The Quantitative Case-by-Case Analyses of the Socio-Emotional Outcomes of Children with ASD in Robot-Assisted Autism Therapy
Abstract
:1. Introduction
2. Autism Spectrum Disorders
3. Materials and Methods
3.1. Participants
3.2. Robot
3.3. Setup
3.4. Intervention Framework
3.5. Procedure
3.6. Session Labeling
- Individual sessions: child outcomes from session to session.
- Adaptive (A): sessions consisting of only previously seen, familiar, and liked activities.
- Non-adaptive (NA): sessions introducing unseen and unfamiliar activities.
- Parent (P): sessions involving a parent in the experimental room.
- No-parent (NP): sessions without a parent in the experimental room.
3.7. Measures
4. Results
4.1. Individual Sessions
4.2. Adaptive vs. Non-Adaptive
4.3. Parental Presence
5. Discussion
5.1. Changes over Individual Sessions
5.2. Changes over Adaptive and Non-Adaptive Sessions
5.3. Changes over Sessions with and without a Parent
5.4. Individual Cases
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABA | Applied Behavioral Analysis |
ADHD | Attention Deficit Hyperactivity Disorder |
ADOS | Autism Diagnostic Observation Schedule |
ASD | Autism Spectrum Disorder |
CRI | Child-robot Interaction |
HFA | High-functioning Autism |
HRI | Human-robot Interaction |
LFA | Low-functioning Autism |
RAT | Robot-assisted Therapy |
RAAT | Robot-assisted Autism Therapy |
RCRC | Republican Children’s Rehabilitation Centre |
References
- Hood, D.; Lemaignan, S.; Dillenbourg, P. When children teach a robot to write: An autonomous teachable humanoid which uses simulated handwriting. In Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction, Portland, OG, USA, 2–5 March 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 83–90. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, T.D.; Narasimhan, K.; Saeedi, A.; Tenenbaum, J. Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation. In Advances in Neural Information Processing Systems 29; Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R., Eds.; Curran Associates Inc.: Red Hook, NY, USA, 2016; pp. 3675–3683. [Google Scholar]
- Tleubayev, B.; Zhexenova, Z.; Zhakenova, A.; Sandygulova, A. Robot-Assisted Therapy for Children with ADHD and ASD: A Pilot Study. In Proceedings of the 2019 2nd International Conference on Service Robotics Technologies, Beijing, China, 22–24 March 2019; pp. 58–62. [Google Scholar]
- Mazel, A.; Matu, S. DREAM lite: Simplifying robot assisted therapy for ASD. In Proceedings of the 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI 2019), Daegu, Korea, 11–14 March 2019. [Google Scholar]
- Dautenhahn, K. Robots as social actors: Aurora and the case of autism. In Proceedings of the CT99, The Third International Cognitive Technology Conference, San Francisco, CA, USA, 11–14 August 1999; Volume 359, p. 374. [Google Scholar]
- Scassellati, B.; Admoni, H.; Matarić, M. Robots for Use in Autism Research. Annu. Rev. Biomed. Eng. 2012, 14, 275–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melo, F.S.; Sardinha, A.; Belo, D.; Couto, M.; Faria, M.; Farias, A.; Gambôa, H.; Jesus, C.; Kinarullathil, M.; Lima, P.; et al. Project INSIDE: Towards autonomous semi-unstructured human–robot social interaction in autism therapy. Artif. Intell. Med. 2019, 96, 198–216. [Google Scholar] [CrossRef] [PubMed]
- Anzalone, S.M.; Xavier, J.; Boucenna, S.; Billeci, L.; Narzisi, A.; Muratori, F.; Cohen, D.; Chetouani, M. Quantifying patterns of joint attention during human-robot interactions: An application for autism spectrum disorder assessment. Pattern Recognit. Lett. 2019, 118, 42–50. [Google Scholar] [CrossRef]
- Duquette, A.; Michaud, F.; Mercier, H. Exploring the use of a mobile robot as an imitation agent with children with low-functioning autism. Auton. Robot. 2008, 24, 147–157. [Google Scholar] [CrossRef]
- Feil-Seifer, D.; Mataric, M. Toward Socially Assistive Robotics for Augmenting Interventions for Children with Autism Spectrum Disorders; Springer: Berlin/Heidelberg, Germany, 2009; Volume 54, pp. 201–210. [Google Scholar] [CrossRef]
- Kim, E.; Paul, R.; Shic, F.; Scassellati, B. Bridging the Research Gap: Making HRI Useful to Individuals with Autism. J. Hum. Robot. Interact. 2012, 1. [Google Scholar] [CrossRef] [Green Version]
- Scassellati, B.; Boccanfuso, L.; Huang, C.M.; Mademtzi, M.; Qin, M.; Salomons, N.; Ventola, P.; Shic, F. Improving social skills in children with ASD using a long-term, in-home social robot. Sci. Robot. 2018, 3, eaat7544. [Google Scholar] [CrossRef] [Green Version]
- Diehl, J.J.; Schmitt, L.M.; Villano, M.; Crowell, C.R. The clinical use of robots for individuals with autism spectrum disorders: A critical review. Res. Autism Spectr. Disord. 2012, 6, 249–262. [Google Scholar] [CrossRef] [Green Version]
- Robins, B.; Dautenhahn, K.; Boekhorst, R.T.; Billard, A. Robotic assistants in therapy and education of children with autism: Can a small humanoid robot help encourage social interaction skills? Univers. Access Inf. Soc. 2005, 4, 105–120. [Google Scholar] [CrossRef]
- Begum, M.; Serna, R.; Yanco, H. Are Robots Ready to Deliver Autism Interventions? A Comprehensive Review. Int. J. Soc. Robot. 2016, 8, 157–181. [Google Scholar] [CrossRef]
- Huijnen, C.A.; Lexis, M.A.; de Witte, L.P. Matching robot KASPAR to autism spectrum disorder (ASD) therapy and educational goals. Int. J. Soc. Robot. 2016, 8, 445–455. [Google Scholar] [CrossRef]
- Wainer, J.; Dautenhahn, K.; Robins, B.; Amirabdollahian, F. A pilot study with a novel setup for collaborative play of the humanoid robot KASPAR with children with autism. Int. J. Soc. Robot. 2014, 6, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Shamsuddin, S.; Yussof, H.; Ismail, L.; Hanapiah, F.; Mohamed, S.; Piah, H.; Zahari, N. Initial response of autistic children in human-robot interaction therapy with humanoid robot NAO. In Proceedings of the 8th IEEE International Colloquium on Signal Processing and its Applications, Malacca, Malaysia, 23–25 March 2012; Volume 16, pp. 188–193. [Google Scholar]
- Fraune, M.R.; Leite, I.; Karatas, N.; Amirova, A.; Legeleux, A.; Sandygulova, A.; Neerincx, A.; Tikas, G.D.; Gunes, H.; Mohan, M.; et al. Lessons Learned About Designing and Conducting Studies From HRI Experts. Front. Robot. AI 2022, 8, 401. [Google Scholar] [CrossRef] [PubMed]
- Thill, S.; Pop, C.A.; Belpaeme, T.; Ziemke, T.; Vanderborght, B. Robot-assisted therapy for autism spectrum disorders with (partially) autonomous control: Challenges and outlook. Paladyn 2013, 3, 209–217. [Google Scholar] [CrossRef]
- Dautenhahn, K. Roles and functions of robots in human society: Implications from research in autism therapy. Robotica 2003, 21, 443–452. [Google Scholar] [CrossRef] [Green Version]
- Robins, B.; Dautenhahn, K.; Dickerson, P. From isolation to communication: A case study evaluation of robot assisted play for children with autism with a minimally expressive humanoid Robot. In Proceedings of the 2009 Second International Conferences on Advances in Computer-Human Interactions, Cancun, Mexico, 1–7 February 2009; pp. 205–211. [Google Scholar] [CrossRef]
- Robins, B.; Dautenhahn, K. The role of the experimenter in HRI research—A case study evaluation of children with autism interacting with a robotic toy. In Proceedings of the ROMAN 2006—The 15th IEEE International Symposium on Robot and Human Interactive Communication, Hatfield, UK, 6–8 September 2006; pp. 646–651. [Google Scholar] [CrossRef] [Green Version]
- Tapus, A.; Peca, A.; Aly, A.; Pop, C.; Jisa, L.; Pintea, S.; Rusu, A.S.; David, D.O. Children with autism social engagement in interaction with Nao, an imitative robot: A series of single case experiments. Interact. Stud. 2012, 13, 315–347. [Google Scholar] [CrossRef]
- Beer, J.M.; Boren, M.; Liles, K.R. Robot assisted music therapy a case study with children diagnosed with autism. In Proceedings of the 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Christchurch, New Zealand, 7–10 March 2016; pp. 419–420. [Google Scholar] [CrossRef]
- Charron, N.; Lewis, L.; Craig, M. A Robotic Therapy Case Study: Developing Joint Attention Skills With a Student on the Autism Spectrum. J. Educ. Technol. Syst. 2017, 46, 137–148. [Google Scholar] [CrossRef]
- Taheri, A.; Meghdari, A.; Alemi, M.; Pouretemad, H. Human–Robot Interaction in Autism Treatment: A Case Study on Three Pairs of Autistic Children as Twins, Siblings, and Classmates. Int. J. Soc. Robot. 2018, 10, 93–113. [Google Scholar] [CrossRef]
- Sandygulova, A.; Amirova, A.; Telisheva, Z.; Zhanatkyzy, A.; Rakhymbayeva, N. Individual Differences of Children with Autism in Robot-Assisted Autism Therapy; IEEE Press: Piscataway, NJ, USA, 2022; Volume 22, pp. 43–52. [Google Scholar]
- Markram, K.; Markram, H. The intense world theory—A unifying theory of the neurobiology of autism. Front. Hum. Neurosci. 2010, 4, 224. [Google Scholar] [CrossRef] [Green Version]
- Faras, H.; Al Ateeqi, N.; Tidmarsh, L. Autism Spectrum Disorders. Int. J. Soc. Robot. 2010, 30, 295–300. [Google Scholar] [CrossRef]
- APA. Diagnostic and Statistical Manual of Mental Disorders: DSM-5, 5th ed.; APA: Washington, DC, USA, 2013. [Google Scholar]
- Autism Spectrum Disorder. Centre for Disease Control and Prevention. 2022. Available online: https://www.cdc.gov/ncbddd/autism/index.html (accessed on 7 April 2022).
- Mottron, L.; Bzdok, D. Autism spectrum heterogeneity: Fact or artifact? Mol. Psychiatry 2020, 25, 3178–3185. [Google Scholar] [CrossRef]
- Telisheva, Z.; Turarova, A.; Zhanatkyzy, A.; Abylkasymova, G.; Sandygulova, A. Robot-assisted therapy for the severe form of autism: Challenges and recommendations. In Proceedings of the International Conference on Social Robotics, Madrid, Spain, 26–29 November 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 474–483. [Google Scholar]
- Autism Speaks. Autism and health: A special report by autism speaks. In Advances in Understanding and Treating the Health Conditions that Frequently Accompany Autism; Autism Speaks: Princeton, NJ, USA, 2017. [Google Scholar]
- Drechsler, R.; Brem, S.; Brandeis, D.; Grünblatt, E.; Berger, G.; Walitza, S. ADHD: Current Concepts and Treatments in Children and Adolescents. Neuropediatrics 2020, 51, 315–335. [Google Scholar] [CrossRef] [PubMed]
- Hull, L.; Petrides, K.; Mandy, W. The Female Autism Phenotype and Camouflaging: A Narrative Review. Rev. J. Autism Dev. Disord. 2020, 7, 306–317. [Google Scholar] [CrossRef] [Green Version]
- Leitner, Y. The co-occurrence of autism and attention deficit hyperactivity disorder in children—What do we know? Front. Hum. Neurosci. 2014, 8, 268. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Qinqxuan, J.; Wei, W. A Control Architecture of Robot-Assisted Intervention for Children with Autism Spectrum Disorders. J. Robot. 2018, 1, 1–13. [Google Scholar] [CrossRef]
- Ferrari, E.; Robins, B.; Dautenhahn, K. Therapeutic and educational objectives in robot assisted play for children with autism. In Proceedings of the RO-MAN 2009—The 18th IEEE International Symposium on Robot and Human Interactive Communication, Toyama, Japan, 27 September–2 October 2009; pp. 108–114. [Google Scholar] [CrossRef] [Green Version]
- Boucenna, S.; Anzalone, S.; Tilmont, E.; Cohen, D.; Chetouani, M. Learning of social signatures through imitation game between a robot and a human partner. Auton. Mental Dev. IEEE Trans. 2014, 6, 213–225. [Google Scholar] [CrossRef]
- Scassellati, B. How social robots will help us to diagnose, treat, and understand autism. In Robotics Research; Springer: Berlin/Heidelberg, Germany, 2005; Volume 28, pp. 552–563. [Google Scholar] [CrossRef] [Green Version]
- Lord, C.; Luyster, R.; Gotham, K.; Guthrie, W. Autism Diagnostic Observation Schedule, 2nd ed.; Toddler Module; Western Psychological Services: Torrance, CA, USA, 2012. [Google Scholar]
- Gotham, K.; Pickles, A.; Lord, C. Standardizing ADOS scores for a measure of severity in autism spectrum disorders. J. Autism Dev. Disord. 2009, 39, 693–705. [Google Scholar] [CrossRef] [Green Version]
- Amirova, A.; Rakhymbayeva, N.; Yadollahi, E.; Sandygulova, A.; Johal, W. 10 Years of Human-NAO Interaction Research: A Scoping Review. Front. Robot. AI 2021, 8, 744526. [Google Scholar] [CrossRef]
- Sandygulova, A.; Zhexenova, Z.; Tleubayev, B.; Nurakhmetova, A.; Zhumabekova, D.; Assylgali, I.; Rzagaliyev, Y.; Zhakenova, A. Interaction design and methodology of robot-assisted therapy for children with severe ASD and ADHD. Paladyn J. Behav. Robot. 2019, 10, 330–345. [Google Scholar] [CrossRef]
- Rakhymbayeva, N.; Amirova, A.; Sandygulova, A. A Long-Term Engagement with a Social Robot for Autism Therapy. Front. Robot. AI 2021, 8, 180. [Google Scholar] [CrossRef]
- Amirova, A.; Rakhymbayeva, N.; Zhanatkyzy, A.; Telisheva, Z.; Sandygulova, A. Effects of Parental Involvement in Robot-Assisted Autism Therapy. J. Autism Dev. Disord. 2022, 1–18. [Google Scholar] [CrossRef]
- Rudovic, O.O.; Lee, J.; Mascarell-Maricic, L.; Schuller, B.W.; Picard, R.W. Measuring Engagement in Robot-Assisted Autism Therapy: A Cross-Cultural Study. Front. Robot. AI 2017, 4, 36. [Google Scholar] [CrossRef] [Green Version]
- Pop, C.A.; Pintea, S.; Vanderborght, B.; David, D.O. Enhancing play skills, engagement and social skills in a play task in ASD children by using robot-based interventions. A pilot study. Interact. Stud. 2014, 15, 292–320. [Google Scholar] [CrossRef]
- Stanton, C.M.; Kahn, P.H.; Severson, R.L.; Ruckert, J.H.; Gill, B.T. Robotic animals might aid in the social development of children with autism. In Proceedings of the 2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI), Amsterdam, The Netherlands, 12–15 March 2008; pp. 271–278. [Google Scholar] [CrossRef] [Green Version]
- Admoni, H.; Bank, C.; Tan, J.; Toneva, M.; Scassellati, B. Robot gaze does not reflexively cue human attention. In Proceedings of the Annual Meeting of the Cognitive Science Society, Boston, MA, USA, 20–23 July 2011; Volume 33. [Google Scholar]
- Ellenbroek, B.A.; Cools, A.R. Stereotyped Behaviour; Elsevier: Amsterdam, The Netherlands, 1993; pp. 519–538. [Google Scholar]
- Almirall, D.; DiStefano, C.; Chang, Y.C.; Shire, S.Y.; Kaiser, A.P.; Lu, X.; Nahum-Shani, I.; Landa, R.J.; Mathy, P.; Kasari, C. Longitudinal Effects of Adaptive Interventions With a Speech-Generating Device in Minimally Verbal Children With ASD. J. Clin. Child Adolesc. Psychol. 2016, 45, 442–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shih, W.; Patterson, S.Y.; Kasari, C. Developing an Adaptive Treatment Strategy for Peer-Related Social Skills for Children With Autism Spectrum Disorders. J. Clin. Child Adolesc. Psychol. 2016, 45, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Van den Berk-Smeekens, I.; van Dongen-Boomsma, M.; de Korte, M.W.P.; den Boer, J.C.; Oosterling, I.; Peters-Scheffer, N.C.; Buitelaar, J.K.; Barakova, E.I.; Lourens, T.; Staal, W.G.; et al. Adherence and acceptability of a robot-assisted Pivotal Response Treatment protocol for children with autism spectrum disorder. Sci. Rep. 2020, 10, 8110. [Google Scholar] [CrossRef]
- Conrad, C.; Rimestad, M.L.; Rohde, J.; Petersen, B.; Korfitsen, C.; Tarp, S.; Cantio, C.; Lauritsen, M.; Händel, M. Parent-Mediated Interventions for Children and Adolescents with Autism Spectrum Disorders: A Systematic Review and Meta-Analysis. Front. Psychiatry 2021, 12, 3604. [Google Scholar] [CrossRef]
ID | Age | ADOS-2 | ASD Form | ADHD | Verbal | N |
---|---|---|---|---|---|---|
C1 | 5 | 8 | LFA | - | - | 6 |
C2 | 5 | 5 | HFA | - | - | 6 |
C3 | 8 | 8 | LFA | - | - | 6 |
C4 | 4 | 3 | HFA | - | ✔ | 5 |
C5 | 5 | 4 | HFA | - | ✔ | 5 |
C6 | 6 | 6 | LFA | ✔ | ✔ | 5 |
C7 | 7 | 7 | LFA | - | - | 4 |
C8 | 4 | 5 | HFA | - | - | 2 |
C9 | 6 | 4 | HFA | - | - | 2 |
C10 | 4 | 3 | HFA | - | 2 | |
C11 | 8 | 9 | LFA | - | ✔ | 2 |
C12 | 5 | 6 | LFA | - | - | 10 |
C13 | 10 | 9 | LFA | ✔ | ✔ | 9 |
C14 | 7 | 9 | LFA | ✔ | - | 9 |
C15 | 5 | 8 | LFA | ✔ | - | 8 |
C16 | 5 | 8 | LFA | ✔ | - | 8 |
C17 | 5 | 6 | LFA | ✔ | - | 8 |
C18 | 5 | 7 | LFA | ✔ | - | 8 |
C19 | 10 | 9 | LFA | - | ✔ | 7 |
C20 | 6 | 8 | LFA | - | - | 7 |
C21 | 12 | 9 | LFA | - | - | 6 |
C22 | 8 | 8 | LFA | - | ✔ | 5 |
C23 | 9 | 8 | LFA | ✔ | ✔ | 6 |
C24 | 3 | 6 | LFA | ✔ | - | 5 |
C25 | 5 | 6 | LFA | ✔ | - | 4 |
C26 | 3 | 5 | HFA | ✔ | - | 3 |
C27 | 5 | 6 | LFA | ✔ | - | 7 |
C28 | 3 | 7 | LFA | - | - | 6 |
C29 | 4 | 5 | HFA | - | ✔ | 7 |
C30 | 5 | 7 | LFA | - | - | 5 |
C31 | 3 | 5 | HFA | - | - | 4 |
C32 | 4 | 5 | HFA | - | - | 4 |
C33 | 7 | 7 | LFA | - | ✔ | 6 |
C34 | 3 | 6 | LFA | - | - | 2 |
Measures | Descriptions | Types | Range | From |
---|---|---|---|---|
Aggression Time | Actions: pushing, biting, hitting, pulling fingers | Duration in % | [0–100] | [50,51] |
Affection Time | Actions: kissing, hugging, tender touching, scratching, petting. etc. | Duration in % | [0–100] | [51] |
Chest Button | Chest button being pressed in a session | Frequency | [0-N] | - |
Curiosity Time | Actions: opening, rotating, touching body parts | Duration in % | [0–100] | [49,51] |
Valence | Mean of valence scores in a session | Likert Scale | [1–5] | [11,49] |
Engagement | Mean of engagement scores per session | Likert Scale | [1–5] | [11,50] |
Engagement Time | A child being engaged in a session during one session | Duration in % | [0–100] | [11,49] |
Eye-Gaze Time | A child’s looking at the robot | Duration in % | [0–100] | [50,52] |
Smiling Time | A child’s smiling | Duration in % | [0–100] | [49,50] |
Stereotyped Behaviors [53] | Actions: hand flapping, hands biting, body rocking, toe walking, spinning objects, echolalia, etc. | Duration in % | [0–100] | [50,51] |
Words | Number of spoken words in a session | Frequency | [0–N] | [51] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Telisheva, Z.; Amirova, A.; Rakhymbayeva, N.; Zhanatkyzy, A.; Sandygulova, A. The Quantitative Case-by-Case Analyses of the Socio-Emotional Outcomes of Children with ASD in Robot-Assisted Autism Therapy. Multimodal Technol. Interact. 2022, 6, 46. https://doi.org/10.3390/mti6060046
Telisheva Z, Amirova A, Rakhymbayeva N, Zhanatkyzy A, Sandygulova A. The Quantitative Case-by-Case Analyses of the Socio-Emotional Outcomes of Children with ASD in Robot-Assisted Autism Therapy. Multimodal Technologies and Interaction. 2022; 6(6):46. https://doi.org/10.3390/mti6060046
Chicago/Turabian StyleTelisheva, Zhansaule, Aida Amirova, Nazerke Rakhymbayeva, Aida Zhanatkyzy, and Anara Sandygulova. 2022. "The Quantitative Case-by-Case Analyses of the Socio-Emotional Outcomes of Children with ASD in Robot-Assisted Autism Therapy" Multimodal Technologies and Interaction 6, no. 6: 46. https://doi.org/10.3390/mti6060046
APA StyleTelisheva, Z., Amirova, A., Rakhymbayeva, N., Zhanatkyzy, A., & Sandygulova, A. (2022). The Quantitative Case-by-Case Analyses of the Socio-Emotional Outcomes of Children with ASD in Robot-Assisted Autism Therapy. Multimodal Technologies and Interaction, 6(6), 46. https://doi.org/10.3390/mti6060046