Numerical Simulations and Assessment of the Effect of Low-Emission Zones in Sofia, Bulgaria
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Models Used in This Study
2.3. Data Sources for Validation
2.4. Study Settings
2.5. Development of New Local Emission Inventory for LEZs
- A shift from pre-Euro, Euro 1 and Euro 2 categories to the Euro 3, 4 and 5 with relatively small growth of the Euro 6 and zero-emission vehicles, which usually, as newly purchased vehicles, have a small proportion in relation to the second-hand ones that dominate the scene, even though Bulgaria and Sofia have experienced some of the highest growth rates of these but from a very low position;
- The gradual enlargement of the restrictions for entry from the small to the large ring with the expectation for the first in 2022 and the already introduced larger ring in 2026 is assumed to influence the decisions of more and more owners and users of the lower-performance fleet with more significant impact for the fleet within the small and large rings while considering that there are exemptions for the local residents and disabled persons, which have a relatively high share in the city, mostly due to ageing and poor physical health, so that the changes are more moderate;
- The diminishing share of failed catalysts and particle traps reflecting the poor condition of the fleet at the baseline 2018 year in comparison with the one in the EU and the UK, as well as the gradual tightening of national technical regulations and control from 2022 and especially towards the 2026 scenario.
3. Results
3.1. Validation of the Models
3.2. Emission Modelling
3.3. Air Quality Modelling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LEZ | low-emission zone |
EU | European Union |
WHO | World Health Organization |
TRAP | traffic-related air pollution |
PM2.5 | particulate matter with an aerodynamic diameter of 2.5 micrometres or smaller |
PM10 | particulate matter with an aerodynamic diameter of 10 micrometres or smaller |
NO2 | nitrogen dioxide |
NOx | nitrogen oxides |
CO | carbon monoxide |
PM | particulate matter |
O3 | ozone |
ADMS-Urban | Urban Air Quality Management System |
EMIT | Comprehensive Emissions Inventory Toolkit |
CMAQ | Community Multiscale Air Quality Modelling System |
SMOKE | Sparse Matrix Operator Kernel Emissions |
WRF | Weather Research and Forecasting model |
MAQS | Multi-Model Air Quality System |
EXPANSE | EXposome Powered tools for healthy living in urbAN SEttings |
NASEM | National Automated System for Environmental Monitoring |
AQS | air quality station |
CAMS | Copernicus Atmosphere Monitoring Service |
TNO | Netherlands Organization for Applied Scientific Research |
AADT | average annual daily traffic |
Appendix A
- The first ecological group includes pre-EURO, EURO 1/I or 2/II with dates of first registration until 1992 for the first or 1996 for the other two.
- The second ecological group includes EURO 3/III, 4/IV, 5/V registered from 1993 to 2007.
- The third ecological group includes EURO 3/III, 4/IV, 5/V, 6/VI or EEVs registered from 2002.
- The fourth ecological group includes EURO 4/IV, 5/V, 6/VI or EEVs registered from 2009.
- For diesel engines, the following apply:
- The first ecological group includes pre-EURO, EURO 1/I, 2/II or 3/III with dates of first registration until 2002.
- The second ecological group includes EURO 3/III, 4/IV, 5/V or EEVs registered from 2000 to 2007.
- The third ecological group includes EURO 4/IV, 5/V, 6/VI or EEVs registered from 2005.
- The fourth ecological group includes EURO 5/V, 6/VI or EEVs registered from 2009.
- From 1 December 2023—Eco sticker I—diesel Euro 4—petrol Euro 3.
- From 1 December 2024—Eco sticker I and II—diesel Euro 6—petrol Euro 4.
- From 1 December 2028—Eco sticker I, II and III—diesel Euro 6a—petrol Euro 6a.
- From 1 December 2025—Eco sticker I—diesel Euro 4—petrol Euro 3.
- From 1 December 2027—Eco sticker I and II—diesel Euro 6—petrol Euro 4.
Appendix B
NO2 | |||||||
AQS | MB, µg/m3 | ME, µg/m3 | RMSE, µg/m3 | IA | r | Missing data, % | Max obs/mod, μg/m3 |
Druzhba | −16.95 | 17.10 | 23.28 | 0.55 | 0.61 | 1.97 | 131.68/101.82 |
Hipodruma | −22.19 | 22.73 | 28.29 | 0.58 | 0.61 | 1.19 | 155.08/127.84 |
Mladost | −5.76 | 10.45 | 22.94 | 0.74 | 0.41 | 26.37 | 160.96/192.18 |
Nadezhda | −15.26 | 16.44 | 22.36 | 0.57 | 0.50 | 11.84 | 122.40/107.71 |
Pavlovo | −20.78 | 21.32 | 29.74 | 0.58 | 0.61 | 14.44 | 176.14/122.46 |
PM10 | |||||||
AQS | MB, µg/m3 | ME, µg/m3 | RMSE, µg/m3 | IA | r | Missing data, % | Max obs/mod, μg/m3 |
Druzhba | −16.92 | 17.37 | 23.54 | 0.55 | 0.56 | 4.20 | 180.62/138.03 |
Hipodruma | −29.03 | 29.25 | 44.93 | 0.49 | 0.64 | 1.24 | 386.76/132.11 |
Mladost | −24.84 | 25.02 | 37.21 | 0.49 | 0.61 | 4.67 | 301.36/129.62 |
Nadezhda | −33.86 | 34.01 | 45.82 | 0.46 | 0.57 | 1.58 | 326.91/128.38 |
Pavlovo | −30.75 | 30.87 | 43.63 | 0.49 | 0.71 | 9.09 | 331.79/117.32 |
PM2.5 | |||||||
AQS | MB, µg/m3 | ME, µg/m3 | RMSE, µg/m3 | IA | r | Missing data, % | Max obs/mod, μg/m3 |
Hipodruma | −18.73 | 19.69 | 37.72 | 0.50 | 0.55 | 31.35 | 253.04/126.92 |
NO2 | |||||||
AQS | MB, µg/m3 | ME, µg/m3 | RMSE, µg/m3 | IA | r | Missing data, % | Max obs/mod, μg/m3 |
Druzhba | −20.27 | 20.41 | 27.22 | 0.46 | 0.38 | 1.97 | 131.68/47.39 |
Hipodruma | −24.80 | 25.66 | 32.40 | 0.48 | 0.34 | 1.19 | 155.08/84.79 |
Mladost | −16.64 | 17.73 | 26.98 | 0.43 | 0.25 | 26.37 | 160.96/49.24 |
Nadezhda | −19.52 | 19.85 | 26.30 | 0.47 | 0.38 | 11.84 | 122.40/50.55 |
Pavlovo | −26.01 | 26.33 | 35.76 | 0.47 | 0.39 | 14.44 | 176.14/62.91 |
PM10 | |||||||
AQS | MB, µg/m3 | ME, µg/m3 | RMSE, µg/m3 | IA | r | Missing data, % | Max obs/mod, μg/m3 |
Druzhba | −17.45 | 18.02 | 24.46 | 0.51 | 0.49 | 4.20 | 180.62/142.66 |
Hipodruma | −28.92 | 29.27 | 45.50 | 0.47 | 0.58 | 1.24 | 386.76/124.87 |
Mladost | −26.05 | 26.34 | 37.53 | 0.48 | 0.58 | 4.67 | 301.36/127.21 |
Nadezhda | −33.60 | 33.80 | 46.02 | 0.45 | 0.51 | 1.58 | 326.91/128.28 |
Pavlovo | −30.45 | 30.76 | 44.15 | 0.49 | 0.61 | 9.09 | 331.79/122.35 |
PM2.5 | |||||||
AQS | MB, µg/m3 | ME, µg/m3 | RMSE, µg/m3 | IA | r | Missing data, % | Max obs/mod, μg/m3 |
Hipodruma | −18.74 | 19.92 | 38.56 | 0.48 | 0.49 | 31.35 | 253.04/118.42 |
Appendix C
References
- Cyril, S.; Oldroyd, J.C.; Renzaho, A. Urbanization, urbanicity, and health: A systematic review of the reliability and validity of urbanicity scales. BMC Public Health 2013, 13, 513. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates, 1st ed.; Cambridge University Press: Cambridge, UK, 2017; pp. 294–331. [Google Scholar] [CrossRef]
- Health Effects Institute. State of Global Air 2024, Special Report; Health Effects Institute: Boston, MA, USA, 2024; Available online: https://www.stateofglobalair.org/resources/report/state-global-air-report-2024 (accessed on 8 August 2025).
- Trends in Air Quality and Health in Southeast Europe: A State of Global Air Special Report; Health Effects Institute: Boston, MA, USA; Available online: https://www.stateofglobalair.org/resources/report/trends-air-quality-and-health-southeast-europe (accessed on 8 August 2025).
- European Commission. Health at a Glance: Europe 2024, State of Health in the EU Cycle; European Commission: Brussels, Belgium, 2024; Available online: https://health.ec.europa.eu/document/download/1e23af78-d146-4c84-be77-690fc6044655_en?filename=2024_healthatglance_rep_en.pdf (accessed on 8 August 2025).
- Khomenko, S.; Burov, A.; Dzhambov, A.M.; de Hoogh, K.; Helbich, M.; Mijling, B.; Hlebarov, I.; Popov, I.; Dimitrova, D.; Dimitrova, R.; et al. Health burden and inequities of urban environmental stressors in Sofia, Bulgaria. Environ. Res. 2025, 279, 121782. [Google Scholar] [CrossRef]
- Bulgarian Executive Environment Agency, Ministry of Environment and Water. National Report on the State and Protection of the Environment in the Republic of Bulgaria. Available online: https://eea.government.bg/bg/soer/2024/Rezume-24.pdf (accessed on 8 August 2025). (In Bulgarian)
- World Health Organization, Regional Office for Europe. Review of Evidence on Health Aspects of Air Pollution–REVIHAAP Project: Technical Report; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/europe/publications/i/item/WHO-EURO-2013-4101-43860-61757 (accessed on 8 August 2025).
- Health Effects Institute. Traffic-Related Air Pollution: A Critical Review of the Literature on Emissions, Exposure, and Health Effects; Health Effects Institute: Boston, MA, USA, 2010; Available online: https://www.healtheffects.org/publication/traffic-related-air-pollution-critical-review-literature-emissions-exposure-and-health (accessed on 8 August 2025).
- Ministry of Environment and Water. Bulgaria’s Informative Inventory Report 2019 (IIR); Bulgarian Executive Environment Agency: Sofia, Bulgaria, 2019. Available online: https://eea.government.bg/data/addons/cms_backend/public/nsmos/inventarizaciq-emisii/IIR_2019_BG.pdf?mt=1689777020 (accessed on 8 August 2025).
- Sofia Municipality. Program for Improving the Air Quality on the Territory of Sofia Municipality for the Period 2021–2026. Available online: https://www.sofia.bg/documents/20121/992246/Прoект+на+Прoграма+КАВ+2021-2026.pdf (accessed on 8 August 2025). (In Bulgarian)
- Andersen, Z.J.; Badyda, A.; Tzivian, L.; Dzhambov, A.M.; Paunovic, K.; Savic, S.; Jacquemin, B.; Dragic, N. Air pollution inequalities in Europe: A deeper understanding of challenges in Eastern Europe and pathways forward towards closing the gap between East and West. Environ. Epidemiol. 2025, 9, e383. [Google Scholar] [CrossRef] [PubMed]
- Wolff, H. Keep your clunker in the suburb: Low-emission zones and adoption of green vehicles. Econ. J. 2014, 124, F481–F512. [Google Scholar] [CrossRef]
- Gehrsitz, M. The effect of low emission zones on air pollution and infant health. J. Environ. Econ. Manag. 2017, 83, 121–144. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0095069617300736 (accessed on 8 August 2025). [CrossRef]
- Zhai, M.; Wolff, H. Air pollution and urban road transport: Evidence from the world’s largest low-emission zone in London. Environ. Econ. Policy Stud. 2021, 23, 721–748. Available online: https://link.springer.com/article/10.1007/s10018-021-00307-9 (accessed on 8 August 2025). [CrossRef]
- Pestel, N.; Wozny, F. Health effects of low emission zones: Evidence from German hospitals. J. Environ. Econ. Manag. 2021, 109, 102512. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0095069621000802 (accessed on 8 August 2025). [CrossRef]
- Bernado, V.; Fageda, X.; Flores-Fillol, R. Pollution and congestion in urban areas: The effects of low emission zones. Econ. Transp. 2021, 26–27, 100221. [Google Scholar] [CrossRef]
- Margaryan, S. Low emission zones and population health. J. Health Econ. 2021, 76, 102402. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0167629620310481 (accessed on 8 August 2025). [CrossRef] [PubMed]
- Schuitema, G.; Steg, L.; Forward, S. Explaining Differences in Acceptability Before and Acceptance After the Implementation of a Congestion Charge in Stockholm. Transp. Res. Part A Policy Pract. 2010, 44, 99–109. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0965856409001256 (accessed on 8 August 2025). [CrossRef]
- Jiménez-Espada, M.; García, F.M.M.; González-Escobar, R. Citizen Perception and Ex Ante Acceptance of a Low-Emission Zone Implementation in a Medium-Sized Spanish City. Buildings 2023, 13, 249. Available online: https://www.mdpi.com/2075-5309/13/1/249 (accessed on 8 August 2025). [CrossRef]
- Chamberlain, R.C.; Fecht, D.; Davies, B.; Laverty, A.A. Health effects of low emission and congestion charging zones: A systematic review. Lancet Public Health 2023, 8, e559–e574. [Google Scholar] [CrossRef]
- Watkins, E.; Antonelli, C.; Bergeling, E. Low Emission Zones: Navigating the Social Challenges of Clean Air Policies in EU Cities—Key Aspects for Policymakers, Report; Institute for European Environmental Policy: Brussels, Belgium, 2024; Available online: https://ieep.eu/publications/low-and-zero-emission-zones-navigating-the-social-challenges-of-clean-air-policies-in-eu-cities/#:~:text=IEEP%E2%80%99s%20newly-published%20report%20Low%20Emission%20Zones%3A%20Navigating%20the,are%20detailed%20in%20a%20set%20of%20case%20studies (accessed on 15 September 2025).
- Broster, S.; Terzano, K. A systematic review of the pollution and health impacts of low emission zones. Case Stud. Transp. Policy 2025, 19, 101340. [Google Scholar] [CrossRef]
- Bergeling, E.; Marchetti, E. Social Aspects of Low Emission Zones: Sofia Case Study; IEEP: Brussels, Belgium, 2024; Available online: https://ieep.eu/wp-content/uploads/2024/08/IEEP-policy-brief_-SofiaIEEP-2024.pdf (accessed on 15 September 2025).
- Moral-Carcedo, J. Dissuasive Effect of Low Emission Zones on Traffic: The Case of Madrid Central. Transportation 2024, 51, 25–49. Available online: https://link.springer.com/article/10.1007/s11116-022-10318-4 (accessed on 8 August 2025). [CrossRef]
- Greater London Authority, The Ultra Low Emission Zone (ULEZ). Available online: https://www.london.gov.uk/programmes-strategies/environment-and-climate-change/pollution-and-air-quality/ultra-low-emission-zone-ulez-london (accessed on 8 August 2025).
- Sarmiento, L.; Wägner, N.; Zaklan, A. The air quality and well-being effects of low emission zones. J. Public Econ. 2023, 227, 105014. [Google Scholar] [CrossRef]
- Borowska-Stefańska, M.; Dulebenets, M.A.; Sahebgharani, A.; Wiśniewski, S.; Kozieł, M. Evaluating low-emission-zone impacts on urban road transport system in large city. Transp. Res. Part D Transp. Environ. 2024, 137, 104503. [Google Scholar] [CrossRef]
- Sofia Municipal Council. Regulation on the Establishment of Low-Emission Zones for Harmful Substances in the Ambient Air Within the Territory of the Sofia Municipality. Available online: https://sofia.obshtini.bg/doc/5053858 (accessed on 8 August 2025). (In Bulgarian)
- Sofia Municipal Council. Program for Managing Air Quality in the Sofia Municipality 2015–2020—Reducing Emissions and Meeting the Standards for PM10. Available online: https://www.sofia.bg/documents/d/guest/programa-kav-2015-2020 (accessed on 8 August 2025). (In Bulgarian)
- Sofia Municipal Council. Programme Supplementing the Programme for Air Quality Management in the Capital Municipality 2015–2020—Reducing Emissions and Achieving the Established Standards for PM10, Based on PM2.5 and PAH Indicators. Available online: https://council.sofia.bg/documents/d/guest/pr1-r523 (accessed on 8 August 2025). (In Bulgarian)
- Council of Ministers. National Program for Improving Ambient Air Quality (2018–2024). Available online: https://www.moew.government.bg/static/media/ups/tiny/Air_new/Natzionalna_programa_podobriavane_KAV_2018-2024.pdf (accessed on 8 August 2025). (In Bulgarian)
- Sofia Municipal Council. Comprehensive Program for Improving Air Quality in the SOFIA Municipality for the Period 2021–2026. Available online: https://www.sofia.bg/w/komponenti-okolna-sre-2 (accessed on 8 August 2025). (In Bulgarian)
- Dimitrova, R.; Velizarova, M. Assessment of the contribution of different particulate matter sources on pollution in Sofia city. Atmosphere 2021, 12, 423. [Google Scholar] [CrossRef]
- Velizarova, M.; Dimitrova, R. Impact of regulatory measures on pollutants concentration in urban street canyon—A pilot study. Lect. Notes Netw. Syst. 2023, 638, 203–215. Available online: https://link.springer.com/chapter/10.1007/978-3-031-26754-3_18 (accessed on 8 August 2025).
- Dimitrova, R.; Velizarova, M.; Gadzev, G.; Burov, A.; Brezov, D. Implementation of coupled regional-to-local scale modelling system in Bulgaria—Air quality study for Sofia city. Comptes Rendus De L’Academie Bulg. Des Sci. 2025, 78, 393–401. Available online: https://proceedings.bas.bg/index.php/cr/article/view/725 (accessed on 8 August 2025).
- OpenStreetMap Contributors, OpenStreetMap Humanitarian Data Model, OpenStreetMap Foundation. Available online: https://www.openstreetmap.org/#map=12/42.6890/23.3089 (accessed on 8 August 2025).
- Carruthers, D.J.; Edmunds, H.A.; McHugh, C.A.; Singles, R.J. Development of ADMS-Urban and comparison with data for urban areas in the UK. In Air Pollution Modeling and Its Application XII. NATO 1113—Challenges of Modern Society; Gryning, S.E., Chaumerliac, N., Eds.; Springer: Boston, MA, USA, 1998; pp. 467–475. [Google Scholar] [CrossRef]
- Stocker, J.; Hood, C.; Carruthers, D.; McHugh, C. ADMS-Urban: Developments in modelling dispersion from the city scale to the local scale. Int. J. Environ. Pollut. 2012, 50, 308–316. [Google Scholar] [CrossRef]
- Cambridge Environmental Research Consultants Ltd. ADMS-Urban. Urban Air Quality Management System; Version 5.0. User Guide. Available online: https://www.cerc.co.uk/environmental-software/assets/data/doc_userguides/CERC_ADMS-Urban5.0_User_Guide.pdf (accessed on 8 August 2025).
- Cambridge Environmental Research Consultants Ltd. Atmospheric Emissions Inventory Toolkit (EMIT) User Guide Version 3.9. Available online: https://cerc.co.uk/environmental-software/assets/data/doc_userguides/CERC_EMIT3.9_User%20Guide.pdf (accessed on 8 August 2025).
- Byun, D.W.; Ching, J.K.S. Science Algorithms the EPA Model-3 Community Multiscale Air Quality (CMAQ) Modeling System, EPA-600/R-99/030; U.S. Environmental Protection Agency, Office of Research and Development: Washington, DC, USA, 1999. Available online: https://www.cmascenter.org/cmaq/science_documentation/pdf/ch01.pdf (accessed on 8 August 2025).
- Institute for the Environment. The University of North Carolina at Chapel Hill; SMOKE v4.7 User’s Manual. 2019. Available online: https://cmascenter.org/smoke/documentation/4.7/manual_smokev47.pdf (accessed on 8 August 2025).
- Syrakov, D.; Prodanova, M.; Slavov, K.; Etropolska, I.; Ganev, K.; Miloshev, N.; Ljubenov, T. Bulgarian system for air pollution Forecast. J. Intern. Sci. Publ. Ecol. Saf. 2013, 7, 325–334. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D. A Description of the Advanced Research WRF Version 3; Note NCAR/TN-475+STR; NCAR Tech: Boulder, CO, USA, 2008. [Google Scholar] [CrossRef]
- Syrakov, D.; Spiridonov, V.; Prodanova, M.; Bogatchev, A.; Miloshev, N.; Ganev, K.; Katragkou, E.; Melas, D.; Poupkou, A.; Markakis, K.; et al. A system for assessment of climatic air pollution levels in Bulgaria: Description and first steps towards validation. Int. J. Environ. Pollut. 2011, 46, 8–42. [Google Scholar] [CrossRef]
- Georgieva, E.; Syrakov, D.; Atanassov, D.; Spasova, T.; Dimitrova, M.; Prodanova, M.; Veleva, B.; Kirova, H.; Neykova, N.; Neykova, R.; et al. Use of satellite data for air pollution modeling in Bulgaria. Earth 2021, 2, 586–604. [Google Scholar] [CrossRef]
- Georgieva, E.; Syrakov, D.; Prodanova, M.; Etropolska, I.; Slavov, K. Evaluating the performance of WRF-CMAQ air quality modelling system in Bulgaria by means of the DELTA tool. Int. J. Environ. Pollut. 2015, 57, 272–284. [Google Scholar] [CrossRef]
- Cambridge Environmental Research Consultants Ltd. Multi-Model Air Quality System User Guide Version 1.2. Available online: https://www.cerc.co.uk/environmental-software/assets/data/doc_userguides/CERC_MAQS_Coupled_System_User_Guide.pdf (accessed on 8 August 2025).
- Exposome POWERED Tools for Healthy Living in Urban Settings Project. Available online: https://expanseproject.eu (accessed on 8 August 2025).
- Shen, Y.; de Hoogh, K.; Schmitz, O.; Clinton, N.; Tuxen-Bettman, K.; Brandt, J.; Christensen, J.H.; Frohn, L.M.; Geels, C.; Karssenberg, D.; et al. Europe-wide air pollution modeling from 2000 to 2019 using geographically weighted regression. Environ. Int. 2022, 168, 107485. [Google Scholar] [CrossRef]
- Vitali, L.; Cuvelier, K.; Piersanti, A.; Monteiro, A.; Adani, M.; Amorati, R.; Bartocha, A.; D’Ausilio, A.; Durka, P.; Gama, C.; et al. A standardized methodology for the validation of air quality forecast applications (F-MQO): Lessons learnt from its application across Europe. Geosci. Model Dev. 2023, 16, 6029–6047. [Google Scholar] [CrossRef]
- Nestum Cluster. Available online: https://hpc-lab.sofiatech.bg/nestum_cluster/ (accessed on 8 August 2025).
- Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/en (accessed on 8 August 2025).
- Granier, C.; Darras, S.; van der Gon, H.D.; Doubalova, J.; Elguindi, N.; Galle, B.; Gauss, M.; Guevara, M.; Jalkanen, J.P.; Kuenen, J.; et al. The Copernicus Atmosphere Monitoring Service Global and Regional Emissions; Copernicus Atmosphere Monitoring Service (CAMS) Report; Copernicus Atmosphere Monitoring Service 2019. [CrossRef]
- Simpson, D.; Benedictow, A.; Berge, H.; Bergström, R.; Emberson, L.D.; Fagerli, H.; Flechard, C.R.; Hayman, G.D.; Gauss, M.; Jonson, J.E.; et al. The EMEP MSC-W Chemical Transport Model—Technical Description. ACP 2012, 12, 7825–7865. [Google Scholar] [CrossRef]
- Brezov, D.; Burov, A. Ensemble Learning Traffic Model for Sofia: A Case Study. Appl. Sci. 2023, 13, 4678. [Google Scholar] [CrossRef]
- Carslaw, D.C.; Beevers, S.D. The efficacy of low emission zones in central London as a means of reducing nitrogen dioxide concentrations. Trans. Res. Part D Trans. Environ. 2002, 7, 49–64. [Google Scholar] [CrossRef]
- Holman, C.; Harrison, R.; Querol, X. Review of the efficacy of low emission zones to improve urban air quality in European cities. Atmos. Environ. 2015, 111, 161–169. [Google Scholar] [CrossRef]
- Williamson, T.; Marner, B.; Beattie, C. Quantifying the Impact of LEZs and ZEZs: Evidence Review, Report 10-12009C-10-D02; Logika Group Air Quality Consultants Ltd. Available online: https://cleancitiescampaign.org/wp-content/uploads/2022/10/12009C_Quantifying-the-impact-of-low-and-zeroemission-zones-Evidence-Review_final.pdf (accessed on 15 September 2025).
- Transport and Environment. Low-Emission Zones Are a Success—But They Must Now Move to Zero-Emission Mobility. Available online: https://www.transportenvironment.org (accessed on 8 August 2025).
- Vitanova, L.L.; Shirinyan, E.; Trendafilova, T.; Petrova-Antonova, D. Understanding Sofia’s travel dynamics: Study of private traffic patterns and urban mobility. Transp. Res. Interdiscip. Perspect. 2025, 30, 101352. [Google Scholar] [CrossRef]
- European Environmental Agency. Bulgaria—Air Pollution Country Fact Sheet 2024. Available online: https://www.eea.europa.eu/en/topics/in-depth/air-pollution/air-pollution-country-fact-sheets-2024/bulgaria-air-pollution-country-fact-sheet (accessed on 8 August 2025).
- Directive (EU) 2019/1161 on the Promotion of Clean and Energy-Efficient Road Transport Vehicles. Available online: https://eur-lex.europa.eu/eli/dir/2019/1161/oj/eng (accessed on 8 August 2025).
- Popov, I.; Hlebarov, I.; Raeva, D. Is There Nitrogen Dioxide Pollution of the Air in Sofia? Available online: https://www.zazemiata.org/wp-content/uploads/2022/05/Za-Zemyata-Doklad-NO2-Online.pdf (accessed on 8 August 2025). (In Bulgarian).
- Burov, A.; Trifonov, D. Data Analysis of Nitrogen Dioxide Levels in Sofia: Analysis of Data from 42 Points Collected Within the Period 3 June 2019–31 May 2020 (Version 2.0). Ecological Association “Za Zemiata”. Available online: https://www.zazemiata.org/resources/doklad-azoten-dioksid-sofiya (accessed on 8 August 2025). (In Bulgarian).
- Popov, I.; Hlebarov, I. Nitrogen Dioxide Air Pollution Before, During and After the Low-Emission Transport Zone in Sofia—With a Review of Data from 2021 to 2024. Ecological Association “For the Earth”. Available online: https://www.zazemiata.org/novi-danni-no2-zamyrsiavane (accessed on 8 August 2025). (In Bulgarian).
- Schindler, M.; Caruso, G. Urban compactness and the trade-off between air pollution emission and exposure: Lessons from a spatially explicit theoretical model. Comput. Environ. Urban Syst. 2014, 45, 13–23. [Google Scholar] [CrossRef]
- Rodríguez, M.C.; Dupont-Courtade, L.; Oueslati, W. Air pollution and urban structure linkages: Evidence from European cities. Renew. Sustain. Energy Rev. 2016, 53, 1–9. [Google Scholar] [CrossRef]
- Khomenko, S.; Pisoni, E.; Thunis, P.; Bessagnet, B.; Cirach, M.; Iungman, T.; Barboza, E.P.; Khreis, H.; Mueller, N.; Tonne, C.; et al. Spatial and sector-specific contributions of emissions to ambient air pollution and mortality in European cities: A health impact assessment. Lancet Public Health 2023, 8, e546–e558. [Google Scholar] [CrossRef]
- WHO World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. 2021. Available online: https://www.who.int/publications/i/item/9789240034228 (accessed on 8 August 2025).
- European Council. On Ambient Air Quality and Cleaner Air for Europe 2024/2881. Available online: http://data.europa.eu/eli/dir/2024/2881/oj (accessed on 8 August 2025).
- Boulter, P.G.; Thorpe, A.J.; Harrison, R.M.; Allen, A.G. Road Vehicle Non-Exhaust Particulate Matter: Final Report on Emission Modelling, CPEA23/SPU82 Project Report. 2007. Available online: https://drive.google.com/drive/folders/1I5BJHt94D-JcGCMzFiq175QCFa0VuyUJ?usp=sharing (accessed on 8 August 2025).
- Sofia Municipality. СОА17-ВК66-4393; Sofia Municipality: Sofia, Bulgaria, 2017. (In Bulgarian)
- Ministry of Interior. 328600–72587. 2017. Available online: https://en.wikipedia.org/wiki/Ministry_of_Interior_(Bulgaria) (accessed on 23 September 2025). (In Bulgarian)
- Ministry of Interior. Registered Road Vehicles. 2025. Available online: https://data.egov.bg/organisation/c3305229-9a50-48de-99c9-2e1028e8eb8b/datasets?q=%D0%9F%D0%9F%D0%A1 (accessed on 8 August 2025). (In Bulgarian)
- The Real Urban Emissions (TRUE) Initiative. Impacts of a Low-Emission Zone in Sofia. 2021. Available online: https://www.trueinitiative.org/data/publications/the-impact-of-a-low-emission-zone-in-sofia (accessed on 8 August 2025).
- BIM Consulting. White Paper on the Introduction and Effective Operation of Low Emission Zones for Motor Vehicles on the Territory of Sofia Municipality. Innoair. 2022. Available online: https://innoair-sofia.eu/images/documents/documents-bg/04_2_1_White_Book_V4_m.pdf (accessed on 8 August 2025).
- Sofia Municipal Council. Ordinance on the Creation of Zones with Low Emissions of Harmful Substances in the Atmospheric Air on the Territory of Sofia Municipality. 2022. Available online: https://sofia.obshtini.bg/doc/5053858?searchText=наредба%20зoни%20с%20ниски%20емисии (accessed on 8 August 2025). (In Bulgarian)
- Burov, A.; Brezov, D. Transport Emissions from Sofia’s Streets—Inventory, Scenarios, and Exposure Setting. In Environmental Protection and Disaster Risks; Dobrinkova, N., Nikolov, O., Eds.; Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2023; Volume 638. [Google Scholar] [CrossRef]
- Sofia Municipality. Noise. 2023. Available online: https://www.sofia.bg/components-environment-noise (accessed on 8 August 2025).
- Ministry of Transport Information Technologies and Communications. Ordinance No. H-32 of 16.12.2011 on Periodic Inspections to Check the Technical Condition of Road Vehicles. 2023. Available online: https://rta.government.bg/upload/11356/n32.pdf (accessed on 8 August 2025). (In Bulgarian)
- Sofia Municipal Council. Ordinance on the Organization of Traffic on the Territory of Sofia Municipality. 2025. Available online: https://sofia.obshtini.bg/doc/108193 (accessed on 8 August 2025). (In Bulgarian)
NO2 | |||
Simulation | Annual mean | Cold period | Warm period |
Base year 2018 | 99.67 | 110.01 | 92.29 |
Small ring 2022 | 75.73 | 84.02 | 69.81 |
Large ring 2026 | 65.18 | 73.11 | 59.51 |
PM2.5 | |||
Simulation | Annual mean | Cold period | Warm period |
Base year 2018 | 14.63 | 19.31 | 11.29 |
Small ring 2022 | 13.98 | 18.70 | 10.61 |
Large ring 2026 | 13.87 | 18.57 | 10.52 |
PM10 | |||
Simulation | Annual mean | Cold period | Warm period |
Base year 2018 | 23.14 | 29.58 | 18.54 |
Small ring 2022 | 22.34 | 28.63 | 17.85 |
Large ring 2026 | 22.25 | 28.52 | 17.77 |
NO2 | ||||
Simulation | Mean | January | February | December |
Base year 2018 | 111.42 | 128.87 | 93.70 | 111.68 |
Small ring 2022 | 85.26 | 99.31 | 70.80 | 85.68 |
Large ring 2026 | 74.36 | 87.19 | 60.98 | 74.93 |
PM2.5 | ||||
Simulation | Mean | January | February | December |
Base year 2018 | 21.01 | 24.99 | 15.48 | 22.56 |
Small ring 2022 | 20.06 | 23.87 | 14.69 | 21.62 |
Large ring 2026 | 19.94 | 23.72 | 14.59 | 21.50 |
PM10 | ||||
Simulation | Mean | January | February | December |
Base year 2018 | 31.50 | 37.37 | 24.04 | 33.08 |
Small ring 2022 | 30.54 | 36.23 | 23.24 | 32.15 |
Large ring 2026 | 30.42 | 36.09 | 23.13 | 32.05 |
Pollutant Name | PM10 | PM2.5 | NO2 | CO * | O3 |
---|---|---|---|---|---|
Previous periods | 37.49 | 26.61 | 44.55 | 4.25 | 68.17 |
LEZ | 48.08 | 35.98 | 46.35 | 3.61 | 77.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitrova, R.; Velizarova, M.; Burov, A.; Brezov, D.; Dzhambov, A.M.; Gadzhev, G. Numerical Simulations and Assessment of the Effect of Low-Emission Zones in Sofia, Bulgaria. Urban Sci. 2025, 9, 402. https://doi.org/10.3390/urbansci9100402
Dimitrova R, Velizarova M, Burov A, Brezov D, Dzhambov AM, Gadzhev G. Numerical Simulations and Assessment of the Effect of Low-Emission Zones in Sofia, Bulgaria. Urban Science. 2025; 9(10):402. https://doi.org/10.3390/urbansci9100402
Chicago/Turabian StyleDimitrova, Reneta, Margret Velizarova, Angel Burov, Danail Brezov, Angel M. Dzhambov, and Georgi Gadzhev. 2025. "Numerical Simulations and Assessment of the Effect of Low-Emission Zones in Sofia, Bulgaria" Urban Science 9, no. 10: 402. https://doi.org/10.3390/urbansci9100402
APA StyleDimitrova, R., Velizarova, M., Burov, A., Brezov, D., Dzhambov, A. M., & Gadzhev, G. (2025). Numerical Simulations and Assessment of the Effect of Low-Emission Zones in Sofia, Bulgaria. Urban Science, 9(10), 402. https://doi.org/10.3390/urbansci9100402