Urban Spatial Heat Resilience Indicator Based on Running Activity Z-Score
Abstract
:1. Introduction
2. Background
2.1. Heat Resilience Indicators
2.2. Social Media and Human Activity Analytics
2.3. Fitness App Data Analytics
3. Data and Methods
3.1. Data Collection
3.2. Indicator Quantification
4. Results
4.1. Sensitivity of RAZ Indicator to Heatwaves
4.2. Low and High Heat Resilience Identification
4.3. Correlation Between RAZ and Urban Factors
5. Discussion
5.1. Urban Planning Implementations
5.2. Research Contribution
5.3. Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RAZ | Running Activity Z-score |
SHR | spatial heat resilience |
PA | physical activity |
BE | built environment |
References
- Intergovernmental Panel on Climate Change (IPCC). Glossary. In Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023; pp. 131–135, 2897–2930. [Google Scholar]
- United Nations Publications. World Urbanization Prospects: The 2018 Revision; UN: New York, NY, USA, 2019. [Google Scholar]
- Romanello, M.; McGushin, A.; Di Napoli, C.; Drummond, P.; Hughes, N.; Jamart, L.; Kennard, H.; Lampard, P.; Solano Rodriguez, B.; Arnell, N.; et al. The 2021 report of the Lancet Countdown on health and climate change: Code red for a healthy future. Lancet 2021, 398, 1619–1662. [Google Scholar] [CrossRef] [PubMed]
- Ebi, K.L.; Capon, A.; Berry, P.; Broderick, C.; de Dear, R.; Havenith, G.; Honda, Y.; Kovats, R.S.; Ma, W.; Malik, A.; et al. Hot weather and heat extremes: Health risks. Lancet 2021, 398, 698–708. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Varghese, B.M.; Hansen, A.; Xiang, J.; Zhang, Y.; Dear, K.; Gourley, M.; Driscoll, T.; Morgan, G.; Capon, A.; et al. Is there an association between hot weather and poor mental health outcomes? A systematic review and meta-analysis. Environ. Int. 2021, 153, 106533. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Sun, Y.; Wang, R.; Yang, Y.; Yin, L.; Li, L.; Zhang, B. A new framework for assessing and dealing with heat risk from an urban resilience perspective. J. Clean. Prod. 2024, 479, 144008. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, H. Research on the Heat Wave Index. Meteorol. Mon. 2011, 345–351. [Google Scholar]
- Cilek, M.U.; Uslu, C. Modeling the relationship between the geometric characteristics of urban green spaces and thermal comfort: The case of Adana city. Sustain. Cities Soc. 2022, 79, 103748. [Google Scholar] [CrossRef]
- Kim, S.W.; Brown, R.D. Urban heat island (UHI) variations within a city boundary: A systematic literature review. Renew. Sustain. Energy Rev. 2021, 148, 111256. [Google Scholar] [CrossRef]
- Li, Z.L.; Wu, H.; Duan, S.B.; Zhao, W.; Ren, H.; Liu, X.; Leng, P.; Tang, R.; Ye, X.; Zhu, J.; et al. Satellite remote sensing of global land surface temperature: Definition, methods, products, and applications. Rev. Geophys. 2023, 61, e2022RG000777. [Google Scholar] [CrossRef]
- Guha, S.; Govil, H. An assessment on the relationship between land surface temperature and normalized difference vegetation index. Environ. Dev. Sustain. 2021, 23, 1944–1963. [Google Scholar] [CrossRef]
- Alexander, C. Normalised difference spectral indices and urban land cover as indicators of land surface temperature (LST). Int. J. Appl. Earth Obs. Geoinf. 2020, 86, 102013. [Google Scholar] [CrossRef]
- Naikoo, M.W.; Islam, A.R.M.T.; Mallick, J.; Rahman, A. Land use/land cover change and its impact on surface urban heat island and urban thermal comfort in a metropolitan city. Urban Clim. 2022, 41, 101052. [Google Scholar]
- Aram, F.; Solgi, E.; Garcia, E.H.; Mosavi, A. Urban heat resilience at the time of global warming: Evaluating the impact of the urban parks on outdoor thermal comfort. Environ. Sci. Eur. 2020, 32, 117. [Google Scholar] [CrossRef]
- Sheng, M.; Reiner, M.; Sun, K.; Hong, T. Assessing thermal resilience of an assisted living facility during heat waves and cold snaps with power outages. Build. Environ. 2023, 230, 110001. [Google Scholar] [CrossRef]
- Su, X.; Wang, F.; Zhou, D.; Zhang, H. Heat health risk and adaptability assessments at the subdistrict scale in Metropolitan Beijing. Int. J. Disaster Risk Sci. 2022, 13, 987–1003. [Google Scholar] [CrossRef]
- Niu, Y.; Li, Z.; Gao, Y.; Liu, X.; Xu, L.; Vardoulakis, S.; Yue, Y.; Wang, J.; Liu, Q. A systematic review of the development and validation of the heat vulnerability index: Major factors, methods, and spatial units. Curr. Clim. Chang. Rep. 2021, 7, 87–97. [Google Scholar] [CrossRef]
- Wang, Y.; Song, Q.; Du, Y.; Wang, J.; Zhou, J.; Du, Z.; Li, T. A random forest model to predict heatstroke occurrence for heatwave in China. Sci. Total Environ. 2019, 650, 3048–3053. [Google Scholar] [CrossRef]
- Jiang, S.; Warren, J.L.; Scovronick, N.; Moss, S.E.; Darrow, L.A.; Strickland, M.J.; Newman, A.J.; Chen, Y.; Ebelt, S.T.; Chang, H.H. Using logic regression to characterize extreme heat exposures and their health associations: A time-series study of emergency department visits in Atlanta. BMC Med. Res. Methodol. 2021, 21, 87. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yin, P.; Sun, J.; Wang, B.; Zhou, M.; Li, M.; Tong, S.; Meng, B.; Guo, Y.; Liu, Q. Heatwave and mortality in 31 major Chinese cities: Definition, vulnerability and implications. Sci. Total Environ. 2019, 649, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.E.; Mitchell, D.M.; Thompson, R.; O’Connell, E.; Gasparrini, A. Estimating heat-related mortality in near real time for national heatwave plans. Environ. Res. Lett. 2022, 17, 024017. [Google Scholar] [CrossRef]
- Varghese, B.; Beaty, M.; Panchuk, S.; Mackie, B.; Chen, C.; Jakab, M.; Yang, T.; Bi, P.; Nairn, J. Heatwave-related Mortality in Australia: Who’s impacted the most? Eur. J. Public Health 2020, 30, ckaa165.377. [Google Scholar] [CrossRef]
- Song, J.; Lu, Y.; Zhao, Q.; Zhang, Y.; Yang, X.; Chen, Q.; Guo, Y.; Hu, K. Effect modifications of green space and blue space on heat–mortality association in Hong Kong, 2008–2017. Sci. Total Environ. 2022, 838, 156127. [Google Scholar] [CrossRef]
- Zhi, G.; Meng, B.; Wang, J.; Chen, S.; Tian, B.; Ji, H.; Yang, T.; Wang, B.; Liu, J. Spatial analysis of urban residential sensitivity to heatwave events: Case studies in five megacities in China. Remote Sens. 2021, 13, 4086. [Google Scholar] [CrossRef]
- Young, J.C.; Arthur, R.; Spruce, M.; Williams, H.T. Social sensing of heatwaves. Sensors 2021, 21, 3717. [Google Scholar] [CrossRef] [PubMed]
- Cecinati, F.; Matthews, T.; Natarajan, S.; McCullen, N.; Coley, D. Mining social media to identify heat waves. Int. J. Environ. Res. Public Health 2019, 16, 762. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.L.; Keusch, F.; Yan, T.; Clarke, P.J. The impact of weather on summer and winter exercise behaviors. J. Sport Health Sci. 2019, 8, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Turrisi, T.B.; Bittel, K.M.; West, A.B.; Hojjatinia, S.; Hojjatinia, S.; Mama, S.K.; Lagoa, C.M.; Conroy, D.E. Seasons, weather, and device-measured movement behaviors: A scoping review from 2006 to 2020. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 24. [Google Scholar] [CrossRef]
- Nuriddinov, A. Physical activity, health and environment. Am. J. Soc. Sci. Humanit. Res. 2023, 3, 189–200. [Google Scholar]
- Liu, Y.; Hu, J.; Yang, W.; Luo, C. Effects of urban park environment on recreational jogging activity based on trajectory data: A case of Chongqing, China. Urban For. Urban Green. 2022, 67, 127443. [Google Scholar] [CrossRef]
- Yang, W.; Li, Y.; Liu, Y.; Fan, P.; Yue, W. Environmental factors for outdoor jogging in Beijing: Insights from using explainable spatial machine learning and massive trajectory data. Landsc. Urban Plan. 2024, 243, 104969. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, L.; Hong, X.; Qiu, S. Outdoor thermal comfort and activities in urban parks: An experiment study in humid subtropical climates. Build. Environ. 2024, 253, 111361. [Google Scholar] [CrossRef]
- Kabisch, N.; Kraemer, R. Physical activity patterns in two differently characterised urban parks under conditions of summer heat. Environ. Sci. Policy 2020, 107, 56–65. [Google Scholar] [CrossRef]
- Kabisch, N.; Kraemer, R.; Brenck, M.; Haase, D.; Lausch, A.; Luttkus, M.; Mueller, T.; Remmler, P.; Von Döhren, P.; Voigtländer, J.; et al. A methodological framework for the assessment of regulating and recreational ecosystem services in urban parks under heat and drought conditions. Ecosyst. People 2021, 17, 464–475. [Google Scholar] [CrossRef]
- Gu, X.; Lai, Z.; Zhu, L.; Liu, X. Urban Greenery Distribution and Its Heat Mitigation Effect on Outdoor Jogging Activities. Urban For. Urban Green. 2024, 104, 128655. [Google Scholar] [CrossRef]
- Dagiral, É.; Dessajan, S.; Legon, T.; Martin, O.; Pharabod, A.S.; Proulx, S. Faire place aux chiffres dans l’attention à soi: Une sociologie des pratiques de quantification et d’enregistrement aux différents âges de la vie. Réseaux 2019, 216, 119–156. [Google Scholar] [CrossRef]
- Keep Technologies Inc. Keep Holdings Limited Initial Public Offering Prospectus. 2023. Available online: https://ir.keep.com/sc/financial_prospectus.php (accessed on 19 December 2024).
- Liu, Y.; Li, Y.; Yang, W.; Hu, J. Exploring nonlinear effects of built environment on jogging behavior using random forest. Appl. Geogr. 2023, 156, 102990. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, N.; Ma, B.; Yan, S. The effects of street environment features on road running: An analysis using crowdsourced fitness tracker data and machine learning. Environ. Plan. B Urban Anal. City Sci. 2024, 51, 529–545. [Google Scholar] [CrossRef]
- Di Napoli, C.; Pappenberger, F.; Cloke, H.L. Verification of heat stress thresholds for a health-based heat-wave definition. J. Appl. Meteorol. Climatol. 2019, 58, 1177–1194. [Google Scholar] [CrossRef]
- Ballester, J.; Quijal-Zamorano, M.; Méndez Turrubiates, R.F.; Pegenaute, F.; Herrmann, F.R.; Robine, J.M.; Basagaña, X.; Tonne, C.; Antó, J.M.; Achebak, H. Heat-related mortality in Europe during the summer of 2022. Nat. Med. 2023, 29, 1857–1866. [Google Scholar] [CrossRef]
- Wu, W.B.; Ma, J.; Banzhaf, E.; Meadows, M.E.; Yu, Z.W.; Guo, F.X.; Sengupta, D.; Cai, X.X.; Zhao, B. A first Chinese building height estimate at 10 m resolution (CNBH-10 m) using multi-source earth observations and machine learning. Remote Sens. Environ. 2023, 291, 113578. [Google Scholar] [CrossRef]
- Steadman, R.G. The assessment of sultriness. Part I: A temperature-humidity index based on human physiology and clothing science. J. Appl. Meteorol. Climatol. 1979, 18, 861–873. [Google Scholar] [CrossRef]
- Masterton, J.M.; Richardson, F. Humidex: A method of Quantifying Human Discomfort Due to Excessive Heat and Humidity; Environment Canada: Gatineau, QC, Canada, 1981. [Google Scholar]
- Sharifi, E.; Boland, J. Limits of thermal adaptation in cities: Outdoor heat-activity dynamics in Sydney, Melbourne and Adelaide. Archit. Sci. Rev. 2018, 61, 191–201. [Google Scholar] [CrossRef]
- Li, Y.; Schubert, S.; Kropp, J.P.; Rybski, D. On the influence of density and morphology on the Urban Heat Island intensity. Nat. Commun. 2020, 11, 2647. [Google Scholar] [CrossRef] [PubMed]
- Ampatzidis, P.; Kershaw, T. A review of the impact of blue space on the urban microclimate. Sci. Total Environ. 2020, 730, 139068. [Google Scholar] [CrossRef]
- Chernozhukov, V.; Chetverikov, D.; Demirer, M.; Duflo, E.; Hansen, C.; Newey, W.; Robins, J. Double/debiased machine learning for treatment and structural parameters. Econom. J. 2018, 21, C1–C68. [Google Scholar] [CrossRef]
- Akbari, K.; Winter, S.; Tomko, M. Spatial causality: A systematic review on spatial causal inference. Geogr. Anal. 2023, 55, 56–89. [Google Scholar] [CrossRef]
- Giffin, A.; Reich, B.; Yang, S.; Rappold, A. Generalized propensity score approach to causal inference with spatial interference. Biometrics 2023, 79, 2220–2231. [Google Scholar] [CrossRef] [PubMed]
Name | Description | Unit | Source |
---|---|---|---|
Running Activity | Outdoor running trajectories | Polyline with temporal information | Keep |
Weather | Temperature, humidity, precipitation | Values with hourly resolution | Weather Underground |
Green Space | Boundaries of green space within the sixth ring of Beijing | Polygon | OpenStreetMap |
Plot Ratio | Plot ratio approximated by building height | Values within grid cell (4 m) | Census Data |
Population | Population of residents and workers | Values within grid cells (500 m) | Baidu |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Lai, Y. Urban Spatial Heat Resilience Indicator Based on Running Activity Z-Score. Urban Sci. 2025, 9, 34. https://doi.org/10.3390/urbansci9020034
Zhou L, Lai Y. Urban Spatial Heat Resilience Indicator Based on Running Activity Z-Score. Urban Science. 2025; 9(2):34. https://doi.org/10.3390/urbansci9020034
Chicago/Turabian StyleZhou, Li, and Yuan Lai. 2025. "Urban Spatial Heat Resilience Indicator Based on Running Activity Z-Score" Urban Science 9, no. 2: 34. https://doi.org/10.3390/urbansci9020034
APA StyleZhou, L., & Lai, Y. (2025). Urban Spatial Heat Resilience Indicator Based on Running Activity Z-Score. Urban Science, 9(2), 34. https://doi.org/10.3390/urbansci9020034