Emotions in Robots: Embodied Interaction in Social and Non-Social Environments
1. Introduction
2. Purpose of the Special Issue
3. Paper Summary
Acknowledgments
Conflicts of Interest
References
- Lowe, R.; Philippe, P.; Montebelli, A.; Morse, A.; Ziemke, T. Affective modulation of embodied dynamics. In Proceedings of the Role of Emotion in Adaptive Behaviour and Cognitive Robotics, Electronic Proceedings of SAB Workshop, Osaka, Japan, 11–12 July 2008. [Google Scholar]
- Breazeal, C.; Takanishi, A.; Kobayashi, T. Social robots that interact with people. In Springer Handbook of Robotics; Springer: Berlin, Germany, 2008; pp. 1349–1369. [Google Scholar]
- Kühnlenz, K.; Sosnowski, S.; Buss, M. Impact of animal-like features on emotion expression of robot head eddie. Adv. Robot. 2010, 24, 1239–1255. [Google Scholar] [CrossRef]
- Avila-Garcia, O.; Cañamero, L. Using hormonal feedback to modulate action selection in a competitive scenario. Anim. Animat. 2004, 8, 243–252. [Google Scholar]
- Vargas, P.A.; Moioli, R.C.; Von Zuben, F.J.; Husbands, P. Homeostasis and evolution together dealing with novelties and managing disruptions. Int. J. Intell. Comput. Cybern. 2009, 3, 435–454. [Google Scholar] [CrossRef]
- Lowe, R.; Montebelli, A.; Ieropoulos, I.; Greenman, J.; Melhuish, C.; Ziemke, T. Grounding Motivation in Energy Autonomy—A Study of Artificial Metabolism Constrained Robot Dynamics. In Proceedings of the ALIFE XII Conference, Odense, Denmark, 19–23 August 2010; pp. 725–732. [Google Scholar]
- Montebelli, A.; Lowe, R.; Ieropoulos, I.; Melhuish, C.; Greenman, J.; Ziemke, T. Microbial Fuel Cell Driven Behavioral Dynamics in Robot Simulations. In Proceedings of the ALIFE XII Conference, Odense, Denmark, 19–23 August 2010; pp. 749–756. [Google Scholar]
- Montebelli, A.; Lowe, R.; Ziemke, T. The cognitive body: From dynamic modulation to anticipation. In Workshop on Anticipatory Behavior in Adaptive Learning Systems; Springer: Berlin/Heidelberg, Germany, 2008; pp. 132–151. [Google Scholar]
- Kiryazov, K.; Lowe, R.; Becker-Asano, C.; Randazzo, M. The role of arousal in two-resource problem tasks for humanoid service robots. In Proceedings of the 2013 IEEE RO-MAN, Gyeongju, South Korea, 26–29 August 2013; pp. 62–69. [Google Scholar]
- Montebelli, A.; Lowe, R.; Ziemke, T. Toward Metabolic Robotics: Insights from Modeling Embodied Cognition in a Biomechatronic Symbiont. Artif. Life 2013, 19, 299–315. [Google Scholar] [CrossRef] [PubMed]
- Sterling, P. Principles of allostasis: Optimal design, predictive regulation, pathophysiology, and rational. In Allostasis, Homeostasis, and the Costs of Physiological Adaptation; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Schulkin, J. Social allostasis: Anticipatory regulation of the internal milieu. Front. Evol. Neurosci. 2011, 2, 111. [Google Scholar] [CrossRef] [PubMed]
- Vernon, D.; Lowe, R.; Thill, S.; Ziemke, T. Embodied cognition and circular causality: On the role of constitutive autonomy in the reciprocal coupling of perception and action. Front. Psychol. 2015, 6, 1660. [Google Scholar] [CrossRef] [PubMed]
- Lowe, R.; Dodig-Crnkovic, G.; Almer, A. Predictive regulation in affective and adaptive behaviour: An allostatic-cybernetics perspective. In Advanced Research on Biologically Inspired Cognitive Architectures; IGI Global: Hershey, PA, USA, 2017; pp. 149–176. [Google Scholar]
- Cooney, M.; Nishio, S.; Ishiguro, H. Affectionate Interaction with a Small Humanoid Robot Capable of Recognizing Social Touch Behavior. ACM Trans. Interact. Intell. Syst. 2014, 4, 1–32. [Google Scholar] [CrossRef]
- Lowe, R.; Andreasson, R.; Alenljung, B.; Lund, A.; Billing, E. Designing for a wearable affective interface for the NAO Robot: A study of emotion conveyance by touch. Multimodal Technol. Interact. 2018, 2, 2. [Google Scholar] [CrossRef]
- Andreasson, R.; Alenljung, B.; Billing, E.; Lowe, R. Affective touch in human–robot interaction: Conveying emotion to the nao robot. Int. J. Soc. Robot. 2018, 10, 473–491. [Google Scholar] [CrossRef]
- Dautenhahn, K.; Werry, I. Towards interactive robots in autism therapy: Background, motivation and challenges. Pragmat. Cogn. 2004, 12, 1–35. [Google Scholar] [CrossRef]
- Gershgorn, D. Can We Make a Computer Make Art? In Popular Science Special Edition: The New Artificial Intelligence; Time Inc. Books: New York, NY, USA, 2016; pp. 64–67. [Google Scholar]
- Bechara, A. The role of emotion in decision-making: Evidence from neurological patients with orbitofrontal damage. Brain Cogn. 2004, 55, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Barrett, L.F. Variety is the spice of life: A psychological construction approach to understanding variability in emotion. Cogn. Emot. 2009, 23, 1284–1306. [Google Scholar] [CrossRef] [PubMed]
- Ekman, P.E.; Davidson, R.J. The Nature of Emotion: Fundamental Questions; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Vallverdú, J.; Trovato, G.; Jamone, L. Allocentric Emotional Affordances in HRI: The Multimodal Binding. Multimodal Technol. Interact. 2018, 2, 78. [Google Scholar] [CrossRef]
- Cooney, M.D.; Menezes, M.L.R. Design for an Art Therapy Robot: An Explorative Review of the Theoretical Foundations for Engaging in Emotional and Creative Painting with a Robot. Multimodal Technol. Interact. 2018, 2, 52. [Google Scholar] [CrossRef]
- Moon, J. Reviews of the Social Embodiment for Design of Non-Player Characters in Virtual Reality-Based Social Skill Training for Autistic Children. Multimodal Technol. Interact. 2018, 2, 53. [Google Scholar] [CrossRef]
- Khan, I.; Cañamero, L. Modelling Adaptation through Social Allostasis: Modulating the Effects of Social Touch with Oxytocin in Embodied Agents. Multimodal Technol. Interact. 2018, 2, 67. [Google Scholar] [CrossRef]
- Ashby, W. R. Design for a Brain; Chapman and Hall: London, UK, 1952. [Google Scholar]
- Plutchik, R. Psychoevolutionary Theory of Basic Emotions. Am. Sci. 1980. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lowe, R. Emotions in Robots: Embodied Interaction in Social and Non-Social Environments. Multimodal Technol. Interact. 2019, 3, 53. https://doi.org/10.3390/mti3030053
Lowe R. Emotions in Robots: Embodied Interaction in Social and Non-Social Environments. Multimodal Technologies and Interaction. 2019; 3(3):53. https://doi.org/10.3390/mti3030053
Chicago/Turabian StyleLowe, Robert. 2019. "Emotions in Robots: Embodied Interaction in Social and Non-Social Environments" Multimodal Technologies and Interaction 3, no. 3: 53. https://doi.org/10.3390/mti3030053
APA StyleLowe, R. (2019). Emotions in Robots: Embodied Interaction in Social and Non-Social Environments. Multimodal Technologies and Interaction, 3(3), 53. https://doi.org/10.3390/mti3030053