The New Era of Virtual Reality Locomotion: A Systematic Literature Review of Techniques and a Proposed Typology
Abstract
:1. Introduction
2. Method
- identify the need for a systematic literature review,
- formulate the research questions of the review,
- carry out a comprehensive, exhaustive search for primary studies,
- assess and record the quality of included studies,
- classify the data needed to answer the research questions,
- extract data from each included study,
- summarize and synthesize the study results (meta-analysis),
- interpret the results to determine their applicability,
- write-up the study as a report.
2.1. Research Questions
- RQ1: Which VR locomotion techniques have been studied?
- RQ2: Which are the interaction-related characteristics of the studied VR locomotion techniques?
- RQ3: Which VR locomotion-related research topics are being addressed in the reviewed studies?
2.2. Search Strategy
ABS ((“locomotion” OR “navigation technique”) AND (“empirical” OR “studied” OR “study” OR “evaluation” OR “evaluate” OR “examination” OR “examine”) AND (“virtual reality” OR “virtual environment” OR “virtual world”)) AND (LIMIT-TO (PUBYEAR,2017) OR LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR, 2015) OR LIMIT-TO (PUBYEAR, 2014)).
2.3. Inclusion and Exclusion Criteria
- written in English,
- including at least one VR locomotion technique,
- including a user study that examines direct or indirect aspects of the VR locomotion technique(s),
- having a fully-immersive VR setup, utilizing HMDs.
- utilizing exclusively projection-based, desktop-based or tablet-based virtual environments,
- addressing solely conceptual matters of VR locomotion (theoretical models, frameworks, literature reviews, etc.),
- not including an empirical, user study,
- utilizing VR locomotion techniques as a technological/research tool for studying a different, unrelated topic.
2.4. Screening Process and Results
2.5. Data Collection
- the source and full reference,
- the description and title of the VR locomotion technique(s),
- the interaction aspects of the VR locomotion technique(s) (e.g., interaction type, movement type, VR interaction space, devices, etc.),
- the research topic of the empirical study.
2.6. Data Analysis
- the VR locomotion techniques (addressing RQ1),
- the interaction aspects of the techniques (addressing RQ2),
- the research topics of the empirical studies (addressing RQ3).
3. Results
3.1. VR Locomotion Techniques
- Walking-in-place: The user performs virtual locomotion by walking in place, i.e., using step-like movements while remaining stationary. The user’s limb movements can be tracked, or stepping and treadmill-like input devices, such as the Stepper Machine [54] and VirtuSphere [34], can be used to register the step-like movements and translate them into VR motion [48,52].
- Teleportation: The user points to where he/she wants to be in the virtual world, and the virtual viewpoint is instantaneously teleported to that position. The visual “jumps” of teleportation result in virtual motion being non-continuous [54]. The pointing can take place by using a controller [60] or making a pointing gesture [12,54].
- Redirected walking: The user walks freely inside a limited physical space, while being able to explore unlimited virtual environments by employing so-called redirection techniques. These techniques try to introduce an unnoticeable mismatch between the user’s real and virtual movements to compress the larger virtual environment into a limited tracking space [40,47].
- Reorientation: The user walks freely inside a limited physical space, while being able to explore unlimited virtual environments by employing so-called reorientation. The reorientation is achieved by modifying the rotational gain of the users, so they physically turn around when they meet the boundaries of the physical space, thus allowing for continued travel in both worlds [59].
3.2. Interaction Aspects
3.3. Research Topics
4. Discussion
4.1. VR Locomotion Techniques and Interaction Aspects
4.2. Research Topics
4.3. VR Locomotion Typology
- Motion-based: The VR locomotion techniques under this type utilize some kind of physical movement to enable interaction, while supporting continuous motion in open VR spaces. This VR locomotion type includes such techniques as walking-in-place, redirected walking, arm swinging, gesture-based locomotion and reorientation.
- Room scale-based: This VR locomotion type utilizes physical movement to enable interaction, and it supports continuous motion (as with the motion-based type); however, the interaction takes place in VR environments whose size is limited by the real environment’s size. The nomenclature for this locomotion type comes from the room-scale VR technology, which presents these interaction features [67]. The real-walking locomotion technique falls under this type.
- Controller-based: For this VR locomotion type, controllers are utilized to move the user artificially in the VR environment. The VR interaction space is open, and the motion is continuous. This type includes such techniques as joystick-based, human joystick, chair-based and head-directed locomotion.
- Teleportation-based: The VR locomotion techniques under this type utilize artificial interactions in open VR spaces with non-continuous movement, as the user’s virtual viewpoint is instantaneously teleported to a predefined position by utilizing visual “jumps”. Point and teleport is a VR locomotion technique that falls under this type.
4.4. Study Limitations
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Olszewski, K.; Lim, J.J.; Saito, S.; Li, H. High-fidelity facial and speech animation for VR HMDs. ACM Trans. Graph. 2016, 35, 221. [Google Scholar] [CrossRef]
- Sun, H.M.; Li, S.P.; Zhu, Y.Q.; Hsiao, B. The effect of user’s perceived presence and promotion focus on usability for interacting in virtual environments. Appl. Ergon. 2015, 50, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Boletsis, C.; Cedergren, J.E.; Kongsvik, S. HCI research in Virtual Reality: A discussion of problem-solving. In Proceedings of the 11th International Conference on Interfaces and Human Computer Interaction, Lisbon, Portugal, 21–23 July 2017; pp. 263–267. [Google Scholar]
- Hilfert, T.; König, M. Low-cost virtual reality environment for engineering and construction. Vis. Eng. 2016, 4, 2. [Google Scholar] [CrossRef]
- Giuseppe, R.; Wiederhold, B.K. The new dawn of virtual reality in health care: Medical simulation and experiential interface. Stud. Health Technol. Inform. 2015, 219, 3–6. [Google Scholar]
- Kim, A.; Darakjian, N.; Finley, J.M. Walking in fully immersive virtual environments: An evaluation of potential adverse effects in older adults and individuals with Parkinson’s disease. J. Neuroeng. Rehabilit. 2017, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Moreira, P.; de Oliveira, E.C.; Tori, R. Impact of Immersive Technology Applied in Computer Graphics Learning. In Proceedings of the Brazilian Symposium on Computers in Education, Uberlandia, MG, Brazil, 24–27 October 2016; pp. 410–419. [Google Scholar]
- Reinert, B.; Kopf, J.; Ritschel, T.; Cuervo, E.; Chu, D.; Seidel, H.P. Proxy-guided Image-based Rendering for Mobile Devices. Comput. Graph. Forum 2016, 35, 353–362. [Google Scholar] [CrossRef]
- Wang, H.; Mahmud, M.S.; Fang, H.; Wang, C. Wireless Health; Springer: Berlin, Germany, 2016. [Google Scholar]
- Smith, P.A. Using Commercial Virtual Reality Games to Prototype Serious Games and Applications. In Proceedings of the 9th International Conference on Virtual, Augmented and Mixed Reality, Vancouver, BC, Canada, 9–14 July 2017; Springer: Berlin, Germany, 2017; pp. 359–368. [Google Scholar]
- Zhang, X.; Gračanin, D.; Matković, K. Using Linked Data for Interactive 3D Web Content Integration. In Proceedings of the 19th International ACM Conference on 3D Web Technologies, Vancouver, BC, Canada, 8–10 August 2014; ACM: New York, NY, USA, 2014; p. 147. [Google Scholar]
- Bozgeyikli, E.; Raij, A.; Katkoori, S.; Dubey, R. Point & teleport locomotion technique for virtual reality. In Proceedings of the Annual Symposium on Computer-Human Interaction in Play, Austin, TX, USA, 16–19 October 2016; ACM: New York, NY, USA, 2016; pp. 205–216. [Google Scholar]
- Hale, K.S.; Stanney, K.M. Handbook of Virtual Environments: Design, Implementation, and Applications; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Bowman, D.; Kruijff, E.; LaViola, J.J., Jr.; Poupyrev, I.P. 3D User Interfaces: Theory and Practice, CourseSmart eTextbook; Addison-Wesley: Boston, MA, USA, 2004. [Google Scholar]
- Bowman, D.A.; Koller, D.; Hodges, L.F. Travel in immersive virtual environments: An evaluation of viewpoint motion control techniques. In Proceedings of the IEEE Virtual Reality Annual International Symposium, Albuquerque, NM, USA, 1–5 March 1997; IEEE: Piscataway, NJ, USA, 1997; pp. 45–52. [Google Scholar]
- Bowman, D.A.; Koller, D.; Hodges, L.F. A methodology for the evaluation of travel techniques for immersive virtual environments. Virtual Real. 1998, 3, 120–131. [Google Scholar] [CrossRef]
- Arns, L.L. A New Taxonomy for Locomotion in Virtual Environments; Iowa State University: Ames, IA, USA, 2002. [Google Scholar]
- Ferracani, A.; Pezzatini, D.; Bianchini, J.; Biscini, G.; Del Bimbo, A. Locomotion by Natural Gestures for Immersive Virtual Environments. In Proceedings of the 1st International Workshop on Multimedia Alternate Realities, Amsterdam, The Netherlands, 16 October 2016; ACM: New York, NY, USA, 2016; pp. 21–24. [Google Scholar]
- Wilson, P.T.; Kalescky, W.; MacLaughlin, A.; Williams, B. VR locomotion: Walking > walking in place > arm swinging. In Proceedings of the ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry—Volume 1, Zhuhai, China, 3–4 December 2016; ACM: New York, NY, USA, 2016; pp. 243–249. [Google Scholar]
- Fernandes, A.S.; Feiner, S.K. Combating VR sickness through subtle dynamic field-of-view modification. In Proceedings of the IEEE Symposium on 3D User Interfaces, Greenville, SC, USA, 19–20 March 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 201–210. [Google Scholar]
- Ward, M.; Azuma, R.; Bennett, R.; Gottschalk, S.; Fuchs, H. A demonstrated optical tracker with scalable work area for head-mounted display systems. In Proceedings of the 1992 Symposium on Interactive 3D Graphics, San Diego, CA, USA, 10–11 December 1990; ACM: New York, NY, USA, 1990; pp. 43–52. [Google Scholar]
- Bruder, G.; Steinicke, F. Threefolded Motion Perception During Immersive Walkthroughs. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology, Edinburgh, UK, 11–13 November 2014; ACM: New York, NY, USA, 2014; pp. 177–185. [Google Scholar]
- Bozgeyikli, E.; Bozgeyikli, L.; Raij, A.; Katkoori, S.; Alqasemi, R.; Dubey, R. Virtual Reality Interaction Techniques for Individuals with Autism Spectrum Disorder: Design Considerations and Preliminary Results. In Proceedings of the International Conference on Human-Computer Interaction, Toronto, ON, Canada, 17–22 July 2016; Springer: Berlin, Germany, 2016; pp. 127–137. [Google Scholar]
- Reddit—List of VR Locomotion Methods. Available online: https://www.reddit.com/r/Vive/wiki/locomotion_methods (accessed on 29 July 2017).
- Reddit—What is Your Favourite Form of Locomotion in VR? Available online: https://www.reddit.com/r/Vive/comments/4rj357/what_is_your_favourite_form_of_locomotion_in_vr/ (accessed on 29 July 2017).
- Kitchenham, B. Procedures for Performing Systematic Reviews; Technical Report TR/SE-0401; Keele University: Newcastle upon Tyne, UK; National ICT Australia Ltd.: Sydney, Australia, 2004. [Google Scholar]
- Brereton, P.; Kitchenham, B.A.; Budgen, D.; Turner, M.; Khalil, M. Lessons from applying the systematic literature review process within the software engineering domain. J. Syst. Softw. 2007, 80, 571–583. [Google Scholar] [CrossRef]
- Beecham, S.; Baddoo, N.; Hall, T.; Robinson, H.; Sharp, H. Motivation in Software Engineering: A systematic literature review. Inf. Softw. Technol. 2008, 50, 860–878. [Google Scholar] [CrossRef]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. FASEB J. 2008, 22, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Jacso, P. As we may search-comparison of major features of the Web of Science, Scopus, and Google Scholar citation-based and citation-enhanced databases. Curr. Sci. 2005, 89, 1537–1547. [Google Scholar]
- Vom Brocke, J.; Simons, A.; Niehaves, B.; Riemer, K.; Plattfaut, R.; Cleven, A. Reconstructing the giant: On the importance of rigour in documenting the literature search process. In Proceedings of the European Conference on Information Systems, Verona, Italy, 8–10 June 2009; pp. 2206–2217. [Google Scholar]
- Webster, J.; Watson, R.T. Analyzing the past to prepare for the future: Writing a literature review. MIS Q. 2002, 26, 13–23. [Google Scholar]
- Grechkin, T.Y.; Plumert, J.M.; Kearney, J.K. Dynamic affordances in embodied interactive systems: The role of display and mode of locomotion. IEEE Trans. Vis. Comput. Graph. 2014, 20, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Skopp, N.A.; Smolenski, D.J.; Metzger-Abamukong, M.J.; Rizzo, A.A.; Reger, G.M. A Pilot Study of the VirtuSphere as a Virtual Reality Enhancement. Int. J. Hum.-Comput. Interact. 2014, 30, 24–31. [Google Scholar] [CrossRef]
- Nilsson, N.C.; Serafin, S.; Nordahl, R. A comparison of different methods for reducing the unintended positional drift accompanying walking-in-place locomotion. In Proceedings of the IEEE Symposium on 3D User Interfaces, Minneapolis, MN, USA, 29–30 March 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 103–110. [Google Scholar]
- Nilsson, N.C.; Serafin, S.; Nordahl, R. Establishing the range of perceptually natural visual walking speeds for virtual walking-in-place locomotion. IEEE Trans. Vis. Comput. Graph. 2014, 20, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, N.C.; Serafin, S.; Nordahl, R. A comparison of four different approaches to reducing unintended positional drift during walking-In-Place locomotion. In Proceedings of the IEEE Virtual Reality, Minneapolis, MN, USA, 29 March–2 April 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–2. [Google Scholar]
- Caggianese, G.; Gallo, L.; Neroni, P. Design and preliminary evaluation of free-hand travel techniques for wearable immersive virtual reality systems with egocentric sensing. In Proceedings of the International Conference on Augmented and Virtual Reality, Lecce, Italy, 31 August–3 September 2015; Springer: Berlin, Germany, 2015; pp. 399–408. [Google Scholar]
- Harris, A.; Nguyen, K.; Wilson, P.T.; Jackoski, M.; Williams, B. Human joystick: Wii-leaning to translate in large virtual environments. In Proceedings of the ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry, Shenzhen, China, 30 November–2 December 2014; ACM: New York, NY, USA, 2014; pp. 231–234. [Google Scholar]
- Nescher, T.; Huang, Y.Y.; Kunz, A. Planning redirection techniques for optimal free walking experience using model predictive control. In Proceedings of the IEEE Symposium on 3D User Interfaces, Minneapolis, MN, USA, 29–30 March 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 111–118. [Google Scholar]
- Nabiyouni, M.; Scerbo, S.; DeVito, V.; Smolen, S.; Starrin, P.; Bowman, D.A. Design and evaluation of a visual acclimation aid for a semi-natural locomotion device. In Proceedings of the IEEE Symposium on 3D User Interfaces, Arles, France, 23–24 March 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 11–14. [Google Scholar]
- Nabiyouni, M.; Saktheeswaran, A.; Bowman, D.A.; Karanth, A. Comparing the performance of natural, semi-natural, and non-natural locomotion techniques in virtual reality. In Proceedings of the IEEE Symposium on 3D User Interfaces, Arles, France, 23–24 March 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 3–10. [Google Scholar]
- Bruder, G.; Lubas, P.; Steinicke, F. Cognitive resource demands of redirected walking. IEEE Trans. Vis. Comput. Graph. 2015, 21, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, D.; Kovacs, R.; Mehta, V.; Umapathi, U.; Köhler, S.; Cheng, L.P.; Baudisch, P. Level-ups: Motorized stilts that simulate stair steps in virtual reality. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul, Korea, 18–23 April 2015; ACM: New York, NY, USA, 2015; pp. 2157–2160. [Google Scholar]
- Kruijff, E.; Riecke, B.; Trekowski, C.; Kitson, A. Upper body leaning can affect forward self-motion perception in virtual environments. In Proceedings of the 3rd ACM Symposium on Spatial User Interaction, Los Angeles, CA, USA, 8–9 August 2015; ACM: New York, NY, USA, 2015; pp. 103–112. [Google Scholar]
- De la Rubia, E.; Diaz-Estrella, A. Natural locomotion based on foot-mounted inertial sensors in a wireless virtual reality system. Presence Teleoper. Virtual Environ. 2015, 24, 298–321. [Google Scholar] [CrossRef]
- Zank, M.; Kunz, A. Using locomotion models for estimating walking targets in immersive virtual environments. In Proceedings of the International Conference on Cyberworlds, Visby, Sweden, 7–9 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 229–236. [Google Scholar]
- Langbehn, E.; Eichler, T.; Ghose, S.; von Luck, K.; Bruder, G.; Steinicke, F. Evaluation of an omnidirectional walking-in-place user interface with virtual locomotion speed scaled by forward leaning angle. In Proceedings of the GI Workshop on Virtual and Augmented Reality, Sankt Augustin, Germany, 10–11 September 2015; pp. 149–160. [Google Scholar]
- McCullough, M.; Xu, H.; Michelson, J.; Jackoski, M.; Pease, W.; Cobb, W.; Kalescky, W.; Ladd, J.; Williams, B. Myo arm: Swinging to explore a VE. In Proceedings of the ACM SIGGRAPH Symposium on Applied Perception, Tübingen, Germany, 13–14 September 2015; ACM: New York, NY, USA, 2015; pp. 107–113. [Google Scholar]
- Borrego, A.; Latorre, J.; Llorens, R.; Alcañiz, M.; Noé, E. Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters. J. Neuroeng. Rehabilit. 2016, 13, 68. [Google Scholar] [CrossRef] [PubMed]
- Zank, M.; Kunz, A. Eye tracking for locomotion prediction in redirected walking. In Proceedings of the IEEE Symposium on 3D User Interfaces, Greenville, SC, USA, 19–20 March 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 49–58. [Google Scholar]
- Tregillus, S.; Folmer, E. Vr-step: Walking-in-place using inertial sensing for hands free navigation in mobile vr environments. In Proceedings of the CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; ACM: New York, NY, USA, 2016; pp. 1250–1255. [Google Scholar]
- Sun, Q.; Wei, L.Y.; Kaufman, A. Mapping virtual and physical reality. ACM Trans. Graph. (TOG) 2016, 35. [Google Scholar] [CrossRef]
- Bozgeyikli, E.; Raij, A.; Katkoori, S.; Dubey, R. Locomotion in Virtual Reality for Individuals with Autism Spectrum Disorder. In Proceedings of the Symposium on Spatial User Interaction, Tokyo, Japan, 15–16 Ocotober 2016; ACM: New York, NY, USA, 2016; pp. 33–42. [Google Scholar]
- Kruijff, E.; Marquardt, A.; Trepkowski, C.; Lindeman, R.W.; Hinkenjann, A.; Maiero, J.; Riecke, B.E. On Your Feet!: Enhancing Vection in Leaning-Based Interfaces through Multisensory Stimuli. In Proceedings of the 2016 Symposium on Spatial User Interaction, Tokyo, Japan, 15–16 Ocotober 2016; ACM: New York, NY, USA, 2016; pp. 149–158. [Google Scholar]
- Nishi, A.; Hoshino, K.; Kajimoto, H. Straightening Walking Path Using Redirected Walking Technique. In Proceedings of the ACM SIGGRAPH, Anaheim, CA, USA, 24–28 July 2016; ACM: New York, NY, USA, 2016; p. 61. [Google Scholar]
- Argelaguet, F.; Maignant, M. GiAnt: stereoscopic-compliant multi-scale navigation in VEs. In Proceedings of the ACM Conference on Virtual Reality Software and Technology, Munich, Germany, 2–4 November 2016; ACM: New York, NY, USA, 2016; pp. 269–277. [Google Scholar]
- Cardoso, J. Comparison of gesture, gamepad, and gaze-based locomotion for VR worlds. In Proceedings of the ACM Conference on Virtual Reality Software and Technology, Munich, Germany, 2–4 November 2016; ACM: New York, NY, USA, 2016; pp. 319–320. [Google Scholar]
- Paris, R.A.; McNamara, T.P.; Rieser, J.J.; Bodenheimer, B. A comparison of methods for navigation and wayfinding in large virtual environments using walking. In Proceedings of the IEEE Virtual Reality, Los Angeles, CA, USA, 18–22 March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 261–262. [Google Scholar]
- Xu, M.; Murcia-López, M.; Steed, A. Object location memory error in virtual and real environments. In Proceedings of the IEEE Virtual Reality, Los Angeles, CA, USA, 18–22 March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 315–316. [Google Scholar]
- Fisher, J.A.; Garg, A.; Singh, K.P.; Wang, W. Designing intentional impossible spaces in virtual reality narratives: A case study. In Proceedings of the IEEE Virtual Reality, Los Angeles, CA, USA, 18–22 March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 379–380. [Google Scholar]
- Kitson, A.; Hashemian, A.M.; Stepanova, E.R.; Kruijff, E.; Riecke, B.E. Comparing leaning-based motion cueing interfaces for virtual reality locomotion. In Proceedings of the IEEE Symposium on 3D User Interfaces, Los Angeles, CA, USA, 18–19 March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 73–82. [Google Scholar]
- Kim, J.S.; Gracanin, D.; Matkovic, K.; Quek, F.K. The Effects of Finger-Walking in Place (FWIP) for Spatial Knowledge Acquisition in Virtual Environments. Lect. Notes Comput. Sci. 2010, 6133, 56–67. [Google Scholar]
- Wright, P.; Blythe, M. User experience research as an inter-discipline: Towards a UX Manifesto. In Proceedings of the BHCI ’07 Workshop on Towards a UX Manifesto, Lancaster, UK, 3–7 September 2007; pp. 65–70. [Google Scholar]
- Bargas-Avila, J.A.; Hornbæk, K. Old Wine in New Bottles or Novel Challenges: A Critical Analysis of Empirical Studies of User Experience. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vancouver, BC, Canada, 7–12 May 2011; ACM: New York, NY, USA, 2011; pp. 2689–2698. [Google Scholar]
- Van Veen, H.A.; Distler, H.K.; Braun, S.J.; Bülthoff, H.H. Navigating through a virtual city: Using virtual reality technology to study human action and perception. Futur. Gener. Comput. Syst. 1998, 14, 231–242. [Google Scholar] [CrossRef]
- Langbehn, E.; Lubos, P.; Bruder, G.; Steinicke, F. Application of redirected walking in room-scale VR. In Proceedings of the IEEE Virtual Reality (VR), Los Angeles, CA, USA, 18–22 March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 449–450. [Google Scholar]
ID and Article | VR Locomotion | Empirical Study | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Interaction Type | VR Motion Type | VR Interaction Space | VR Locomotion Technique | Research Topic | |||||||||||||||||
Physical | Artificial | Continuous | Non-Continuous | Open | Limited | Real-Walking | Walking-in-Place | Controller/Joystick | Gesture-Based | Point and Teleport | Redirected Walking | Arm Swinging | Reorientation | Head-Directed | Human Joystick | Chair-Based | Usability of Technique(s) | UX with Technique(s) | Effect on Perception | Technical Aspects | |
1. Grechkin et al., 2014 [33] | X | X | X | X | X | ||||||||||||||||
X | X | X | X | ||||||||||||||||||
2. Skopp et al., 2014 [34] | X | X | X | X | X | ||||||||||||||||
X | X | X | X | ||||||||||||||||||
3. Nilsson et al., 2014a [35] | X | X | X | X | X | X | |||||||||||||||
4. Nilsson et al., 2014b [36] | X | X | X | X | X | X | |||||||||||||||
5. Nilsson et al., 2014c [37] | X | X | X | X | X | ||||||||||||||||
6. Bruder and Steinicke, 2014 [22] | X | X | X | X | X | ||||||||||||||||
7. Caggianese et al., 2014 [38] | X | X | X | X | X | ||||||||||||||||
X | X | X | X | ||||||||||||||||||
8. Harris et al., 2014 [39] | X | X | X | X | X | X | |||||||||||||||
X | X | X | X | ||||||||||||||||||
X | X | X | X | ||||||||||||||||||
9. Nescher et al., 2014 [40] | X | X | X | X | X | ||||||||||||||||
10. Nabiyouni et al., 2015a [41] | X | X | X | X | X | X | |||||||||||||||
11. Nabiyouni et al., 2015b [42] | X | X | X | X | X | X | |||||||||||||||
X | X | X | X | ||||||||||||||||||
X | X | X | X | ||||||||||||||||||
12. Bruder et al., 2015 [43] | X | X | X | X | X | X | |||||||||||||||
13. Schmidt et al., 2015 [44] | X | X | X | X | X | X | |||||||||||||||
14. Kruijff et al., 2015 [45] | X | X | X | X | X | X | X | ||||||||||||||
15. De la Rubia and Diaz-Estrella, 2015 [46] | X | X | X | X | X | X | |||||||||||||||
16. Zank and Kunz, 2015 [47] | X | X | X | X | X | ||||||||||||||||
17. Langbehn et al., 2015 [48] | X | X | X | X | X | X | X | ||||||||||||||
X | X | X | X | ||||||||||||||||||
18. McCullough et al., 2015 [49] | X | X | X | X | X | ||||||||||||||||
X | X | X | X | ||||||||||||||||||
X | X | X | X | ||||||||||||||||||
19. Bozgeyikli et al., 2016a [23] | X | X | X | X | X | ||||||||||||||||
X | X | X | X | ||||||||||||||||||
20. Borrego et al., 2016 [50] | X | X | X | X | X | X | |||||||||||||||
21. Zank and Kunz, 2016 [51] | X | X | X | X | X | ||||||||||||||||
22. Tregillus and Folmer, 2016 [52] | X | X | X | X | X | ||||||||||||||||
X | X | X | X | ||||||||||||||||||
23. Sun et al., 2016 [53] | X | X | X | X | X | ||||||||||||||||
24. Bozgeyikli et al., 2016b [54] | X | X | X | X | X | X | |||||||||||||||
X | X | X | X | ||||||||||||||||||
X | X | X | X | ||||||||||||||||||
X | X | X | X | ||||||||||||||||||
X | X | X | X | ||||||||||||||||||
X | X | X | X | ||||||||||||||||||
X | X | X | X | ||||||||||||||||||
X | X | X | X | ||||||||||||||||||
25. Kruijff et al., 2016 [55] | X | X | X | X | X | X | X | ||||||||||||||
X | X | X | X | ||||||||||||||||||
26. Bozgeyikli et al., 2016c [12] | X | X | X | X | X | X | |||||||||||||||
X | X | X | X | ||||||||||||||||||
X | X | X | X | ||||||||||||||||||
27. Nishi et al., 2016 [56] | X | X | X | X | X | X | |||||||||||||||
28. Ferracani et al., 2016 [18] | X | X | X | X | X | ||||||||||||||||
X | X | X | X | ||||||||||||||||||
X | X | X | X | ||||||||||||||||||
X | X | X | X | ||||||||||||||||||
29. Argelaguet and Maignant, 2016 [57] | X | X | X | X | X | X | |||||||||||||||
30. Wilson et al., 2016 [19] | X | X | X | X | X | ||||||||||||||||
X | X | X | X | ||||||||||||||||||
X | X | X | X | ||||||||||||||||||
31. Fernandes and Feiner, 2016 [20] | X | X | X | X | X | X | |||||||||||||||
32. Cardoso, 2016 [58] | X | X | X | X | X | ||||||||||||||||
X | X | X | X | ||||||||||||||||||
X | X | X | X | ||||||||||||||||||
33. Paris et al., 2017 [59] | X | X | X | X | X | ||||||||||||||||
X | X | X | X | ||||||||||||||||||
X | X | X | X | ||||||||||||||||||
34. Xu et al., 2017 [60] | X | X | X | X | X | ||||||||||||||||
X | X | X | X | ||||||||||||||||||
X | X | X | X | ||||||||||||||||||
35. Fisher et al., 2017 [61] | X | X | X | X | X | ||||||||||||||||
36. Kitson et al., 2017 [62] | X | X | X | X | X | X | X | ||||||||||||||
X | X | X | X | ||||||||||||||||||
X | X | X | X | ||||||||||||||||||
X | X | X | X | ||||||||||||||||||
X | X | X | X |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boletsis, C. The New Era of Virtual Reality Locomotion: A Systematic Literature Review of Techniques and a Proposed Typology. Multimodal Technol. Interact. 2017, 1, 24. https://doi.org/10.3390/mti1040024
Boletsis C. The New Era of Virtual Reality Locomotion: A Systematic Literature Review of Techniques and a Proposed Typology. Multimodal Technologies and Interaction. 2017; 1(4):24. https://doi.org/10.3390/mti1040024
Chicago/Turabian StyleBoletsis, Costas. 2017. "The New Era of Virtual Reality Locomotion: A Systematic Literature Review of Techniques and a Proposed Typology" Multimodal Technologies and Interaction 1, no. 4: 24. https://doi.org/10.3390/mti1040024