Evaluating Machine Learning Models for Predicting Late Leprosy Diagnosis by Physical Disability Grade in Brazil (2018–2022)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Physical Disabilities Characteristics
3.2. Performance of Predictive Models
3.3. Predictor Importance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
G2D | Grade 2 physical disability |
ROC | Receiver Operating Characteristic |
AUC-ROC | Area under the ROC curve |
SINAN | Notifiable Diseases Information System |
MCC | Matthew’s correlation coefficient |
HIS | Health Information System |
ML | Machine learning |
WHO | World Health Organization |
References
- World Health Organization (WHO). Towards Zero Leprosy. Global Leprosy (Hansen’s Disease) Strategy 2021–2030. 2023. Available online: https://www.who.int/publications/i/item/9789290228509 (accessed on 3 February 2025).
- De Andrade, K.V.F.; Nery, J.S.; Penna, M.L.F.; Penna, G.O.; Barreto, M.L.; Pereira, S.M. Effect of Brazil’s Conditional Cash Transfer Programme on the New Case Detection Rate of Leprosy in Children under 15 Years Old. Lepr. Rev. 2018, 89, 13–24. [Google Scholar] [CrossRef]
- Pescarini, J.M.; Strina, A.; Nery, J.S.; Skalinski, L.M.; Andrade, K.V.F.D.; Penna, M.L.F.; Brickley, E.B.; Rodrigues, L.C.; Barreto, M.L.; Penna, G.O. Socioeconomic Risk Markers of Leprosy in High-Burden Countries: A Systematic Review and Meta-Analysis. PLoS Negl. Trop. Dis. 2018, 12, e0006622. [Google Scholar] [CrossRef] [PubMed]
- Nery, J.S.; Ramond, A.; Pescarini, J.M.; Alves, A.; Strina, A.; Ichihara, M.Y.; Fernandes Penna, M.L.; Smeeth, L.; Rodrigues, L.C.; Barreto, M.L.; et al. Socioeconomic Determinants of Leprosy New Case Detection in the 100 Million Brazilian Cohort: A Population-Based Linkage Study. Lancet Glob. Health 2019, 7, e1226–e1236. [Google Scholar] [CrossRef]
- Scollard, D.M. A New Step in Postexposure Prophylaxis for Leprosy. N. Engl. J. Med. 2023, 388, 1904–1905. [Google Scholar] [CrossRef]
- Richardus, J.H. Incidence of Acute Nerve Function Impairment and Reactions in Leprosy: A Prospective Cohort Analysis after 5 Years of Follow-Up. Int. J. Epidemiol. 2004, 33, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Van Brakel, W.H.; Sihombing, B.; Djarir, H.; Beise, K.; Kusumawardhani, L.; Yulihane, R.; Kurniasari, I.; Kasim, M.; Kesumaningsih, K.I.; Wilder-Smith, A. Disability in People Affected by Leprosy: The Role of Impairment, Activity, Social Participation, Stigma and Discrimination. Glob. Health Action 2012, 5, 18394. [Google Scholar] [CrossRef]
- WHO. Global Leprosy (Hansen Disease) Update, 2023: Elimination of Leprosy Disease Is Possible—Time to Act! Wkly. Epidemiol. Record. 2024, 99, 501–521. [Google Scholar]
- Penna, G.O.; Pontes, M.A.D.A.; Nobre, M.L.; Pinto, L.F. Pesquisa Nacional de Saúde Revela Alto Percentual de Sinais e Sintomas de Hanseníase No Brasil. Ciênc. Saúde Coletiva 2022, 27, 2255–2258. [Google Scholar] [CrossRef]
- Raposo, M.T.; Reis, M.C.; Caminha, A.V.D.Q.; Heukelbach, J.; Parker, L.A.; Pastor-Valero, M.; Nemes, M.I.B. Grade 2 Disabilities in Leprosy Patients from Brazil: Need for Follow-up after Completion of Multidrug Therapy. PLoS Negl. Trop. Dis. 2018, 12, e0006645. [Google Scholar] [CrossRef]
- Brandsma, J.W.; Van Brakel, W.H. WHO Disability Grading: Operational Definitions. Lepr. Rev. 2003, 74, 366–373. [Google Scholar] [CrossRef]
- WHO Expert Committee on Leprosy (Ed.) WHO Expert Committee on Leprosy: Sixth Report; World Health Organization Technical Report Series; World Health Organization: Geneva, Switzerland, 1988. [Google Scholar]
- De Alecrin, E.S.; Martins, M.A.P.; De Oliveira, A.L.G.; Lyon, S.; Lages, A.T.C.; Reis, I.A.; Pereira, F.H.; Oliveira, D.; Goulart, I.M.B.; Da Costa Rocha, M.O. Models for Predicting the Risk of Illness in Leprosy Contacts in BRAZIL: Leprosy Prediction Models in Brazilian Contacts. Trop. Med. Int. Health 2024, 29, 680–696. [Google Scholar] [CrossRef]
- Rajkomar, A.; Dean, J.; Kohane, I. Machine Learning in Medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [Google Scholar] [CrossRef]
- Topol, E.J. High-Performance Medicine: The Convergence of Human and Artificial Intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Santangelo, O.E.; Gentile, V.; Pizzo, S.; Giordano, D.; Cedrone, F. Machine Learning and Prediction of Infectious Diseases: A Systematic Review. Mach. Learn. Knowl. Extr. 2023, 5, 175–198. [Google Scholar] [CrossRef]
- DATASUS. Departamento de Informática do Sistema Único de Saúde (DATASUS). Available online: https://datasus.saude.gov.br/informacoes-de-saude-tabnet/ (accessed on 26 December 2024).
- Ministério da Saúde (BR); Secretaria de Vigilância em Saúde; Departamento de Vigilância das Doenças Transmissíveis. Diretrizes Para Vigilância, Atenção e Eliminação Da Hanseníase Como Problema de Saúde Pública: Manual Técnico Operacional; Ministério da Saúde: Brasília, Brazil, 2016. [Google Scholar]
- WHO. Global Leprosy (Hansen Disease) Update, 2022: New Paradigm—Control to Elimination—Situation de La Lèpre (Maladie de Hansen) Dans Le Monde, 2022: Nouveau Paradigme—De La Lutte Contre La Maladie à Son l’élimination. Wkly. Epidemiol. Rec. Relev. Épidémiologique Hebd. 2023, 98, 409–429. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; ACM: San Francisco, CA, USA, 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Zhou, Z.-H. Ensemble Methods: Foundations and Algorithms, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2012. [Google Scholar] [CrossRef]
- Bergstra, J.; Yamins, D.; Cox, D. Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; Dasgupta, S., McAllester, D., Eds.; PMLR: Proceedings of Machine Learning Research: Atlanta, GA, USA, 2013; Volume 28, pp. 115–123. [Google Scholar]
- Santos, G.M.C.D.; Byrne, R.L.; Cubas-Atienzar, A.I.; Santos, V.S. Factors Associated with Delayed Diagnosis of Leprosy in an Endemic Area in Northeastern Brazil: A Cross-Sectional Study. Cad. Saúde Pública 2024, 40, e00113123. [Google Scholar] [CrossRef] [PubMed]
- Henry, M.; GalAn, N.; Teasdale, K.; Prado, R.; Amar, H.; Rays, M.S.; Roberts, L.; Siqueira, P.; De Wildt, G.; Virmond, M.; et al. Factors Contributing to the Delay in Diagnosis and Continued Transmission of Leprosy in Brazil—An Explorative, Quantitative, Questionnaire Based Study. PLoS Negl. Trop. Dis. 2016, 10, e0004542. [Google Scholar] [CrossRef]
- Santos, V.S.; Santos De Matos, A.M.; Alves De Oliveira, L.S.; Dolce De Lemos, L.M.; Gurgel, R.Q.; Reis, F.P.; Tavares De Gois Santos, V.; Feitosa, V.L.C. Clinical Variables Associated with Disability in Leprosy Cases in Northeast Brazil. J. Infect. Dev. Ctries. 2015, 9, 232–238. [Google Scholar] [CrossRef]
- Serra, M.A.A.D.O.; Santos, C.D.S.; Lima Neto, P.M.; Oliveira, K.G.Z.; Oliveira, F.J.F.D.; Gordon, A.S.D.A.; Matos, D.P.; Lima, R.J.C.P.; Bezerra, J.M.; Costa Maia Dias, I.C.; et al. Factors Associated with Multibacillary Leprosy in a Priority Region for Disease Control in Northeastern Brazil: A Retrospective Observational Study. J. Trop. Med. 2019, 2019, 5738924. [Google Scholar] [CrossRef]
- Matos, T.S.; Moura, J.C.D.; Fernandes, T.R.M.D.O.; Souza, C.D.F.D. Epidemiological, Neurofunctional Profile and Prevalence of Factors Associated with the Occurrence of Physical Disabilities Due to Leprosy in a Reference Center in Northeast Brasil: A Sectional Study. Rev. Assoc. Médica Bras. 2021, 67, 19–25. [Google Scholar] [CrossRef]
- Sanchez, M.N.; Nery, J.S.; Pescarini, J.M.; Mendes, A.A.; Ichihara, M.Y.; Teixeira, C.S.S.; Penna, M.L.F.; Smeeth, L.; Rodrigues, L.C.; Barreto, M.L.; et al. Physical Disabilities Caused by Leprosy in 100 Million Cohort in Brazil. BMC Infect. Dis. 2021, 21, 290. [Google Scholar] [CrossRef]
- Danilov, G.; Kotik, K.; Shifrin, M.; Strunina, Y.; Pronkina, T.; Tsukanova, T.; Nepomnyashiy, V.; Konovalov, N.; Danilov, V.; Potapov, A. Data Quality Estimation Via Model Performance: Machine Learning as a Validation Tool. In Studies in Health Technology and Informatics; Mantas, J., Gallos, P., Zoulias, E., Hasman, A., Househ, M.S., Charalampidou, M., Magdalinou, A., Eds.; IOS Press: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Ahamed Fayaz, S.; Babu, L.; Paridayal, L.; Vasantha, M.; Paramasivam, P.; Sundarakumar, K.; Ponnuraja, C. Machine Learning Algorithms to Predict Treatment Success for Patients with Pulmonary Tuberculosis. PLoS ONE 2024, 19, e0309151. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira Serra, M.A.A.; Da Silva, R.A.A.; Monari, F.F.; Silva, J.O.E.; De Sá Junior, J.X.; Silva, R.D.A.E.; Fontoura, I.G.; Neto, M.S.; De Araújo, M.F.M. Individual, Socioeconomic and Healthcare Access Factors Influencing the Delays in Leprosy Presentation, Diagnosis and Treatment: A Qualitative Study. Trans. R. Soc. Trop. Med. Hyg. 2023, 117, 852–858. [Google Scholar] [CrossRef] [PubMed]
- Dharmawan, Y.; Fuady, A.; Korfage, I.; Richardus, J.H. Individual and Community Factors Determining Delayed Leprosy Case Detection: A Systematic Review. PLoS Negl. Trop. Dis. 2021, 15, e0009651. [Google Scholar] [CrossRef] [PubMed]
- Torres, E.R.; Cardona, P.N.B.; Albarracín, D.G.E.; Fastenau, A.; Penna, S.; Kasang, C. Epidemiological Trends and Diagnosis Delay for Hansen’s Disease in Valle Del Cauca—Colombia 2016–2021. Lepr. Rev. 2023, 94, 111–123. [Google Scholar] [CrossRef]
- Johnson, J.; Johnson, A.R.; Andersen, C.A.; Kelso, M.R.; Oropallo, A.R.; Serena, T.E. Skin Pigmentation Impacts the Clinical Diagnosis of Wound Infection: Imaging of Bacterial Burden to Overcome Diagnostic Limitations. J. Racial Ethn. Health Disparities 2024, 11, 1045–1055. [Google Scholar] [CrossRef]
- Vieira, M.C.A.; Nery, J.S.; Paixão, E.S.; Freitas De Andrade, K.V.; Oliveira Penna, G.; Teixeira, M.G. Leprosy in Children under 15 Years of Age in Brazil: A Systematic Review of the Literature. PLoS Negl. Trop. Dis. 2018, 12, e0006788. [Google Scholar] [CrossRef]
- De Andrade Rodrigues, R.S.; Heise, E.F.J.; Hartmann, L.F.; Rocha, G.E.; Olandoski, M.; De Araújo Stefani, M.M.; Latini, A.C.P.; Soares, C.T.; Belone, A.; Rosa, P.S.; et al. Prediction of the Occurrence of Leprosy Reactions Based on Bayesian Networks. Front. Med. 2023, 10, 1233220. [Google Scholar] [CrossRef]
- Fernandes, J.R.N.; Teles, A.S.; Fernandes, T.R.S.; Lima, L.D.B.; Balhara, S.; Gupta, N.; Teixeira, S. Artificial Intelligence on Diagnostic Aid of Leprosy: A Systematic Literature Review. J. Clin. Med. 2023, 13, 180. [Google Scholar] [CrossRef]
- Ferreira, A.F.; Heukelbach, J.; de Souza, E.A.; García, G.S.M.; Filha, C.R.; Braga, J.U.; Oliveira, M.L.W.-D.-R.; Reis, A.d.S.d.; Corona, F.; Neto, S.A.d.S.; et al. A New Scoring System for Operational Indicators Guiding Leprosy Monitoring and Surveillance in Brazil. One Health Implement. Res. 2022, 2, 29–41. [Google Scholar] [CrossRef]
- Ramos, A.C.V.; Alonso, J.B.; Berra, T.Z.; Alves, L.S.; Martoreli Júnior, J.F.; Santos, F.L.D.; Alves, Y.M.; Andrade, H.L.P.D.; Costa, F.B.P.D.; Crispim, J.D.A.; et al. Social Inequalities and Their Association with the Leprosy Burden in a Brazilian City of Low Endemicity: An Ecological Study. Acta Trop. 2021, 218, 105884. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Souza, C.; Bacha, J.T. Delayed Diagnosis of Leprosy and the Potential Role of Educational Activities in Brazil. Lepr. Rev. 2003, 74, 249–258. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, G.L.; Oliveira, J.F.; Pescarini, J.M.; Andrade, R.F.S.; Nery, J.S.; Ichihara, M.Y.; Smeeth, L.; Brickley, E.B.; Barreto, M.L.; Penna, G.O.; et al. Estimating Underreporting of Leprosy in Brazil Using a Bayesian Approach. PLoS Negl. Trop. Dis. 2021, 15, e0009700. [Google Scholar] [CrossRef] [PubMed]
Grade 2 Physical Disability | ||||
---|---|---|---|---|
No | Yes | p-Value 1 | Total | |
Variable | n (%) | n (%) | n (%) | |
Sex | <0.001 | |||
Female | 56,000 (44.4) | 4336 (29.3) | 60,335 (42.8) | |
Male | 70,110 (55.6) | 10,456 (70.7) | 80,566 (57.2) | |
Age group (in years) | <0.001 | |||
0–14 | 6361 (5.1) | 255 (1.7) | 6616 (4.7) | |
15–29 | 18,573 (14.7) | 1550 (10.5) | 20,123 (14.3) | |
30–49 | 45,566 (36.1) | 4498 (30.4) | 50,064 (35. 5) | |
50–69 | 43,635 (34.6) | 6078 (41.1) | 49,713 (35.3) | |
70–79 | 9135 (7.2) | 1716 (11.6) | 10,851 (7.7) | |
≥80 | 2846 (2.3) | 696 (4.7) | 3542 (2.5) | |
Race or skin color | <0.001 | |||
White | 28,657 (22.9) | 3554 (24.3) | 32,211 (23.1) | |
Yellow | 1413 (1.1) | 150 (1.0) | 1563 (1.1) | |
Brown | 75,629 (60.5) | 8464 (57.8) | 84,093 (60.2) | |
Black | 15,686 (12.6) | 2039 (13.9) | 17,725 (12.7) | |
Indigenous | 593 (0.5) | 77 (0.5) | 670 (0.5) | |
Ignored | 3023 (2.4) | 349 (2.4) | 3372 (2.4) | |
Education | <0.001 | |||
Higher education (incomplete or complete) | 9279 (8.0) | 1764 (13.0) | 11,043 (8.5) | |
High school (incomplete or complete) | 30,827 (26.5) | 4133 (30.5) | 34,960 (26.9) | |
8th grade complete | 17,794 (15.3) | 2049 (15.1) | 19,843 (15.2) | |
5th to 8th grade incomplete | 7959 (6.8) | 968 (7.1) | 8927 (6.9) | |
1st to 4th grade (incomplete or complete) | 27,056 (23.3) | 2266 (16.7) | 29,322 (22.5) | |
Illiterate | 7458 (6.4) | 463 (3.4) | 7921 (6.1) | |
Ignored and not applicable (under 7 years old) | 16,165 (13.9) | 1915 (14.1) | 18,080 (13.9) | |
Number of nerves affected | <0.001 | |||
0 | 54,705 (43.4) | 1304 (8.8) | 56,009 (39.7) | |
1 | 14,421 (11.4) | 1308 (8.8) | 15,729 (11.2) | |
2–5 | 37,102 (29.4) | 8046 (54.4) | 45,148 (32.0) | |
>5 | 19,888 (15.8) | 4135 (28.0) | 24,023 (17.1) | |
Clinical form | <0.001 | |||
Undetermined | 13,864 (11.3) | 299 (2.1) | 14,163 (10.3) | |
Tuberculoid | 13,762 (11.2) | 476 (3.3) | 14,238 (10.4) | |
Virchowian | 20,772 (16.9) | 4751 (33.0) | 25,523 (18.6) | |
Diforma | 66,464 (54.2) | 7989 (55.5) | 74,453 (54.3) | |
Not classified | 7820 (6.4) | 886 (6.1) | 8706 (6.4) | |
Operational classification | <0.001 | |||
Paucibacillary | 24,762 (19.6) | 468 (3.2) | 25,230 (17.9) | |
Multibacillary | 101,342 (80.4) | 14,325 (96.4) | 11,5667 (82.1) | |
Case detection mode | <0.001 | |||
Spontaneous demand | 40,410 (39.7) | 3629 (35.4) | 44,039 (39.3) | |
Referral | 44,932 (44.2) | 5233 (51.0) | 50,165 (44.8) | |
Collective examination | 3660 (3.6) | 330 (3.2) | 3990 (3.6) | |
Contact examination | 10,104 (9.9) | 697 (6.8) | 10,801 (9.7) | |
Other modes | 2204 (2.2) | 345 (3.4) | 2549 (2.3) | |
Ignored | 388 (0.4) | 30 (0.3) | 418 (0.4) |
North | |||||||
Model | Accuracy | AUC_ROC | Recall | Specificity | Precision | F1 Score | MCC |
Random Forest | 0.84 | 0.92 | 0.91 | 0.76 | 0.80 | 0.85 | 0.69 |
LightGBM | 0.84 | 0.93 | 0.90 | 0.78 | 0.80 | 0.85 | 0.69 |
CatBoost | 0.83 | 0.92 | 0.87 | 0.79 | 0.80 | 0.84 | 0.66 |
XGBoost | 0.83 | 0.92 | 0.88 | 0.78 | 0.80 | 0.84 | 0.66 |
Ensemble model | 0.84 | 0.93 | 0.90 | 0.78 | 0.80 | 0.85 | 0.69 |
Northeast | |||||||
Accuracy | AUC_ROC | Recall | Specificity | Precision | F1 Score | MCC | |
Random Forest | 0.85 | 0.93 | 0.90 | 0.80 | 0.82 | 0.86 | 0.70 |
LightGBM | 0.85 | 0.93 | 0.88 | 0.82 | 0.83 | 0.85 | 0.70 |
CatBoost | 0.84 | 0.92 | 0.87 | 0.81 | 0.82 | 0.85 | 0.68 |
XGBoost | 0.84 | 0.92 | 0.88 | 0.81 | 0.82 | 0.85 | 0.69 |
Ensemble model | 0.85 | 0.93 | 0.88 | 0.82 | 0.83 | 0.85 | 0.70 |
Southeast | |||||||
Accuracy | AUC_ROC | Recall | Specificity | Precision | F1 Score | MCC | |
Random Forest | 0.83 | 0.91 | 0.89 | 0.78 | 0.80 | 0.84 | 0.67 |
LightGBM | 0.84 | 0.92 | 0.88 | 0.80 | 0.81 | 0.85 | 0.68 |
CatBoost | 0.83 | 0.91 | 0.86 | 0.80 | 0.81 | 0.83 | 0.65 |
XGBoost | 0.83 | 0.91 | 0.87 | 0.79 | 0.80 | 0.83 | 0.66 |
Ensemble model | 0.84 | 0.92 | 0.88 | 0.80 | 0.82 | 0.85 | 0.69 |
South | |||||||
Accuracy | AUC_ROC | Recall | Specificity | Precision | F1 Score | MCC | |
Random Forest | 0.85 | 0.92 | 0.89 | 0.81 | 0.83 | 0.86 | 0.70 |
LightGBM | 0.85 | 0.93 | 0.89 | 0.82 | 0.83 | 0.86 | 0.71 |
CatBoost | 0.86 | 0.93 | 0.91 | 0.81 | 0.83 | 0.86 | 0.72 |
XGBoost | 0.86 | 0.93 | 0.90 | 0.81 | 0.83 | 0.86 | 0.72 |
Ensemble model | 0.86 | 0.94 | 0.90 | 0.82 | 0.84 | 0.87 | 0.73 |
Midwest | |||||||
Accuracy | AUC_ROC | Recall | Specificity | Precision | F1 Score | MCC | |
Random Forest | 0.81 | 0.90 | 0.87 | 0.76 | 0.78 | 0.82 | 0.63 |
LightGBM | 0.82 | 0.91 | 0.85 | 0.78 | 0.80 | 0.82 | 0.63 |
CatBoost | 0.81 | 0.90 | 0.83 | 0.79 | 0.79 | 0.81 | 0.62 |
XGBoost | 0.80 | 0.89 | 0.82 | 0.78 | 0.79 | 0.81 | 0.60 |
Ensemble model | 0.81 | 0.90 | 0.84 | 0.78 | 0.80 | 0.82 | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freitas, L.R.S.d.; Freitas, J.A.O.d.; Penna, G.O.; Duarte, E.C. Evaluating Machine Learning Models for Predicting Late Leprosy Diagnosis by Physical Disability Grade in Brazil (2018–2022). Trop. Med. Infect. Dis. 2025, 10, 131. https://doi.org/10.3390/tropicalmed10050131
Freitas LRSd, Freitas JAOd, Penna GO, Duarte EC. Evaluating Machine Learning Models for Predicting Late Leprosy Diagnosis by Physical Disability Grade in Brazil (2018–2022). Tropical Medicine and Infectious Disease. 2025; 10(5):131. https://doi.org/10.3390/tropicalmed10050131
Chicago/Turabian StyleFreitas, Lucia Rolim Santana de, José Antônio Oliveira de Freitas, Gerson Oliveira Penna, and Elisabeth Carmen Duarte. 2025. "Evaluating Machine Learning Models for Predicting Late Leprosy Diagnosis by Physical Disability Grade in Brazil (2018–2022)" Tropical Medicine and Infectious Disease 10, no. 5: 131. https://doi.org/10.3390/tropicalmed10050131
APA StyleFreitas, L. R. S. d., Freitas, J. A. O. d., Penna, G. O., & Duarte, E. C. (2025). Evaluating Machine Learning Models for Predicting Late Leprosy Diagnosis by Physical Disability Grade in Brazil (2018–2022). Tropical Medicine and Infectious Disease, 10(5), 131. https://doi.org/10.3390/tropicalmed10050131