An Exploratory Study on the Impact of Collective Immersion on Learning and Learning Experience
Abstract
:1. Introduction
2. Literature Review and Hypothesis Development
3. Materials and Methods
3.1. Experimental Design
3.2. Experimental Setup
3.3. Experimental Stimulus
3.4. Sample
- Three groups of 12 participants were assigned to Condition 1 (Coll_Exp). Out of these 36 participants, one abandoned the study halfway. In each group, 3 participants were randomly picked to be measured with physiological equipment. After each experiment, one extra participant was randomly selected to join the other three measured participants and partake in semi-guided interviews. A total of 12 participants were interviewed.
- In Condition 2 (Coll_Cont), two groups of 12 participants took part in the experiment. Three participants per group were also randomly picked to be measured with physiological equipment, leading to a total of 6 participants measured with physiological equipment. Also, 1 extra participant was randomly selected to join the three measured participants in a semi-guided interview.
- Condition 3 (Ind_Exp) tested individual use of highly immersive technology. Eighteen participants were measured and interviewed. Out of all these participants, we experienced 2 equipment malfunctions, resulting in a total of 16 participants.
- Condition 4 (Ind_Cont) tested the individual use of a low immersion setting. Sixteen participants were measured physiologically and interviewed, however two experienced equipment malfunctions, leading to fourteen participants.
3.5. Procedure
3.6. Measures
- 5 questions referring to the visual dimension of the projection
- 11 questions referring to the narrative content
- 14 questions on the acoustic stimuli in the simulation
3.7. Data Preparation and Analysis
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuen, S.C.-Y.; Yaoyuneyong, G.; Johnson, E. Augmented Reality: An overview and five directions for ar in education. J. Educ. Technol. Dev. Exch. 2011, 4, 11. [Google Scholar] [CrossRef]
- Freina, L.; Ott, M. In a literature review on immersive virtual reality in education: State of the art and perspectives. In Proceedings of the International Scientific Conference E-Learning and Soft-Ware for Education, Bucharest, Romania, 30 April–1 May 2015; pp. 10–1007. [Google Scholar]
- Merchant, Z.; Goetz, E.T.; Cifuentes, L.; Keeney-Kennicutt, W.; Davis, T.J. Effectiveness of virtual reality-based instruction on students’ learning outcomes in K-12 and higher education: A meta-analysis. Comput. Educ. 2014, 70, 29–40. [Google Scholar] [CrossRef]
- Georgiou, Y.; Ioannou, A.; Ioannou, M. Investigating immersion and learning in a low-embodied versus high-embodied digital educational game: Lessons Learned from an implementation in an authentic school Classroom. Multimodal Technol. Interact. 2019, 3, 68. [Google Scholar] [CrossRef] [Green Version]
- Abuhammad, A.; Falah, J.; Alfalah, S.; Abu-Tarboush, M.; Tarawneh, R.; Drikakis, D.; Charissis, V. “MedChemVR”: A virtual reality game to enhance medicinal chemistry education. Multimodal Technol. Interact. 2021, 5, 10. [Google Scholar] [CrossRef]
- Wu, B.; Yu, X.; Gu, X. Effectiveness of immersive virtual reality using head-mounted displays on learning performance: A meta-analysis. Br. J. Educ. Technol. 2020, 51, 1991–2005. [Google Scholar] [CrossRef]
- Lantz, E. A survey of large-scale immersive displays. In Proceedings of the 2007 Workshop on Networked Systems for Developing regions NSDR ’07, Kyoto, Japan, 27 August 2007; ACM: New York, NY, USA, 2007; p. 1. [Google Scholar]
- Bandura, A.; McClelland, D.C. Social Learning Theory; Englewood cliffs Prentice Hall: Upper Saddle River, NJ, USA, 1977; Volume 1. [Google Scholar]
- Milgram, P.; Takemura, H.; Utsumi, A.; Kishino, F. Augmented reality: A class of displays on the reality-virtuality continuum. In Proceedings of the Telemanipulator and Telepresence Technologies, Boston, MA, USA, 21 December 1995; Witmer & Singer: Orlando, FL, USA, 1994; Volume 2351, pp. 282–292. [Google Scholar]
- Brown, E.; Cairns, P. A grounded investigation of game immersion. In Proceedings of the CHI’04 Extended Abstracts of the Conference on Human Factors in Computing Systems, Vienna, Austria, 24–29 April 2004; pp. 1297–1300. [Google Scholar]
- Suh, A.; Prophet, J. The state of immersive technology research: A literature analysis. Comput. Hum. Behav. 2018, 86, 77–90. [Google Scholar] [CrossRef]
- Slater, M.; Wilbur, S. A framework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual environments. Presence 1997, 6, 603. [Google Scholar] [CrossRef]
- Ke, F.; Lee, S.; Xu, X. Teaching training in a mixed-reality integrated learning environment. Comput. Hum. Behav. 2016, 62, 212–220. [Google Scholar] [CrossRef]
- Webster, R. Declarative knowledge acquisition in immersive virtual learning environments. Interact. Learn. Environ. 2016, 24, 1319–1333. [Google Scholar] [CrossRef]
- Alhalabi, W. Virtual reality systems enhance students’ achievements in engineering education. Behav. Inf. Technol. 2016, 35, 919–925. [Google Scholar] [CrossRef]
- Bindman, S.W.; Castaneda, L.M.; Scanlon, M.; Cechony, A. In Am I a bunny? The impact of high and low immersion platforms and viewers’ perceptions of role on presence, narrative engagement, and empathy during an animated 360 video. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; pp. 1–11. [Google Scholar]
- Parong, J.; Mayer, R.E. Learning science in immersive virtual reality. J. Educ. Psychol. 2018, 110, 785–797. [Google Scholar] [CrossRef]
- Moreno, R.; Mayer, R.E. Learning science in virtual reality multimedia environments: Role of methods and media. J. Educ. Psychol. 2002, 94, 598. [Google Scholar] [CrossRef]
- Makransky, G.; Terkildsen, T.S.; Mayer, R.E. Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learn. Instr. 2019, 60, 225–236. [Google Scholar] [CrossRef]
- Richards, D.; Taylor, M. A Comparison of learning gains when using a 2D simulation tool versus a 3D virtual world: An experiment to find the right representation involving the Marginal Value Theorem. Comput. Educ. 2015, 86, 157–171. [Google Scholar] [CrossRef]
- Schrader, C.; Bastiaens, T.J. The influence of virtual presence: Effects on experienced cognitive load and learning outcomes in educational computer games. Comput. Hum. Behav. 2012, 28, 648–658. [Google Scholar] [CrossRef]
- Fredricks, J.A.; Blumenfeld, P.C.; Paris, A.H. School engagement: Potential of the concept, state of the evidence. Rev. Educ. Res. 2004, 74, 59–109. [Google Scholar] [CrossRef] [Green Version]
- Lackmann, S.; Léger, P.-M.; Charland, P.; Aubé, C.; Talbot, J. The influence of video format on engagement and performance in online learning. Brain Sci. 2021, 11, 128. [Google Scholar] [CrossRef]
- Negoita, B.; Lapointe, L.; Rivard, S. Collective information systems use: A typological theory. MIS Q. 2018, 42, 1281–1301. [Google Scholar]
- Puget, J.; Pardoen, M.; Bouillot, N.; Durand, E.; Seta, M.; Bastien, P. Rapid prototyping of immersive video for popularization of historical knowledge. In Proceedings of the Thirteenth International Conference on Tangible, Embedded, and Embodied Interaction, Tempe, AZ, USA, 17–20 March 2019; pp. 197–203. [Google Scholar]
- Pardoen, M. Projet Bretez: Une Pincée de Son Dans l’Histoire. Digit. Stud. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Linder, J.; Bolchini, D. DEEP: Design-Oriented Evaluation of Perceived Usability. Int. J. Hum. Comput. Interact. 2012, 28, 308–346. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Brooke, J. System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information; Digital Equipment Co Ltd.: Reading, UK, 1986; pp. 1–7. [Google Scholar]
- Charland, P.; Léger, P.-M.; Sénécal, S.; Courtemanche, F.; Mercier, J.; Skelling, Y.; Labonté-LeMoyne, E. Assessing the multiple dimensions of engagement to characterize learning: A neurophysiological perspective. J. Vis. Exp. 2015, 101. [Google Scholar] [CrossRef] [Green Version]
- Riva, G.; Davide, F.; IJsselsteijn, W. 7 Measuring Presence: Subjective, Behavioral and Physiological Methods; Ios Press: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Tsianos, N.; Germanakos, P.; Lekkas, Z.; Saliarou, A.; Mourlas, C.; Samaras, G. A preliminary study on learners physiological measurements in educational hypermedia. In Proceedings of the 2010 10th IEEE International Conference on Advanced Learning Technologies, Sousse, Tunisia, 5–7 July 2010; pp. 61–63. [Google Scholar]
- Peacock, E.J.; Wong, P.T. The stress appraisal measure (SAM): A multidimensional approach to cognitive appraisal. Stress Med. 1990, 6, 227–236. [Google Scholar] [CrossRef]
- Bradley, M.M.; Lang, P.J. Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 1994, 25, 49–59. [Google Scholar] [CrossRef]
- Riedl, R.; Léger, P.-M. Fundamentals of NeuroIS. Studies in Neuroscience, Psychology and Behavioral Economics; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Courtemanche, F.; Labonteé-LeMoyne, E.; Brieugne, D.; Rucco, E.; Sénécal, S.; Fredette, M.; Léger, P.-M. Ambient facial emotion recognition: A pilot study. In Lecture Notes in Information Systems and Organisation; Spagnoletti, P., De Marco, M., Pouloudi, N., Te’eni, D., vom Brocke, J., Winter, R., Baskerville, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 284–290. [Google Scholar]
- Brissette-Gendron, R.; Léger, P.-M.; Courtemanche, F.; Chen, S.L.; Ou-hnana, M.; Sénécal, S. The Response to Impactful Interactivity on Spectators’ Engagement in a Digital Game. Multimodal Technol. Interact. 2020, 4, 89. [Google Scholar] [CrossRef]
- Batista, D.; Da Silva, H.P.; Fred, A.; Moreira, C.; Reis, M.; Ferreira, H.A. Benchmarking of the BITalino biomedical toolkit against an established gold standard. Health Technol. Lett. 2019, 6, 32–36. [Google Scholar] [CrossRef]
- Vasseur, A.; Léger, P.M.; Courtemanche, F.; Labonte-Lemoyne, E.; Georges, V.; Valiquette, A.; Brieugne, D.; Rucco, E.; Coursaris, C.; Fredette, M.; et al. Distributed Remote Psychophysiological Data Collection for UX Evaluation: A Pilot Project. In Proceedings of the International Conference on Human-Computer Interaction, Washington, DC, USA, 24–29 July 2021. [Google Scholar]
- Giroux, F.; Léger, P.-M.; Brieugne, D.; Courtemanche, F.; Bouvier, F.; Chen, S.L.; Tazi, S.; Rucco, E.; Fredette, M.; Coursaris, C.K.; et al. Synchronizing automatic facial expression measurements with a dynamic stimulus in remote moderated user tests: Lessons learned and guidelines. In Proceedings of the International Conference on Human Computer Interaction, Vienna, Austria, 8–10 February 2021. [Google Scholar]
- Lang, P.J.; Greenwald, M.K.; Bradley, M.M.; Hamm, A.O. Looking at pictures: Affective, facial, visceral, and behavioral reactions. Psychophysiology 1993, 30, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Labonté-LeMoyne, E.; Courtemance, F.; Coursaris, C.; Hakim, A.; Sénécal, S.; Léger, P.-M. Development of a new dynamic personalised emotional baselining protocol for human-computer interaction. In Proceedings of the NeuroIS 2021, Vienna, Austria, 1–3 June 2021. [Google Scholar]
- Georges, V.; Courtemanche, F.; Fredette, M.; Doyon-Poulin, P. Emotional Maps for User Experience Research in the Wild. In Proceedings of the Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; pp. 1–8. [Google Scholar]
- Courtemanche, F.; Léger, P.-M.; Dufresne, A.; Fredette, M.; Labon-té-LeMoyne, É.; Sénécal, S. Physiological heatmaps: A tool for visualizing users’ emotional reactions. Multimed. Tools Appl. 2018, 77, 11547–11574. [Google Scholar] [CrossRef] [Green Version]
- Courtemanche, F.; Fredette, M.; Senecal, S.; Leger, P.-M.; Dufresne, A.; Georges, V.; Labonte-lemoyne, E. Method of and System for Processing Signals Sensed from a User. U.S. Patent 2016135661A1, 1 September 2016. [Google Scholar]
- Léger, P.-M.; Courtemanche, F.; Fredette, M.; Sénécal, S. A Cloud-based lab management and analytics software for triangulated human-centered research. In Lecture Notes in Information Systems and Organisation; Spagnoletti, P., De Marco, M., Pouloudi, N., Te’eni, D., vom Brocke, J., Winter, R., Baskerville, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 93–99. [Google Scholar]
- Georges, V.; Courtemanche, F.; Senecal, S.; Baccino, T.; Fredette, M.; Léger, P.-M. In UX heatmaps: Mapping user experience on visual interfaces. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 4850–4860. [Google Scholar]
- Charland, P.; Léger, P.-M.; Cronan, T.P.; Robert, J. Developing and assessing erp competencies: Basic and complex knowledge. J. Comput. Inf. Syst. 2015, 56, 31–39. [Google Scholar] [CrossRef]
- Falconer, C.J.; Slater, M.; Rovira, A.; King, J.A.; Gilbert, P.; Antley, A.; Brewin, C.R. Embodying compassion: A virtual reality paradigm for overcoming excessive self-criticism. PLoS ONE 2014, 9, e111933. [Google Scholar] [CrossRef] [Green Version]
- Braithwaite, J.J.; Watson, D.G.; Jones, R.; Rowe, M. A guide for analysing electrodermal activity (EDA) & skin conductance responses (SCRs) for psychological experiments. Psychophysiology 2013, 49, 1017–1034. [Google Scholar]
- Boeije, H. A purposeful approach to the constant comparative method in the analysis of qualitative Interviews. Qual. Quant. 2002, 36, 391–409. [Google Scholar] [CrossRef]
- Markowitz, D.M.; Laha, R.; Perone, B.P.; Pea, R.D.; Bailenson, J.N. Immersive virtual reality field trips facilitate learning about climate change. Front. Psychol. 2018, 9, 2364. [Google Scholar] [CrossRef] [PubMed]
- Visch, V.T.; Tan, E.S.; Molenaar, D. The emotional and cognitive effect of immersion in film viewing. Cogn. Emot. 2010, 24, 1439–1445. [Google Scholar] [CrossRef]
- Spoehr, K.T. Enhancing the Acquisition of Conceptual Structures Through Hypermedia; MIT Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Tost, L.P.; Economou, M. Worth a Thousand Words? The Usefulness of immersive virtual reality for learning in cultural heritage settings. Int. J. Arch. Comput. 2009, 7, 157–176. [Google Scholar] [CrossRef]
- Chang, K.-E.; Chang, C.-T.; Hou, H.-T.; Sung, Y.-T.; Chao, H.-L.; Lee, C.-M. Development and behavioral pattern analysis of a mobile guide system with aug-mented reality for painting appreciation instruction in an art museum. Comput. Educ. 2014, 71, 185–197. [Google Scholar] [CrossRef]
- Cronan, T.P.; Léger, P.-M.; Robert, J.; Babin, G.; Charland, P. Comparing objective measures and perceptions of cognitive learning in an ERP simulation game: A research note. Simul. Gaming 2012, 43, 461–480. [Google Scholar] [CrossRef]
- Caya, O.; Léger, P.-M.; Grebot, T.; Brunelle, E. Integrating, sharing, and sourcing knowledge in an ERP usage context. Knowl. Manag. Res. Pract. 2014, 12, 193–202. [Google Scholar] [CrossRef]
Independent Variables | Constructs | Tools | Source |
---|---|---|---|
Behavioural Engagement | Interest to renew the experience | Interview | |
Perceived usefulness | Likert scale (6 items) Interview | Adapted from Yang [27], Parong and Mayer [17] and Davis [28] | |
Attitude towards technology | Likert scale (3 items) | Adapted from Parong and Mayer [17], Brooke [29] | |
Emotional Engagement | Measured emotional engagement (measured through arousal) | Electrodermal activity (EDA) Electrocardiography (ECG) | Charland et al. [30], Riva [31] and Tsianos [32] |
Perceived emotional engagement (measured through valence and arousal) | SAM scale Interview | Peacok [33], Bradley and Lang [34] | |
Cognitive Engagement | Perceived cognitive engagement (measured through cognitive load) | Likert scale (6 items) Interview | Adapted from Yang [27], Brooke [29] and Parong and Mayer [17] |
Learning outcome | Measured Learning | Questionnaire (30 items) | |
Perceived learning | Likert scale (3 items) Interview | Adapted from Yang [27] and Parong and Mayer [17] |
Coll_Exp (1) vs. Coll_Cont (2) | Ind_Exp (3) vs. Ind_Cont (4) | Coll_Exp (1) vs. Ind_Exp (3) | Coll_Cont (2) vs. Ind_Cont (4) | |||||
---|---|---|---|---|---|---|---|---|
Estimate | p-Value | Estimate | p-Value | Estimate | p-Value | Estimate | p-Value | |
Perceived usefulness | 0.533 | 0.038 * | −0.314 | 0.345 | 0.225 | 0.410 | −0.669 | 0.034 * |
Attitude toward the technology | −1.648 | 0.003 * | −1.505 | 0.038 * | −0.335 | 0.531 | 0.044 | 0.941 |
Coll_Exp (1) vs. Coll_Cont (2) | Ind_Exp (3) vs. Ind_Cont (4) | Coll_Exp (1) vs. Ind_Exp (3) | Coll_Cont (2) vs. Ind_Cont (4) | ||||||
---|---|---|---|---|---|---|---|---|---|
Estimate | p-Value | Estimate | p-Value | Estimate | p-Value | Estimate | p-Value | ||
Perceived learning experience | Valence | −1.225 | 0.029 * | −1.582 | 0.046 1 | −0.358 | 0.526 | −0.113 | 0.858 |
Arousal | −1.543 | 0.007 * | −0.208 | 0.763 | −0.355 | 0.513 | 0.654 | 0.314 | |
Dominance | 0.195 | 0.714 | 0.804 | 0.284 | 0.161 | 0.771 | 0.43 | 0.534 | |
Objective learning experience | ECG (BPM) | 11.69 | 0.011 * | −1.240 | 0.733 | −1.065 | 0.773 | 11.87 | 0.007 * |
EDA (phasic) | 0.673 | 0.171 | −0.039 | 0.925 | −0.449 | 0.31 | 0.26 | 0.579 |
Coll_Exp (1) vs. Coll_Cont (2) | Ind_Exp (3) vs. Ind_Cont (4) | Coll_Exp (1) vs. Ind_Exp (3) | Coll_Cont (2) vs. Ind_Cont (4) | |||||
---|---|---|---|---|---|---|---|---|
Estimate | p-Value | Estimate | p-Value | Estimate | p-Value | Estimate | p-Value | |
Cognitive load (Likert 3 items) | −0.648 | 0.028 * | −0.071 | 0.86 | −0.680 | 0.048 * | 0.095 | 0.763 |
Coll_Exp (1) vs. Coll_Cont (2) | Ind_Exp (3) vs. Ind_Cont (4) | Coll_Exp (1) vs. Ind_Exp (3) | Coll_Cont (2) vs. Ind_Cont (4) | |||||
---|---|---|---|---|---|---|---|---|
Estimate | p-Value | Estimate | p-Value | Estimate | p-Value | Estimate | p-Value | |
Learning (Total test) | −0.015 | 0.662 | −0.03 | 0.359 | 0.015 | 0.591 | 0.012 | 0.721 |
Perceived learning (Likert 3 items) | 0.148 | 0.624 | 0.124 | 0.746 | 0.108 | 0.739 | 0.032 | 0.928 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du Vignaux, M.M.; Léger, P.-M.; Charland, P.; Salame, Y.; Durand, E.; Bouillot, N.; Pardoen, M.; Sénécal, S. An Exploratory Study on the Impact of Collective Immersion on Learning and Learning Experience. Multimodal Technol. Interact. 2021, 5, 17. https://doi.org/10.3390/mti5040017
Du Vignaux MM, Léger P-M, Charland P, Salame Y, Durand E, Bouillot N, Pardoen M, Sénécal S. An Exploratory Study on the Impact of Collective Immersion on Learning and Learning Experience. Multimodal Technologies and Interaction. 2021; 5(4):17. https://doi.org/10.3390/mti5040017
Chicago/Turabian StyleDu Vignaux, Maÿlis Merveilleux, Pierre-Majorique Léger, Patrick Charland, Youness Salame, Emmanuel Durand, Nicolas Bouillot, Mylène Pardoen, and Sylvain Sénécal. 2021. "An Exploratory Study on the Impact of Collective Immersion on Learning and Learning Experience" Multimodal Technologies and Interaction 5, no. 4: 17. https://doi.org/10.3390/mti5040017
APA StyleDu Vignaux, M. M., Léger, P.-M., Charland, P., Salame, Y., Durand, E., Bouillot, N., Pardoen, M., & Sénécal, S. (2021). An Exploratory Study on the Impact of Collective Immersion on Learning and Learning Experience. Multimodal Technologies and Interaction, 5(4), 17. https://doi.org/10.3390/mti5040017