef]
- Putsathit, P.; Maneerattanaporn, M.; Piewngam, P.; Kiratisin, P.; Riley, T.V. Prevalence and molecular epidemiology of Clostridium difficile infection in Thailand. New Microbe New Infect. 2017, 15, 27–32. [Google Scholar] [CrossRef]
- Collins, D.A.; Sohn, K.M.; Wu, Y.; Ouchi, K.; Ishii, Y.; Elliott, B.; Riley, T.V.; Tateda, K.; for the Clostridium difficile Asia Pacific (CDAP) Study Group. Clostridium difficile infection in the Asia-Pacific region. In Proceedings of the 27th European Congress of Clinical Microbiology and Infectious Diseases, Vienna, Austria, 22–25 April 2017. [Google Scholar]
- Lim, P.L.; Barkham, T.M.; Ling, L.M.; Dimatatac, F.; Alfred, T.; Ang, B. Increasing incidence of Clostridium difficile-associated disease, Singapore. Emerg. Infect. Dis. 2008, 14, 1487–1489. [Google Scholar] [CrossRef]
- Hsu, L.Y.; Tan, T.Y.; Koh, T.H.; Kwa, A.L.; Krishnan, P.; Tee, N.W.; Jureen, R. Decline in Clostridium difficile-associated disease rates in Singapore public hospitals, 2006 to 2008. BMC Res. Notes 2011, 4, 77. [Google Scholar] [CrossRef]
- Warren, C.A.; Labio, E.; Destura, R.; Sevilleja, J.E.; Jamias, J.D.; Daez, M.L. Clostridium difficile and Entamoeba histolytica infections in patients with colitis in the Philippines. Trans. R. Soc. Trop. Med. Hyg. 2012, 106, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Zainul, N.H.; Ma, Z.F.; Besari, A.; Siti Asma, H.; Rahman, R.A.; Collins, D.A.; Hamid, N.; Riley, T.V.; Lee, Y.Y. Prevalence of Clostridium difficile infection and colonization in a tertiary hospital and elderly community of North-Eastern Peninsular Malaysia. Epidemiol. Infect. 2017, 145, 3012–3019. [Google Scholar] [CrossRef] [PubMed]
- Shin, B.M.; Kuak, E.Y.; Yoo, S.J.; Shin, W.C.; Yoo, H.M. Emerging toxin A-B+ variant strain of Clostridium difficile responsible for pseudomembranous colitis at a tertiary care hospital in Korea. Diagn. Microbiol. Infect. Dis. 2008, 60, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.Y.; Ko, E.J.; Lee, S.H.; Shin, J.B.; Kim, S.I.; Kwon, K.S.; Kim, H.G.; Shin, Y.W.; Bang, B.W. Refractory pseudomembranous colitis that was treated successfully with colonoscopic fecal microbial transplantation. Intest. Res. 2016, 14, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, S.; Kou, T.; Kato, H.; Watanabe, M.; Uno, S.; Senoh, M.; Fukuda, T.; Hata, A.; Yazumi, S. Fulminant pseudomembranous colitis caused by Clostridium difficile PCR ribotype 027 in a healthy young woman in Japan. J. Infect. Chemother. 2014, 20, 729–731. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xiao, Y.; Lin, K.; Song, F.; Ge, T.; Zhang, T. Pediatric severe pseudomembranous enteritis treated with fecal microbiota transplantation in a 13-month-old infant. Biomed. Rep. 2015, 3, 173–175. [Google Scholar] [CrossRef] [PubMed]
- Toyokawa, M.; Ueda, A.; Tsukamoto, H.; Nishi, I.; Horikawa, M.; Sunada, A.; Asari, S. Pseudomembranous colitis caused by toxin A-negative/toxin B-positive variant strain of Clostridium difficile. J. Infect. Chemother. 2003, 9, 351–354. [Google Scholar] [CrossRef]
- Chen, T.C.; Lu, P.L.; Lin, W.R.; Lin, C.Y.; Wu, J.Y.; Chen, Y.H. Rifampin-associated pseudomembranous colitis. Am. J. Med. Sci. 2009, 338, 156–158. [Google Scholar] [CrossRef]
- Huang, S.C.; Yang, Y.J.; Lee, C.T. Rectal prolapse in a child: An unusual presentation of Clostridium difficile-associated pseudomembranous colitis. Pediatr. Neonatol. 2011, 52, 110–112. [Google Scholar] [CrossRef]
- Shen, B.J.; Lin, S.C.; Shueng, P.W.; Chou, Y.H.; Tseng, L.M.; Hsieh, C.H. Pseudomembranous colitis within radiotherapy field following concurrent chemoradiation therapy: A case report. Onco Targets Ther. 2013, 6, 25–28. [Google Scholar] [CrossRef]
- Ryu, H.S.; Kim, Y.S.; Seo, G.S.; Lee, Y.M.; Choi, S.C. Risk factors for recurrent Clostridium difficile infection. Intest. Res. 2012, 10, 176–182. [Google Scholar] [CrossRef]
- Choi, H.K.; Kim, K.H.; Lee, S.H.; Lee, S.J. Risk factors for recurrence of Clostridium difficile infection: Effect of vancomycin-resistant Enterococci colonization. J. Korean Med. Sci. 2011, 26, 859–864. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.; Dai, R.Z.W.; Kwong, T.N.Y.; Wang, X.; Zhang, L.; Ip, M.; Chan, R.; Hawkey, P.M.K.; Lam, K.L.Y.; Wong, M.C.S.; et al. Disease burden of Clostridium difficile infections in adults, Hong Kong, China, 2006–2014. Emerg. Infect. Dis. 2017, 23, 1671–1679. [Google Scholar] [CrossRef] [PubMed]
- Eyre, D.W.; Walker, A.S.; Wyllie, D.; Dingle, K.E.; Griffiths, D.; Finney, J.; O’Connor, L.; Vaughan, A.; Crook, D.W.; Wilcox, M.H.; et al. Predictors of first recurrence of Clostridium difficile infection: Implications for initial management. Clin. Infect. Dis. 2012, 55, S77–S87. [Google Scholar] [CrossRef] [PubMed]
- Dingle, K.E.; Elliott, B.; Robinson, E.; Griffiths, D.; Eyre, D.W.; Stoesser, N.; Vaughan, A.; Golubchik, T.; Fawley, W.N.; Wilcox, M.H.; et al. Evolutionary history of the Clostridium difficile pathogenicity locus. Genome Biol. Evol. 2014, 6, 36–52. [Google Scholar] [CrossRef] [PubMed]
- Stabler, R.A.; Dawson, L.F.; Valiente, E.; Cairns, M.D.; Martin, M.J.; Donahue, E.H.; Riley, T.V.; Songer, J.G.; Kuijper, E.J.; Dingle, K.E.; et al. Macro and micro diversity of Clostridium difficile isolates from diverse sources and geographical locations. PLoS ONE 2012, 7, e31559. [Google Scholar] [CrossRef] [PubMed]
- Putsathit, P.; Kiratisin, P.; Ngamwongsatit, P.; Riley, T.V. Clostridium difficile infection in Thailand. Int. J. Antimicrob. Agents 2015, 45, 1–7. [Google Scholar] [CrossRef]
- Huang, H.; Weintraub, A.; Fang, H.; Wu, S.; Zhang, Y.; Nord, C.E. Antimicrobial susceptibility and heteroresistance in Chinese Clostridium difficile strains. Anaerobe 2010, 16, 633–635. [Google Scholar] [CrossRef]
- Kim, H.; Jeong, S.H.; Roh, K.H.; Hong, S.G.; Kim, J.W.; Shin, M.G.; Kim, M.N.; Shin, H.B.; Uh, Y.; Lee, H.; et al. Investigation of toxin gene diversity, molecular epidemiology, and antimicrobial resistance of Clostridium difficile isolated from 12 hospitals in South Korea. Korean J. Lab. Med. 2010, 30, 491–497. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, H.; Seo, Y.; Yong, D.; Jeong, S.H.; Chong, Y.; Lee, K. Molecular characterization of toxin A-negative, toxin B-positive variant strains of Clostridium difficile isolated in Korea. Diagn Microbiol. Infect. Dis. 2010, 67, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Wu, S.; Wang, M.; Zhang, Y.; Fang, H.; Palmgren, A.C.; Weintraub, A.; Nord, C.E. Molecular and clinical characteristics of Clostridium difficile infection in a University Hospital in Shanghai, China. Clin. Infect. Dis. 2008, 47, 1606–1608. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.Q.; Verrall, A.J.; Jureen, R.; Riley, T.V.; Collins, D.A.; Lin, R.T.; Balm, M.N.; Chan, D.; Tambyah, P.A. The emergence of community-onset Clostridium difficile infection in a tertiary hospital in Singapore: A cause for concern. Int. J. Antimicrob. Agents 2014, 43, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Ngamskulrungroj, P.; Sanmee, S.; Putsathit, P.; Piewngam, P.; Elliott, B.; Riley, T.V.; Kiratisin, P. Molecular epidemiology of Clostridium difficile infection in a large teaching hospital in Thailand. PLoS ONE 2015, 10, e0127026. [Google Scholar] [CrossRef]
- Komatsu, M.; Kato, H.; Aihara, M.; Shimakawa, K.; Iwasaki, M.; Nagasaka, Y.; Fukuda, S.; Matsuo, S.; Arakawa, Y.; Watanabe, M.; et al. High frequency of antibiotic-associated diarrhea due to toxin A-negative, toxin B-positive Clostridium difficile in a hospital in Japan and risk factors for infection. Eur. J. Clin. Microbiol. Infect. Dis. 2003, 22, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Alfa, M.J.; Kabani, A.; Lyerly, D.; Moncrief, S.; Neville, L.M.; Al-Barrak, A.; Harding, G.K.; Dyck, B.; Olekson, K.; Embil, J.M. Characterization of a toxin A-negative, toxin B-positive strain of Clostridium difficile responsible for a nosocomial outbreak of Clostridium difficile-associated diarrhea. J. Clin. Microbiol. 2000, 38, 2706–2714. [Google Scholar] [PubMed]
- Mori, N.; Yoshizawa, S.; Saga, T.; Ishii, Y.; Murakami, H.; Iwata, M.; Collins, D.A.; Riley, T.V.; Tateda, K. Incorrect diagnosis of Clostridium difficile infection in a university hospital in Japan. J. Infect. Chemother. 2015, 21, 718–722. [Google Scholar] [CrossRef] [PubMed]
- Senoh, M.; Kato, H.; Fukuda, T.; Niikawa, A.; Hori, Y.; Hagiya, H.; Ito, Y.; Miki, H.; Abe, Y.; Furuta, K.; et al. Predominance of PCR-ribotypes, 018 (smz) and 369 (trf) of Clostridium difficile in Japan: A potential relationship with other global circulating strains? J. Med. Microbiol. 2015, 64, 1226–1236. [Google Scholar] [CrossRef]
- Iwashima, Y.; Nakamura, A.; Kato, H.; Kato, H.; Wakimoto, Y.; Wakiyama, N.; Kaji, C.; Ueda, R. A retrospective study of the epidemiology of Clostridium difficile infection at a university hospital in Japan: Genotypic features of the isolates and clinical characteristics of the patients. J. Infect. Chemother. 2010, 16, 329–333. [Google Scholar] [CrossRef]
- Sato, H.; Kato, H.; Koiwai, K.; Sakai, C. [A nosocomial outbreak of diarrhea caused by toxin A-negative, toxin B-positive Clostridium difficile in a cancer center hospital]. Kansenshogaku Zasshi 2004, 78, 312–319. [Google Scholar] [CrossRef]
- Wang, B.; Peng, W.; Zhang, P.; Su, J. The characteristics of Clostridium difficile ST81, a new PCR ribotype of toxin A- B+ strain with high-level fluoroquinolones resistance and higher sporulation ability than ST37/PCR ribotype 017. FEMS Microbiol. Lett. 2018, 365. [Google Scholar] [CrossRef]
- Qin, J.; Dai, Y.; Ma, X.; Wang, Y.; Gao, Q.; Lu, H.; Li, T.; Meng, H.; Liu, Q.; Li, M. Nosocomial transmission of Clostridium difficile genotype ST81 in a general teaching hospital in China traced by whole genome sequencing. Sci. Rep. 2017, 7, 9627. [Google Scholar] [CrossRef] [PubMed]
- Loo, V.G.; Poirier, L.; Miller, M.A.; Oughton, M.; Libman, M.D.; Michaud, S.; Bourgault, A.M.; Nguyen, T.; Frenette, C.; Kelly, M.; et al. A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N. Engl. J. Med. 2005, 353, 2442–2449. [Google Scholar] [CrossRef]
- Eyre, D.W.; Tracey, L.; Elliott, B.; Slimings, C.; Huntington, P.G.; Stuart, R.L.; Korman, T.M.; Kotsiou, G.; McCann, R.; Griffiths, D.; et al. Emergence and spread of predominantly community-onset Clostridium difficile PCR ribotype 244 infection in Australia, 2010 to 2012. Euro Surveill. 2015, 20, 21059. [Google Scholar] [CrossRef] [PubMed]
- Collins, D.A.; Riley, T.V. Clostridium difficile guidelines. Clin. Infect. Dis. 2018, 67, 1639. [Google Scholar] [CrossRef]
- Jia, H.; Du, P.; Yang, H.; Zhang, Y.; Wang, J.; Zhang, W.; Han, G.; Han, N.; Yao, Z.; Wang, H.; et al. Nosocomial transmission of Clostridium difficile ribotype 027 in a Chinese hospital, 2012–2014, traced by whole genome sequencing. BMC Genom. 2016, 17, 405. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, Y.; Moon, H.W.; Lim, C.S.; Lee, K.; Chong, Y. Emergence of Clostridium difficile ribotype 027 in Korea. Korean J. Lab. Med. 2011, 31, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Hung, Y.P.; Tsai, P.J.; Lee, Y.T.; Tang, H.J.; Lin, H.J.; Liu, H.C.; Lee, J.C.; Tsai, B.Y.; Hsueh, P.R.; Ko, W.C. Nationwide surveillance of ribotypes and antimicrobial susceptibilities of toxigenic Clostridium difficile isolates with an emphasis on reduced doxycycline and tigecycline susceptibilities among ribotype 078 lineage isolates in Taiwan. Infect. Drug Resist. 2018, 11, 1197–1203. [Google Scholar] [CrossRef]
- Hung, Y.P.; Cia, C.T.; Tsai, B.Y.; Chen, P.C.; Lin, H.J.; Liu, H.C.; Lee, J.C.; Wu, Y.H.; Tsai, P.J.; Ko, W.C. The first case of severe Clostridium difficile ribotype 027 infection in Taiwan. J. Infect. 2015, 70, 98–101. [Google Scholar] [CrossRef]
- Jin, H.; Ni, K.; Wei, L.; Shen, L.; Xu, H.; Kong, Q.; Ni, X. Identification of Clostridium difficile RT078 from patients and environmental surfaces in Zhejiang Province, China. Infect. Control Hosp. Epidemiol. 2016, 37, 745–746. [Google Scholar] [CrossRef]
- Hung, Y.P.; Huang, I.H.; Lin, H.J.; Tsai, B.Y.; Liu, H.C.; Liu, H.C.; Lee, J.C.; Wu, Y.H.; Tsai, P.J.; Ko, W.C. Predominance of Clostridium difficile ribotypes 017 and 078 among toxigenic clinical isolates in southern Taiwan. PLoS ONE 2016, 11, e0166159. [Google Scholar] [CrossRef]
- Seo, M.R.; Kim, J.; Lee, Y.; Lim, D.G.; Pai, H. Prevalence, genetic relatedness and antibiotic resistance of hospital-acquired Clostridium difficile PCR ribotype 018 strains. Int. J. Antimicrob. Agents 2018, 51, 762–767. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.-W.; Xiao, M.; Kudinha, T.; Kong, F.; Xu, Z.-P.; Sun, L.-Y.; Zhang, L.; Fan, X.; Xie, X.-L.; Xu, Y.-C. Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolates from a university teaching hospital in China. Front. Microbiol. 2016, 7, 1621. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.B.; Gu, S.L.; Wei, Z.Q.; Shen, P.; Kong, H.S.; Yang, Q.; Li, L.J. Molecular epidemiology of Clostridium difficile in a tertiary hospital of China. J. Med. Microbiol. 2014, 63, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Lv, Z.; Zhang, P.; Su, J. Molecular epidemiology and antimicrobial susceptibility of human Clostridium difficile isolates from a single institution in Northern China. Medicine 2018, 97, e11219. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.T.; Zhao, J.H.; Yang, J.; Qiang, C.X.; Li, Z.R.; Chen, J.; Xu, K.Y.; Ciu, Q.Q.; Li, R.X. Molecular characterization of Clostridium difficile isolates from human subjects and the environment. PLoS ONE 2016, 11, e0151964. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.; Luo, Y.; Huang, C.; Cai, J.; Ye, J.; Zheng, Y.; Wang, L.; Zhao, P.; Liu, A.; Fang, W.; et al. Molecular epidemiology of Clostridium difficile infection in hospitalized patients in Eastern China. J. Clin. Microbiol. 2017, 55, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Cheng, V.C.; Yam, W.C.; Lam, O.T.; Tsang, J.L.; Tse, E.Y.; Siu, G.K.; Chan, J.F.; Tse, H.; To, K.K.; Tai, J.W.; et al. Clostridium difficile isolates with increased sporulation: Emergence of PCR ribotype 002 in Hong Kong. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 1371–1381. [Google Scholar] [CrossRef]
- Gao, Q.; Wu, S.; Huang, H.; Ni, Y.; Chen, Y.; Hu, Y.; Yu, Y. Toxin profiles, PCR ribotypes and resistance patterns of Clostridium difficile: A multicentre study in China, 2012–2013. Int. J. Antimicrob. Agents 2016, 48, 736–739. [Google Scholar] [CrossRef]
- Gerding, D.N.; Meyer, T.; Lee, C.; Cohen, S.H.; Murthy, U.K.; Poirier, A.; Van Schooneveld, T.C.; Pardi, D.S.; Ramos, A.; Barron, M.A.; et al. Administration of spores of nontoxigenic Clostridium difficile strain M3 for prevention of recurrent C. difficile infection: A randomized clinical trial. JAMA 2015, 313, 1719–1727. [Google Scholar] [CrossRef]
- Moura, I.; Spigaglia, P.; Barbanti, F.; Mastrantonio, P. Analysis of metronidazole susceptibility in different Clostridium difficile PCR ribotypes. J. Antimicrob. Chemother. 2013, 68, 362–365. [Google Scholar] [CrossRef]
- Usui, M.; Nanbu, Y.; Oka, K.; Takahashi, M.; Inamatsu, T.; Asai, T.; Kamiya, S.; Tamura, Y. Genetic relatedness between Japanese and European isolates of Clostridium difficile originating from piglets and their risk associated with human health. Front. Microbiol. 2014, 5, 513. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Cho, A.; Kim, J.W.; Kim, H.; Kim, B. High prevalence of Clostridium difficile PCR ribotype 078 in pigs in Korea. Anaerobe 2018, 51, 42–46. [Google Scholar] [CrossRef]
- Wu, Y.C.; Lee, J.J.; Tsai, B.Y.; Liu, Y.F.; Chen, C.M.; Tien, N.; Tsai, P.J.; Chen, T.H. Potentially hypervirulent Clostridium difficile PCR ribotype 078 lineage isolates in pigs and possible implications for humans in Taiwan. Int. J. Med. Microbiol. 2016, 306, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Putsathit, P.; Ngamwongsatit, B.; Riley, T.V. Epidemiology and antimicrobial susceptibility of Clostridium difficile in piglets in Thailand. In Proceedings of the 6th International Clostridium difficile Symposium, Bled, Slovenia, 12–14 September 2018. [Google Scholar]
- Hung, Y.P.; Lin, H.J.; Tsai, B.Y.; Liu, H.C.; Liu, H.C.; Lee, J.C.; Wu, Y.H.; Wilcox, M.H.; Fawley, W.N.; Hsueh, P.R.; et al. Clostridium difficile ribotype 126 in southern Taiwan: A cluster of three symptomatic cases. Anaerobe 2014, 30, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Baba, K.; Ishihara, K.; Ozawa, M.; Tamura, Y.; Asai, T. Isolation of meticillin-resistant Staphylococcus aureus (MRSA) from swine in Japan. Int. J. Antimicrob. Agents 2010, 36, 352–354. [Google Scholar] [CrossRef] [PubMed]
- Spigaglia, P.; Drigo, I.; Barbanti, F.; Mastrantonio, P.; Bano, L.; Bacchin, C.; Puiatti, C.; Tonon, E.; Berto, G.; Agnoletti, F. Antibiotic resistance patterns and PCR-ribotyping of Clostridium difficile strains isolated from swine and dogs in Italy. Anaerobe 2015, 31, 42–46. [Google Scholar] [CrossRef]
- Knight, D.R.; Putsathit, P.; Elliott, B.; Riley, T.V. Contamination of Australian newborn calf carcasses at slaughter with Clostridium difficile. Clin. Microbiol. Infect. 2016, 22, 266.e1–266.e7. [Google Scholar] [CrossRef]
- Niwa, H.; Kato, H.; Hobo, S.; Kinoshita, Y.; Ueno, T.; Katayama, Y.; Hariu, K.; Oku, K.; Senoh, M.; Kuroda, T.; et al. Postoperative Clostridium difficile infection with PCR ribotype 078 strain identified at necropsy in five Thoroughbred racehorses. Vet. Rec. 2013, 173, 607. [Google Scholar] [CrossRef]
- Niwa, H.; Sekizuka, T.; Kuroda, M.; Uchida, E.; Kinoshita, Y.; Katayama, Y.; Senoh, M.; Kato, H. Whole-genome analysis of Clostridioides difficile strains isolated from horses in Japan. In Proceedings of the 6th International Clostridium difficile Symposium, Bled, Slovenia, 12–14 September 2018. [Google Scholar]
- Anderson, D.J.; Rojas, L.F.; Watson, S.; Knelson, L.P.; Pruitt, S.; Lewis, S.S.; Moehring, R.W.; Sickbert Bennett, E.E.; Weber, D.J.; Chen, L.F.; et al. Identification of novel risk factors for community-acquired Clostridium difficile infection using spatial statistics and geographic information system analyses. PLoS ONE 2017, 12, e0176285. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collins, D.A.; Riley, T.V. Clostridium difficile in Asia: Opportunities for One Health Management. Trop. Med. Infect. Dis. 2019, 4, 7. https://doi.org/10.3390/tropicalmed4010007
Collins DA, Riley TV. Clostridium difficile in Asia: Opportunities for One Health Management. Tropical Medicine and Infectious Disease. 2019; 4(1):7. https://doi.org/10.3390/tropicalmed4010007
Chicago/Turabian StyleCollins, Deirdre A., and Thomas V. Riley. 2019. "Clostridium difficile in Asia: Opportunities for One Health Management" Tropical Medicine and Infectious Disease 4, no. 1: 7. https://doi.org/10.3390/tropicalmed4010007
APA StyleCollins, D. A., & Riley, T. V. (2019). Clostridium difficile in Asia: Opportunities for One Health Management. Tropical Medicine and Infectious Disease, 4(1), 7. https://doi.org/10.3390/tropicalmed4010007