Framework for Enhancing Urban Living Through Sustainable Plant Selection in Residential Green Spaces
Abstract
:1. Introduction
1.1. Background on Residential Greening
1.2. Importance of Proper Plant Selection
1.3. Need for the Study
- To review the various plant species documented in the literature that enhance ecological functions and support biodiversity in urban residential green spaces, we aim to identify species exhibiting high water-use efficiency, low allergenic potential, minimal maintenance costs, and reduced negative impacts on humans and the environment.
- To make a framework for the plant selection for respective Köppen climate classifications by considering environmental benefits to address urban challenges and improve quality of life.
2. Materials and Methods
3. Factors Influencing Plant Selection
3.1. Climate and Microclimate
3.2. Soil Conditions
3.3. Space Layout
3.4. Socioeconomic Factors
3.5. Aesthetics
3.6. Environmental Benefits
3.7. Pest and Disease Resistance
3.8. Human Health and Well-Being
3.9. Maintenance
3.10. Potential Invasiveness
4. Categories of Plants for Residential Greening
4.1. Trees
4.2. Shrubs and Groundcovers
4.3. Flowering Plants
4.4. Edible Plants
4.5. Green Roofs
4.6. Green Walls
5. Discussion
- Native status and resilience refer to whether the plant is indigenous to the region, which contributes to its resilience and reduces the risk of ecological disruption. The plant’s tolerance to climate stressors—such as drought, heat, poor or dry soil, salt, air pollution, frost, and wind—ensures its survivability in varying environmental conditions.
- Plant structure and foliage characteristics encompass the plant’s height, spread, shape, and overall growth habit, including factors such as crown diameter, LAI, and leaf area density. These characteristics should be considered to enhance shade provision and cooling effects.
- Water needs and maintenance requirements include the plant’s moisture levels and watering needs. Selecting species with low water requirements is imperative for sustainability in regions with limited water availability. Additionally, consider the time and effort needed for tasks such as watering, pruning, weeding, fertilizing, and plant replacement. Favoring species that are low-maintenance, pest-resistant, and non-allergenic can help ensure safe, sustainable, and low-intervention gardens.
- Growth speed refers to the rate at which the plant grows—slow, moderate, or fast. Choose species that match the intended purpose, whether for rapid coverage or long-term establishment.
- Edibility indicates whether the plant can be used in cooking, tea, or other culinary applications. Integrating edible and medicinal plants reflects a trend towards sustainability and cultural preservation.
- Aesthetic appeal describes the visual impact of the plant’s foliage and flowers, including their shape, color, and form. Select species that enhance the beauty of the environment through striking flowers or attractive foliage.
- Blooming period specifies the months during which the plant blooms, ensuring either year-round or seasonal visual interest and ecological benefits.
- Ecological impact evaluates the plant’s ability to support biodiversity by attracting pollinators, insects, or wildlife. Consider how the plant contributes to local ecosystems and enhances the regional environmental quality.
Limitations of the Present Study and Further Scope
6. Recommendation of Plant Species for Residential Greenery
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LAI | Leaf area index |
SDG | Sustainable development goal |
UGS | Urban green spaces |
UHI | Urban heat island |
VGS | Vertical greening system |
References
- De Barros Ruas, R.; Costa, L.M.S.; Bered, F. Urbanization Driving Changes in Plant Species and Communities–A Global View. Glob. Ecol. Conserv. 2022, 38, e02243. [Google Scholar] [CrossRef]
- UNDESA. The Sustainable Development Goals Report 2024; United Nations. Available online: https://unstats.un.org/sdgs/report/2024/ (accessed on 15 September 2024).
- Izakovicova, Z.; Petrovic, F.; Pauditsova, E. The Impacts of Urbanisation on Landscape and Environment: The Case of Slovakia. Sustainability 2021, 14, 60. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Chafer, M. Technological Options and Strategies Towards Zero Energy Buildings Contributing to Climate Change Mitigation: A Systematic Review. Energy Build. 2020, 219, 110009. [Google Scholar] [CrossRef]
- Barbosa, V.R.F.; Damasceno, R.M.; Dias, M.A.; Castelhano, F.J.; Roig, H.L.; Requia, W.J. Ecosystem Services Provided by Green Areas and Their Implications for Human Health in Brazil. Ecol. Indic. 2024, 161, 111975. [Google Scholar] [CrossRef]
- Lu, Y.; Ferranti, E.J.S.; Chapman, L.; Pfrang, C. Assessing Urban Greenery by Harvesting Street View Data: A Review. Urban For. Urban Green. 2023, 83, 127917. [Google Scholar] [CrossRef]
- Säumel, I.; Sanft, S.J. Crisis Mediated New Discoveries, Claims and Encounters: Changing Use and Perception of Residential Greenery in Multistory Housing in Berlin, Germany. Urban For. Urban Green. 2022, 74, 127622. [Google Scholar] [CrossRef]
- Chang, Y.H.; Chen, T.H.; Chung, H.Y.; Hsiao, H.Y.; Tseng, P.C.; Wang, Y.C.; Lung, S.C.C.; Su, H.J.; Tsay, Y.S. The Health Risk Reduction of PM2.5 via a Green Curtain System in Taiwan. Build. Environ. 2024, 255, 111459. [Google Scholar] [CrossRef]
- Pragati, S.; Shanthi Priya, R.; Senthil, R.; Pradeepa, C. Simulation of the Energy Performance of a Building with Green Roofs and Green Walls in a Tropical Climate. Sustainability 2023, 15, 2006. [Google Scholar] [CrossRef]
- Ávila-Hernández, A.; Simá, E.; Ché-Pan, M. Research and Development of Green Roofs and Green Walls in Mexico: A Review. Sci. Total Environ. 2022, 856, 158978. [Google Scholar] [CrossRef]
- Wang, A.; Wang, J.; Cao, S.-J.; Zhang, R. Mitigating Urban Heat and Air Pollution Considering Green and Transportation Infrastructure. Transp. Res. Part A Policy Pract. 2024, 184, 104079. [Google Scholar] [CrossRef]
- Priya, U.K.; Senthil, R. Enhancing Sustainable Thermal Comfort of Tropical Urban Buildings with Indoor Plants. Buildings 2024, 14, 2353. [Google Scholar] [CrossRef]
- Gonçalves, S.F.; De Paula Lourenço, A.C.; De Sousa Bueno Filho, J.S.; De Toledo, M.C.B. Characteristics of Residential Backyards that Contribute to Conservation and Diversity of Urban Birds: A Case Study in a Southeastern Brazilian City. Urban For. Urban Green. 2021, 61, 127095. [Google Scholar] [CrossRef]
- Lerman, S.B.; Warren, P.S. The Conservation Value of Residential Yards: Linking Birds and People. Ecol. Appl. 2011, 21, 1327–1339. [Google Scholar] [CrossRef] [PubMed]
- Schäffer, B.; Brink, M.; Schlatter, F.; Vienneau, D.; Wunderli, J.M. Residential Green is Associated with Reduced Annoyance to Road Traffic and Railway Noise but Increased Annoyance to Aircraft Noise Exposure. Environ. Int. 2020, 143, 105885. [Google Scholar] [CrossRef]
- Dumortier, J.; Daudet Medza Mve, S.; Doungous, O.; Gabon, M.; Gabon, P. Development and Management of Green Spaces in Sub-Saharan Africa: What Roles for Native Plant Species? Int. J. Adv. Res. 2023, 11, 163–171. [Google Scholar] [CrossRef]
- Li, C.; Ji, S.; Huang, M.; Zhao, R.; Sun, R.; Zhao, D.; Liu, J.; Guo, X. Isotope-Based Water-Use Efficiency of Major Greening Plants in a Sponge City in Northern China. PLoS ONE 2019, 14, e0220083. [Google Scholar] [CrossRef]
- Krishnan, G.; Shanthi Priya, R.; Senthil, R. Ecological Effects of Land Use and Land Cover Changes on Lakes in Urban Environments. Sustain. Dev. 2024, 1–18. [Google Scholar] [CrossRef]
- Zhang, M.-J.; Dong, R.; Wang, X.-X. Plants with Health Risks Undermine Residents’ Perceived Health Status, Evaluations and Expectations of Residential Greenery. Landsc. Urban Plan. 2021, 216, 104236. [Google Scholar] [CrossRef]
- Mousavi Samimi, P.; Shahhosseini, H. Evaluation of Resident’s Indoor Green Space Preferences in Residential Complexes Based on Plants’ Characteristics. Indoor Built Environ. 2021, 30, 859–868. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, Y.; Yao, S.; Akram, M.A.; Hu, W.; Dong, L.; Li, H.; Wei, M.; Gong, H.; Xie, S.; et al. Impact of Climate Change on Plant Species Richness Across Drylands in China: From Past to Present and into the Future. Ecol. Indic. 2021, 132, 108288. [Google Scholar] [CrossRef]
- Lo, A.Y.; Byrne, J.A.; Jim, C.Y. How Climate Change Perception Is Reshaping Attitudes Towards the Functional Benefits of Urban Trees and Green Space: Lessons from Hong Kong. Urban For. Urban Green. 2017, 23, 74–83. [Google Scholar] [CrossRef]
- Macel, M.; Lawson, C.S.; Igual, J.M.; Bezemer, T.M.; Rodriguez-Barrueco, C.; Lanta, V.; Dolezžal, J.; Steinger, T.; Crémieux, L.; Šmilauerová, M.; et al. Climate vs. Soil Factors in Local Adaptation of Two Common Plant Species. Ecology 2007, 88, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Alam, H.; Ppoyil, S.B.T.; Khattak, J.Z.K.; Ksiksi, T.S.; Kurup, S.S. Landscaping with Native Plants in the UAE: A Review. Emir. J. Food Agric. 2017, 29, 729. [Google Scholar] [CrossRef]
- Farrell, C.; Livesley, S.J.; Arndt, S.K.; Beaumont, L.; Burley, H.; Ellsworth, D.; Esperon-Rodriguez, M.; Fletcher, T.D.; Gallagher, R.; Ossola, A.; et al. Can We Integrate Ecological Approaches to Improve Plant Selection for Green Infrastructure? Urban For. Urban Green. 2022, 76, 127732. [Google Scholar] [CrossRef]
- Lin, B.B.; Egerer, M.H.; Liere, H.; Jha, S.; Philpott, S.M. Soil Management Is Key to Maintaining Soil Moisture in Urban Gardens Facing Changing Climatic Conditions. Sci. Rep. 2018, 8, 35731. [Google Scholar] [CrossRef]
- Radhakrishnan, M.; Kenzhegulova, I.; Eloffy, M.G.; Ibrahim, W.A.; Zevenbergen, C.; Pathirana, A. Development of Context-Specific Sustainability Criteria for Selection of Plant Species for Green Urban Infrastructure: The Case of Singapore. Sustain. Prod. Consum. 2019, 20, 316–325. [Google Scholar] [CrossRef]
- Misni, A. Strategically Designed Landscaping Around Houses Produces an Extensive Cooling Effect. Procedia Soc. Behav. Sci. 2016, 222, 693–701. [Google Scholar] [CrossRef]
- Peterson, M.N.; Rodriguez, S.; Mchale, M.; Thurmond, B.; Bondell, H.D.; Cook, M. Predicting Native Plant Landscaping Preferences in Urban Areas. Sustain. Cities Soc. 2012, 5, 70–76. [Google Scholar] [CrossRef]
- Rajagopal, P.; Priya, R.S.; Senthil, R. A Review of Recent Developments in the Impact of Environmental Measures on Urban Heat Island. Sustain. Cities Soc. 2023, 88, 104279. [Google Scholar] [CrossRef]
- Clarke, L.W.; Yu, Z.; Jenerette, G.D.; Li, L. Drivers of Plant Biodiversity and Ecosystem Service Production in Home Gardens Across the Beijing Municipality of China. Urban Ecosyst. 2014, 17, 741–760. [Google Scholar] [CrossRef]
- Naigaga, H.; Sseremba, G.; Noba, K.; Ssekandi, J.; Mbaye, M.S.; Ngom, A. Ethnobotanical Knowledge of Home Garden Plant Species and Its Effect on Home Garden Plant Diversity in Thies Region of Senegal. Environ. Dev. Sustain. 2020, 23, 7524–7536. [Google Scholar] [CrossRef]
- Kendal, D.; Williams, K.J.H.; Williams, N.S.G. Plant Traits Link People’s Plant Preferences to the Composition of Their Gardens. Landsc. Urban Plan. 2011, 105, 34–42. [Google Scholar] [CrossRef]
- Francini, A.; Romano, D.; Toscano, S.; Ferrante, A. The Contribution of Ornamental Plants to Urban Ecosystem Services. Earth 2022, 3, 1258–1274. [Google Scholar] [CrossRef]
- Qin, J.; Song, K.; You, W.; Wang, H. Does Species Diversity Affect the Function of Residential Greening in the Yangtze River Delta. Landsc. Ecol. Eng. 2014, 11, 129–137. [Google Scholar] [CrossRef]
- Mwageni, N.; Kiunsi, R. Green Spaces in Residential Areas of Dar es Salaam City: Types, Coverage and Uses. J. Sustain. Dev. 2021, 14, 121. [Google Scholar] [CrossRef]
- Amir, A.F.; Mohd Hussain, N.H. Preference of Common Garden Pest Towards Edible Plants. Malays. J. Sustain. Environ. 2022, 9, 36. [Google Scholar] [CrossRef]
- Ranca, A.-M.; Cîlț, M.; Bolos, P.; Artem, V.; Petrescu, A.; Ene, A.S. Controlling the Pests with the Help of Plants in Organic Vineyards. Agric. Sci. 2019, 109, 154–169. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, F.; Zhang, Y.; Temir, E.; Zhou, X.; Shangguan, Y.; Zhang, D.; Cai, Z. Combination of Functional Plants Conserves Predators, Repels Pests, and Enhances Biological Control of Aphis spiraecola in Apple Orchards. Biol. Control 2024, 192, 105512. [Google Scholar] [CrossRef]
- Baruch, Z.; Liddicoat, C.; Cando-Dumancela, C.; Laws, M.; Morelli, H.; Weinstein, P.; Young, J.M.; Breed, M.F. Increased plant species richness associates with greater soil bacterial diversity in urban green spaces. Environ. Res. 2020, 196, 110425. [Google Scholar] [CrossRef]
- Pal, T.; Maiti, C.; Paul, A. Analysis of Urban Green Spaces using Geospatial Techniques: A case study of Chandannagar Municipal Corporation, Hugli, West Bengal, India. World J. Adv. Res. Rev. 2023, 19, 370–390. [Google Scholar] [CrossRef]
- Oh, J.W. Pollen Allergy in a Changing Planetary Environment. Allergy Asthma Immunol. Res. 2022, 14, 168–181. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Yang, F.; Bao, Z.; Nan, X. A study on the impact of Visible Green Index and vegetation structures on brain wave change in residential landscape. Urban For. Urban Green. 2021, 64, 127299. [Google Scholar] [CrossRef]
- Ren, Y.; Ge, Y.; Ma, D.; Song, X.; Shi, Y.; Pan, K.; Qu, Z.; Guo, P.; Han, W.; Chang, J. Enhancing plant diversity and mitigating BVOC emissions of urban green spaces through the introduction of ornamental tree species. Urban For. Urban Green. 2017, 27, 305–313. [Google Scholar] [CrossRef]
- Wilkaniec, A.; Borowiak-Sobkowiak, B.; Irzykowska, L.; Breś, W.; Świerk, D.; Pardela, Ł.; Durak, R.; Środulska-Wielgus, J.; Wielgus, K. Biotic and abiotic factors causing the collapse of Robinia pseudoacacia L. veteran trees in urban environments. PLoS ONE 2021, 16, e0245398. [Google Scholar] [CrossRef]
- Gamage, A.; Gangahagedara, R.; Gamage, J.; Jayasinghe, N.; Kodikara, N.; Suraweera, P.; Merah, O. Role of organic farming for achieving sustainability in agriculture. Farming Syst. 2023, 1, 100005. [Google Scholar] [CrossRef]
- Priya, U.K.; Senthil, R. Analysis of urban residential greening in tropical climates using quantitative methods. Environ. Sci. Pollut. Res. 2024, 31, 44096–44119. [Google Scholar] [CrossRef]
- Madushika, U.G.D.; Ramachandra, T.; Zainudeen, N. Energy and life cycle cost saving potential of buildings using green walls: A case study from Sri Lanka. J. Green Build. 2022, 17, 179–197. [Google Scholar] [CrossRef]
- Ismail, W.Z.W.; Ariff, N.R.M.; Ahmad, S.S.; Kamarudin, H. Green roof maintenance towards sustaining neighborhood spaces of high-rise residential developments in Malaysia. Adv. Sci. Lett. 2016, 22, 1502–1508. [Google Scholar] [CrossRef]
- Fascetti, S.; Potenza, G.; Castronuovo, D.; Candido, V. Wild geophytes of ornamental interest in the native flora of southern Italy. Ital. J. Agron. 2014, 9, 99–106. [Google Scholar] [CrossRef]
- Trotta, L.B.; Baiser, B.; Possley, J.; Li, D.; Lange, J.; Martin, S.; Sessa, E.B. Community phylogeny of the globally critically imperiled pine rockland ecosystem. Am. J. Bot. 2018, 105, 1735–1747. [Google Scholar] [CrossRef]
- Fernandez, R.D.; Ceballos, S.J.; Aragón, R.; Malizia, A.; Montti, L.; Whitworth-Hulse, J.I.; Castro-Díez, P.; Grau, H.R. A Global Review of Ligustrum Lucidum (OLEACEAE) Invasion. Bot. Rev. 2020, 86, 93–118. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wei, M.; Wang, S.; Wu, B.; Cheng, H. Erigeron annuus (L.) Pers. and Solidago canadensis L. antagonistically affect community stability and community invasibility under the co-invasion condition. Sci. Total Environ. 2020, 716, 137128. [Google Scholar] [CrossRef] [PubMed]
- El-Barougy, R.F.; Dakhil, M.A.; Abdelaal, M.; El-Keblawy, A.; Bersier, L.-F. Trait-environment relationships reveal the success of alien plants invasiveness in an urbanized landscape. Plants 2021, 10, 1519. [Google Scholar] [CrossRef] [PubMed]
- Czortek, P.; Królak, E.; Borkowska, L.; Bielecka, A. Effects of surrounding landscape on the performance of Solidago canadensis L. and plant functional diversity on heavily invaded post-agricultural wastelands. Biol. Invasions 2023, 25, 2477–2494. [Google Scholar] [CrossRef]
- Sittaro, F.; Hutengs, C.; Vohland, M. Which factors determine the invasion of plant species? Machine learning based habitat modelling integrating environmental factors and climate scenarios. Int. J. Appl. Earth Obs. Geoinf. 2023, 116, 103158. [Google Scholar] [CrossRef]
- Marinova, A.; Anev, S. Gas-exchange responses to light variation of tree species in urban landscaping. For. Ideas 2023, 29, 287–299. [Google Scholar]
- Pušić, M.; Narandžić, T.; Ostojić, J.; Grubač, M.; Ljubojević, M. Assessment and potential of ecosystem services of ornamental dendroflora in public green areas. Environ. Sci. Pollut. Res. 2023, 30, 2850–2865. [Google Scholar] [CrossRef]
- Vojík, M.; Kadlecová, M.; Kutlvašr, J.; Pergl, J.; Berchová Bímová, K. Two shades of grey: Effect of temperature on seed germination of the escaping ornamental species Lychnis coronaria and Stachys byzantina. Plant Ecol. 2022, 223, 1121–1135. [Google Scholar] [CrossRef]
- Singh, S.; Miller, C.T.; Singh, P.; Sharma, R.; Rana, N.; Dhakad, A.K.; Dubey, R.K. A comprehensive review on ecology, life cycle and use of Tecoma stans (bignoneaceae). Bot. Stud. 2024, 65, 6. [Google Scholar] [CrossRef]
- Hazarika, R.; Lapin, K.; Bindewald, A.; Vaz, A.S.; Marinšek, A.; La Porta, N.; Detry, P.; Berger, F.; Barič, D.; Simčič, A.; et al. Balancing Risks and Benefits: Stakeholder Perspective on Managing Non-Native Tree Species in the European Alpine Space. Mitig. Adapt. Strateg. Glob. Chang. 2024, 29, 55. [Google Scholar] [CrossRef]
- Werchan, M.; Werchan, B.; Bogawski, P.; Mousavi, F.; Metz, M.; Bergmann, K.-C. An emerging aeroallergen in Europe: Tree-of-Heaven (Ailanthus altissima [Mill.] Swingle) inventory and pollen concentrations–Taking a metropolitan region in Germany as an example. Sci. Total Environ. 2024, 930, 172519. [Google Scholar] [CrossRef] [PubMed]
- Kawawa Abonyo, C.R.; Oduor, A.M.O. Artificial night-time lighting and nutrient enrichment synergistically favour the growth of alien ornamental plant species over co-occurring native plants. J. Ecol. 2024, 112, 319–337. [Google Scholar] [CrossRef]
- Olivero-Lora, S.; Meléndez-Ackerman, E.; Santiago, L.; Santiago-Bartolomei, R.; García-Montiel, D. Attitudes Toward Residential Trees and Awareness of Tree Services and Disservices in a Tropical City. Sustainability 2019, 12, 117. [Google Scholar] [CrossRef]
- Wong, N.H.; Tan, C.L.; Kolokotsa, D.D.; Takebayashi, H. Greenery as a Mitigation and Adaptation Strategy to Urban Heat. Nat. Rev. Earth Environ. 2021, 2, 166–181. [Google Scholar] [CrossRef]
- De Abreu-Harbich, L.V.; Labaki, L.C.; Matzarakis, A. Effect of Tree Planting Design and Tree Species on Human Thermal Comfort in the Tropics. Landsc. Urban Plan. 2015, 138, 99–109. [Google Scholar] [CrossRef]
- Zhang, K.; Qi, F.; Zhang, T.; Zhou, L. The Impact of Trees on the Peak Cooling Load of Detached Rural Residences. Energy Build. 2024, 317, 114311. [Google Scholar] [CrossRef]
- Rahman, M.A.; Stratopoulos, L.M.; Moser-Reischl, A.; Zölch, T.; Häberle, K.H.; Rötzer, T.; Pretzsch, H.; Pauleit, S. Traits of Trees for Cooling Urban Heat Islands: A Meta-Analysis. Build. Environ. 2020, 170, 106606. [Google Scholar] [CrossRef]
- Liang, D.; Huang, G. Influence of Urban Tree Traits on Their Ecosystem Services: A Literature Review. Land 2023, 12, 1699. [Google Scholar] [CrossRef]
- Wong, N.H.; Chen, Y.; Ong, C.L.; Sia, A. Investigation of Thermal Benefits of Rooftop Garden in the Tropical Environment. Build. Environ. 2003, 38, 261–270. [Google Scholar] [CrossRef]
- Yahia, M.W.; Johansson, E. Landscape Interventions in Improving Thermal Comfort in the Hot Dry City of Damascus, Syria—The Example of Residential Spaces with Detached Buildings. Landsc. Urban Plan. 2014, 125, 1–16. [Google Scholar] [CrossRef]
- Junid, S.A.M.A.; Thani, S.K.S.O.; Rashid, Z.A. Trees’ Cooling Effect on Surrounding Air Temperature Monitoring System: Implementation and Observation. Int. J. Simul. Syst. Sci. Technol. 2020, 15, 70–77. [Google Scholar] [CrossRef]
- Ali, S.B.; Patnaik, S. Assessment of the Impact of Urban Tree Canopy on Microclimate in Bhopal: A Devised Low-Cost Traverse Methodology. Urban Clim. 2019, 27, 430–445. [Google Scholar] [CrossRef]
- Misni, A. The Impact of Vegetation on Thermal Performance. Asian J. Behav. Stud. 2018, 3, 147. [Google Scholar] [CrossRef]
- Ali, S.B.; Patnaik, S. Thermal Comfort in Urban Open Spaces: Objective Assessment and Subjective Perception Study in Tropical City of Bhopal, India. Urban Clim. 2018, 24, 954–967. [Google Scholar] [CrossRef]
- Shahidan, M.F.; Shariff, M.K.; Jones, P.; Salleh, E.; Abdullah, A.M. A Comparison of Mesua ferrea L. and Hura crepitans L. for Shade Creation and Radiation Modification in Improving Thermal Comfort. Landsc. Urban Plan. 2010, 97, 168–181. [Google Scholar] [CrossRef]
- Shahidan, M.F.; Jones, P.J.; Gwilliam, J.; Salleh, E. An Evaluation of Outdoor and Building Environment Cooling Achieved Through Combination Modification of Trees with Ground Materials. Build. Environ. 2012, 58, 245–257. [Google Scholar] [CrossRef]
- Asgarzadeh, M.; Vahdati, K.; Lotfi, M.; Arab, M.; Babaei, A.; Naderi, F.; Soufi, M.P.; Rouhani, G. Plant Selection Method for Urban Landscapes of Semi-Arid Cities (A Case Study of Tehran). Urban For. Urban Green. 2014, 13, 450–458. [Google Scholar] [CrossRef]
- Fahmy, M.; Sharples, S.; Yahiya, M. LAI-Based Tree Selection for Mid-Latitude Urban Developments: A Microclimatic Study in Cairo, Egypt. Build. Environ. 2010, 45, 345–357. [Google Scholar] [CrossRef]
- Jeong, M.; Bae, J.; Yoo, G. Urban Roadside Greenery as a Carbon Sink: Systematic Assessment Considering Understory Shrubs and Soil Respiration. Sci. Total Environ. 2024, 927, 172286. [Google Scholar] [CrossRef]
- Araujo, M.K.D.C.D.; Bastos, K.D.O.; Antunes, A.M. Influence of Urban Greenery on Thermal Comfort: A Case Study in a Tropical City. Rev. Nac. Gerenciamento Cid. 2023, 11, 84. [Google Scholar] [CrossRef]
- Pan, X.; Dang, X.; Gao, Y.; Wang, Z. Effects of Row Spaces on Windproof Effectiveness of Simulated Shrubs with Different Form Configurations. Earth Space Sci. 2021, 8, e2021EA001775. [Google Scholar] [CrossRef]
- Duan, Y.; Bai, H.; Yang, L.; Li, S.; Zhu, Q. Impact of Seasonal Changes in Urban Green Spaces with Diverse Vegetation Structures on College Students’ Physical and Mental Health. Sci. Rep. 2024, 14, 16277. [Google Scholar] [CrossRef] [PubMed]
- Nugroho, A.M. Vertical Landscape for Passive Cooling in Tropical House. Procedia Environ. Sci. 2014, 20, 141–145. [Google Scholar] [CrossRef]
- Galagoda, R.; Jayasinghe, G.; Halwatura, R.; Rupasinghe, H. The Impact of Urban Green Infrastructure as a Sustainable Approach Towards Tropical Micro-Climatic Changes and Human Thermal Comfort. Urban For. Urban Green. 2018, 34, 1–9. [Google Scholar] [CrossRef]
- Abdul-Rahman, N.; Wang, C.; Rahim, A.M.; Loo, S.C.; Miswan, N. Vertical Greenery Systems (VGS) in Urban Tropics. Open House Int. 2014, 39, 42–52. [Google Scholar] [CrossRef]
- Widiastuti, R.; Zaini, J.; Caesarendra, W. Field Measurement on the Model of Green Façade Systems and Its Effect on Building Indoor Thermal Comfort. Measurement 2020, 166, 108212. [Google Scholar] [CrossRef]
- Jaafar, B.; Said, I.; Reba, M.N.M.; Rasidi, M.H. Impact of Vertical Greenery System on Internal Building Corridors in the Tropic. Procedia Soc. Behav. Sci. 2013, 105, 558–568. [Google Scholar] [CrossRef]
- Charoenkit, S.; Yiemwattana, S. Role of Specific Plant Characteristics on Thermal and Carbon Sequestration Properties of Living Walls in Tropical Climate. Build. Environ. 2017, 115, 67–79. [Google Scholar] [CrossRef]
- Widiastutia, R.; Priantob, E.; Budic, W.S. Evaluation of the Interior Façades Performance of Vertical Garden. Int. J. Archit. Eng. Constr. 2016, 5, 13–20. [Google Scholar] [CrossRef]
- Ismail, A.; Samad, M.H.A.; Rahman, A.M.A.; Yeok, F.S. Cooling Potentials and CO2 Uptake of Ipomoea Pes-caprae Installed on the Flat Roof of a Single Storey Residential Building in Malaysia. Procedia Soc. Behav. Sci. 2012, 35, 361–368. [Google Scholar] [CrossRef]
- Tan, C.L.; Wong, N.H.; Tan, P.Y.; Jusuf, S.K.; Chiam, Z.Q. Impact of Plant Evapotranspiration Rate and Shrub Albedo on Temperature Reduction in the Tropical Outdoor Environment. Build. Environ. 2015, 94, 206–217. [Google Scholar] [CrossRef]
- Schneider, A.; Fusco, M.; Bousselot, J. Observations on the Survival of 112 Plant Taxa on a Green Roof in a Semi-Arid Climate. Figshare 2020, 1, 10–30. [Google Scholar] [CrossRef]
- Pérez, G.; Coma, J.; Sol, S.; Cabeza, L.F. Green Facade for Energy Savings in Buildings: The Influence of Leaf Area Index and Facade Orientation on the Shadow Effect. Appl. Energy 2017, 187, 424–437. [Google Scholar] [CrossRef]
- Bianco, L.; Serra, V.; Larcher, F.; Perino, M. Thermal Behaviour Assessment of a Novel Vertical Greenery Module System: First Results of a Long-Term Monitoring Campaign in an Outdoor Test Cell. Energy Effic. 2016, 10, 625–638. [Google Scholar] [CrossRef]
- Cameron, R.W.; Taylor, J.E.; Emmett, M.R. What’s ‘Cool’ in the World of Green Façades? How Plant Choice Influences the Cooling Properties of Green Walls. Build. Environ. 2014, 73, 198–207. [Google Scholar] [CrossRef]
- Akther, M.; He, J.; Chu, A.; Valeo, C.; Khan, U.T.; Van Duin, B. Response of Green Roof Performance to Multiple Hydrologic and Design Variables: A Laboratory Investigation. Water Sci. Technol. 2018, 77, 2834–2840. [Google Scholar] [CrossRef]
- Zhao, D.; Yang, Q.; Sun, M.; Xue, Y.; Liu, B.; Jia, B.; McNulty, S.; Zhang, Z. Urbanization and Greenspace Effect on Plant Biodiversity Variations in Beijing, China. Urban For. Urban Green. 2023, 89, 128119. [Google Scholar] [CrossRef]
- Larking, T.; Davis, E.; Way, R.; Hermanutz, L.; Trant, A. Recent Greening Driven by Species-Specific Shrub Growth Characteristics in Nunatsiavut, Labrador, Canada. Arct. Sci. 2021, 7, 781–797. [Google Scholar] [CrossRef]
- Wong, N.H.; Kwang Tan, A.Y.; Chen, Y.; Sekar, K.; Tan, P.Y.; Chan, D.; Chiang, K.; Wong, N.C. Thermal Evaluation of Vertical Greenery Systems for Building Walls. Build. Environ. 2009, 45, 663–672. [Google Scholar] [CrossRef]
- Rupasinghe, H.T.; Halwatura, R.U. Benefits of Implementing Vertical Greening in Tropical Climates. Urban For. Urban Green. 2020, 53, 126708. [Google Scholar] [CrossRef]
- Leite, F.R.; Antunes, M.L.P. Green Roof Recent Designs to Runoff Control: A Review of Building Materials and Plant Species Used in Studies. Ecol. Eng. 2023, 189, 106924. [Google Scholar] [CrossRef]
- Ondoño, S.; Martínez-Sánchez, J.J.; Moreno, J.L. The Composition and Depth of Green Roof Substrates Affect the Growth of Silene vulgaris and Lagurus ovatus Species and the C and N Sequestration Under Two Irrigation Conditions. J. Environ. Manag. 2016, 166, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Bousselot, J.M.; Klett, J.E.; Koski, R.D. Extensive Green Roof Species Evaluations Using Digital Image Analysis. HortScience 2010, 45, 1288–1292. [Google Scholar] [CrossRef]
- Ntoulas, N.; Nektarios, P.A.; Charalambous, E.; Psaroulis, A. Zoysia matrella Cover Rate and Drought Tolerance in Adaptive Extensive Green Roof Systems. Urban For. Urban Green. 2013, 12, 522–531. [Google Scholar] [CrossRef]
- Sánchez-Reséndiz, J.; Ruiz-García, L.; Olivieri, F.; Ventura-Ramos, E. Experimental Assessment of the Thermal Behavior of a Living Wall System in Semi-Arid Environments of Central Mexico. Energy Build. 2018, 174, 31–43. [Google Scholar] [CrossRef]
- Cheng, C.; Cheung, K.K.; Chu, L. Thermal Performance of a Vegetated Cladding System on Facade Walls. Build. Environ. 2010, 45, 1779–1787. [Google Scholar] [CrossRef]
- Bakhshoodeh, R.; Ocampo, C.; Oldham, C. Impact of Ambient Air Temperature, Orientation, and Plant Status on the Thermal Performance of Green Façades. Energy Build. 2023, 296, 113389. [Google Scholar] [CrossRef]
- Lin, B.S.; Lin, Y.J. Cooling Effect of Shade Trees with Different Characteristics in a Subtropical Urban Park. HortScience 2010, 45, 83–86. [Google Scholar] [CrossRef]
- Armson, D.; Stringer, P.; Ennos, A. The Effect of Tree Shade and Grass on Surface and Globe Temperatures in an Urban Area. Urban For. Urban Green. 2012, 11, 245–255. [Google Scholar] [CrossRef]
- Nagase, A.; Dunnett, N. Drought Tolerance in Different Vegetation Types for Extensive Green Roofs: Effects of Watering and Diversity. Landsc. Urban Plan. 2010, 97, 318–327. [Google Scholar] [CrossRef]
- Mårtensson, L.; Wuolo, A.; Fransson, A.M.; Emilsson, T. Plant Performance in Living Wall Systems in the Scandinavian Climate. Ecol. Eng. 2014, 71, 610–614. [Google Scholar] [CrossRef]
- Vandegrift, D.A.; Rowe, D.B.; Cregg, B.M.; Liang, D. Effect of Substrate Depth on Plant Community Development on a Michigan Green Roof. Ecol. Eng. 2019, 138, 264–273. [Google Scholar] [CrossRef]
- Tew, N.E.; Vaughan, I.P.; Memmott, J.; Baldock, K.C.R.; Bird, S. Turnover in Floral Composition Explains Species Diversity and Temporal Stability in the Nectar Supply of Urban Residential Gardens. J. Appl. Ecol. 2022, 59, 801–811. [Google Scholar] [CrossRef]
- Pardee, G.L.; Philpott, S.M. Native Plants Are the Bee’s Knees: Local and Landscape Predictors of Bee Richness and Abundance in Backyard Gardens. Urban Ecosyst. 2014, 17, 641–659. [Google Scholar] [CrossRef]
- Adate, P.S.; V, R.; Gopalakrishnan, B.; Dedhia, L.; Pachankar, P.B. Evaluation of Ornamental Flowering Plants for Vertical Gardening During Summer Season. Int. J. Bio-Resour. Stress Manag. 2023, 14, 306–315. [Google Scholar] [CrossRef]
- Carlucci, S.; Charalambous, M.; Tzortzi, J.N. Monitoring and Performance Evaluation of a Green Wall in a Semi-Arid Mediterranean Climate. J. Build. Eng. 2023, 77, 107421. [Google Scholar] [CrossRef]
- Razzaghmanesh, M.; Beecham, S.; Kazemi, F. The Growth and Survival of Plants in Urban Green Roofs in a Dry Climate. Sci. Total Environ. 2014, 476–477, 288–297. [Google Scholar] [CrossRef]
- Safikhani, T.; Abdullah, A.M.; Ossen, D.R.; Baharvand, M. A Review of Energy Characteristic of Vertical Greenery Systems. Renew. Sustain. Energy Rev. 2014, 40, 450–462. [Google Scholar] [CrossRef]
- Koyama, T.; Yoshinaga, M.; Hayashi, H.; Maeda, K.I.; Yamauchi, A. Identification of Key Plant Traits Contributing to the Cooling Effects of Green Façades Using Freestanding Walls. Build. Environ. 2013, 66, 96–103. [Google Scholar] [CrossRef]
- Ferrante, P.; La Gennusa, M.; Peri, G.; Rizzo, G.; Scaccianoce, G. Vegetation Growth Parameters and Leaf Temperature: Experimental Results from a Six-Plots Green Roofs’ System. Energy 2016, 115, 1723–1732. [Google Scholar] [CrossRef]
- Rey, C.V.; Franco, N.; Peyre, G.; Rodríguez, J.P. Green Roof Design with Engineered Extensive Substrates and Native Species to Evaluate Stormwater Runoff and Plant Establishment in a Neotropical Mountain Climate. Sustainability 2020, 12, 6534. [Google Scholar] [CrossRef]
- Zhang, H.; Fan, X.; Ren, L.; Jiang, Y.; Wu, J.; Zhao, H. Crassulacean Plant Succession Over Eight Years on an Unirrigated Green Roof in Beijing. Urban For. Urban Green. 2021, 63, 127189. [Google Scholar] [CrossRef]
- Thuring, C.E.; Berghage, R.D.; Beattie, D.J. Green Roof Plant Responses to Different Substrate Types and Depths Under Various Drought Conditions. HortTechnology 2010, 20, 395–401. [Google Scholar] [CrossRef]
- Ivanova, T.; Dimitrova, D.; Bosseva, Y.; Chervenkov, M. Enough to Feed Ourselves!-Food Plants in Bulgarian Rural Home Gardens. Plants 2021, 10, 2520. [Google Scholar] [CrossRef]
- Ghosh, S. Urban Agriculture Potential of Home Gardens in Residential Land Uses: A Case Study of Regional City of Dubbo, Australia. Land Use Policy 2021, 109, 105686. [Google Scholar] [CrossRef]
- Song, S.; Cheong, J.C.; Lee, J.S.; Tan, J.K.; Chiam, Z.; Arora, S.; Png, K.J.; Seow, J.W.; Leong, F.W.; Palliwal, A.; et al. Home Gardening in Singapore: A Feasibility Study on the Utilization of the Vertical Space of Retrofitted High-Rise Public Housing Apartment Buildings to Increase Urban Vegetable Self-Sufficiency. Urban For. Urban Green. 2022, 78, 127755. [Google Scholar] [CrossRef]
- Furlan, V.; Kujawska, M.; Hilgert, N.I.; Pochettino, M.L. To What Extent Are Medicinal Plants Shared Between Country Home Gardens and Urban Ones? A Case Study from Misiones, Argentina. Int. J. Pharmacogn. 2016, 54, 1628–1640. [Google Scholar] [CrossRef]
- Caballero-Serrano, V.; Mclaren, B.; Carrasco, J.C.; Alday, J.G.; Fiallos, L.; Amigo, J.; Onaindia, M. Traditional Ecological Knowledge and Medicinal Plant Diversity in Ecuadorian Amazon Home Gardens. Glob. Ecol. Conserv. 2019, 17, e00524. [Google Scholar] [CrossRef]
- Mihalakakou, G.; Souliotis, M.; Papadaki, M.; Menounou, P.; Dimopoulos, P.; Kolokotsa, D.; Paravantis, J.A.; Tsangrassoulis, A.; Panaras, G.; Giannakopoulos, E.; et al. Green Roofs as a Nature-Based Solution for Improving Urban Sustainability: Progress and Perspectives. Renew. Sustain. Energy Rev. 2023, 180, 113306. [Google Scholar] [CrossRef]
- Francis, L.F.M.; Jensen, M.B. Benefits of Green Roofs: A Systematic Review of the Evidence for Three Ecosystem Services. Urban For. Urban Green. 2017, 28, 167–176. [Google Scholar] [CrossRef]
- Zhang, G.; He, B.J.; Zhu, Z.; Dewancker, B.J. Impact of Morphological Characteristics of Green Roofs on Pedestrian Cooling in Subtropical Climates. Int. J. Environ. Res. Public Health 2019, 16, 179. [Google Scholar] [CrossRef] [PubMed]
- Olszewski, M.W.; Holmes, M.H.; Young, C.A. Assessment of Physical Properties and Stonecrop Growth in Green Roof Substrates Amended with Compost and Hydrogel. HortTechnology 2010, 20, 438–444. [Google Scholar] [CrossRef]
- Durhman, A.K.; Rowe, D.B.; Rugh, C.L. Effect of Substrate Depth on Initial Growth, Coverage, and Survival of 25 Succulent Green Roof Plant Taxa. HortScience 2007, 42, 588–595. [Google Scholar] [CrossRef]
- Rowe, D.B.; Getter, K.L.; Durhman, A.K. Effect of Green Roof Media Depth on Crassulacean Plant Succession over Seven Years. Landsc. Urban Plan. 2012, 104, 310–319. [Google Scholar] [CrossRef]
- Safikhani, T.; Abdullah, A.M.; Ossen, D.R.; Baharvand, M. Thermal Impacts of Vertical Greenery Systems. Environ. Clim. Technol. 2014, 14, 5–11. [Google Scholar] [CrossRef]
- Xing, Q.; Hao, X.; Lin, Y.; Tan, H.; Yang, K. Experimental Investigation on the Thermal Performance of a Vertical Greening System with Green Roof in Wet and Cold Climates During Winter. Energy Build. 2018, 183, 105–117. [Google Scholar] [CrossRef]
- Kaltsidi, M.P.; Mitsi, C.; Bayer, I.; Aros, D. Potential Use of Chilean Native Species in Vertical Greening Systems. Sustainability 2023, 15, 4944. [Google Scholar] [CrossRef]
- Perini, K.; Ottelé, M.; Giulini, S.; Magliocco, A.; Roccotiello, E. Quantification of Fine Dust Deposition on Different Plant Species in a Vertical Greening System. Ecol. Eng. 2017, 100, 268–276. [Google Scholar] [CrossRef]
- Jaafar, B.; Said, I.; Reba, M.N.M.; Rasidi, M.H. An Experimental Study on Bioclimatic Design of Vertical Greenery Systems in the Tropical Climate. In The Malaysia-Japan Model on Technology Partnership: International Proceedings 2013 of Malaysia-Japan Academic Scholar Conference; Springer: Tokyo, Japan, 2014; pp. 369–376. [Google Scholar] [CrossRef]
- Mohammad Shuhaimi, N.D.A.; Mohamed Zaid, S.; Esfandiari, M.; Lou, E.; Mahyuddin, N. The Impact of Vertical Greenery System on Building Thermal Performance in Tropical Climates. J. Build. Eng. 2021, 45, 103429. [Google Scholar] [CrossRef]
- Wong, N.H.; Tan, A.Y.K.; Tan, P.Y.; Wong, N.C. Energy Simulation of Vertical Greenery Systems. Energy Build. 2009, 41, 1401–1408. [Google Scholar] [CrossRef]
- Sunakorn, P.; Yimprayoon, C. Thermal Performance of Biofacade with Natural Ventilation in the Tropical Climate. Procedia Eng. 2011, 21, 34–41. [Google Scholar] [CrossRef]
- Jim, C. Assessing Growth Performance and Deficiency of Climber Species on Tropical Greenwalls. Landsc. Urban Plan. 2015, 137, 107–121. [Google Scholar] [CrossRef]
- El-Zoklah, M.H.; Refaat, T. How to Measure the Green Façades Environmental Effectiveness? A Proposal to Green Façade Systems Technical Guide. Sustain. Built Environ. 2021, 12, 154–169. [Google Scholar] [CrossRef]
- Pan, L.; Chu, L. Energy Saving Potential and Life Cycle Environmental Impacts of a Vertical Greenery System in Hong Kong: A Case Study. Build. Environ. 2016, 96, 293–300. [Google Scholar] [CrossRef]
- Susorova, I.; Azimi, P.; Stephens, B. The Effects of Climbing Vegetation on the Local Microclimate, Thermal Performance, and Air Infiltration of Four Building Facade Orientations. Build. Environ. 2014, 76, 113–124. [Google Scholar] [CrossRef]
- De Groot, R. Function-analysis and valuation as a tool to assess land use conflicts in planning for sustainable, multi-functional landscapes. Landsc. Urban Plan. 2006, 75, 175–186. [Google Scholar] [CrossRef]
- de Groot, R.; van der Perk, J.; Chiesura, A.; Marguliew, S. Ecological Functions and Socioeconomic Values of Critical Natural Capital as a Measure for Ecological Integrity and Environmental Health. In Implementing Ecological Integrity; Crabbé, P., Holland, A., Ryszkowski, L., Westra, L., Eds.; Nato Science Series; Springer: Dordrecht, The Netherlands, 2000; Volume 1. [Google Scholar] [CrossRef]
- Semeraro, T.; Scarano, A.; Buccolieri, R.; Santino, A.; Aarrevaara, E. Planning of Urban Green Spaces: An Ecological Perspective on Human Benefits. Land 2021, 10, 105. [Google Scholar] [CrossRef]
- Priya, U.K.; Senthil, R. A Review of the Impact of the Green Landscape Interventions on the Urban Microclimate of Tropical Areas. Build. Environ. 2021, 205, 108190. [Google Scholar] [CrossRef]
- Tian, L.; Li, Y.; Lu, J.; Wang, J. Review on Urban Heat Island in China: Methods, Its Impact on Buildings Energy Demand and Mitigation Strategies. Sustainability 2021, 13, 762. [Google Scholar] [CrossRef]
- Irfeey, A.M.M.; Chau, H.-W.; Sumaiya, M.M.F.; Wai, C.Y.; Muttil, N.; Jamei, E. Sustainable Mitigation Strategies for Urban Heat Island Effects in Urban Areas. Sustainability 2023, 15, 10767. [Google Scholar] [CrossRef]
- Nyuk Hien, W.; Puay Yok, T.; Yu, C. Study of thermal performance of extensive rooftop greenery systems in the tropical climate. Build. Environ. 2007, 42, 25–54. [Google Scholar] [CrossRef]
- Yuan, J.; Emura, K.; Farnham, C. Is urban albedo or urban green covering more effective for urban microclimate improvement?: A simulation for Osaka. Sustain. Cities Soc. 2017, 32, 78–86. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, X.; Liu, Z.; Zhou, C.; Liang, H. A Greening Strategy of Mitigation of the Thermal Environment for Coastal Sloping Urban Space. Sustainability 2023, 15, 295. [Google Scholar] [CrossRef]
- Chidambaram, C.; Nath, S.S.; Varshney, P.; Kumar, S. Assessment of terrace gardens as modifiers of building microclimate. Energy Built Environ. 2022, 3, 105–112. [Google Scholar] [CrossRef]
- Rai, P.K.; Singh, J.P. Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecol. Indic. 2020, 111, 106020. [Google Scholar] [CrossRef]
- Hui, C.X.; Dan, G.; Alamri, S.; Toghraie, D. Greening smart cities: An investigation of the integration of urban natural resources and smart city technologies for promoting environmental sustainability. Sustain. Cities Soc. 2023, 99, 104985. [Google Scholar] [CrossRef]
- Tan, P.Y.; Abdul Hamid, A.R.B. Urban ecological research in Singapore and its relevance to the advancement of urban ecology and sustainability. Landsc. Urban Plan. 2014, 125, 271–289. [Google Scholar] [CrossRef]
- Jamei, E.; Ossen, D.R.; Seyedmahmoudian, M.; Sandanayake, M.; Stojcevski, A.; Horan, B. Urban design parameters for heat mitigation in tropics. Renew. Sustain. Energy Rev. 2020, 134, 110362. [Google Scholar] [CrossRef]
- Wong, I.; Baldwin, A.N. Investigating the potential of applying vertical green walls to high-rise residential buildings for energy-saving in sub-tropical region. Build. Environ. 2016, 97, 34–39. [Google Scholar] [CrossRef]
- Nalini, N.S.; Dutt, N. Urban Metabolism to Understand Changes in Urban Ecology: A Case of Bengaluru. In Urban Metabolism and Climate Change; Bhadouria, R., Tripathi, S., Singh, P., Joshi, P.K., Singh, R., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Gopal, D.; Nagendra, H.; Manthey, M. Vegetation in Bangalore’s Slums: Composition, Species Distribution, Density, Diversity, and History. Environ. Manag. 2015, 55, 1390–1401. [Google Scholar] [CrossRef]
Reference and Location | Scientific Name |
---|---|
Köppen climate “A” | |
Rahman et al. [68] | Ficus elastica |
Wong et al. [70], Miami, Florida | Erythrina variegata |
Yahia and Johansson [71], Syria | Ulmus Americana |
Junid et al. [72], Malaysia | Dyera costulata, Mesua ferrea, Samanea saman, Brownea ariza, Khaya senegalensis, Milletia atropurpurea, Ficus benjamina, Callophyllum inophyllum, Melaleuca cajuputi, Peltophorum pterocarpum, Hopea odorata |
Ali and Patnaik [73], Bhopal, India | Azadirachta indica, Albezia lebbek, Delonix regia, Ficus religiosa, Peltophorum pterocarpum, Pterocarpus marsupium, Samanea saman,Alstonia scholaris, Artocarpus heterophyllus, Ficus benghalensis, Kigelia africana, Magnifera indica, Pongamia pinnata, Schleichera oleosa, Spathodea campanulata, Syzygiumcumini, Terminalia tomentosa |
Misni [74], Malaysia | Dalbergia oliveri, Schizolobium parahyba, Samanea saman, Erythrina fusca |
Ali and Patnaik [75], Bhopal, India | Ficus religiosa, Ficus benghalensis, Artocarpus heterophyllus, Peltophorum pterocarpum, Azadirachta indica, Schleichera oleosa, Terminalia arjuna, Magnifera indica, Spathodea campanulata, Mimusops elengi, Delonix regia, Pongamia piñata |
Shahidan et al. [76], Malaysia | Mesua ferrea, Hura crepitans |
Shahidan et al. [77], Malaysia | Ficus benjamina |
Köppen climate “B” | |
Rahman et al. [68], Santa Marta City, Brazil | Terminalia catappa, Prosopis juliflora |
Asgarzadeh et al. [78], Tehran | Gleditsia triacanthos, Quercus coccinea, Parrotia persica, Ziziphus jujuba, Sorbus aucuparia, Cinnamomum camphora, Aesculus glabra, Quercus douglasii, Morus alba (male) |
Fahmy et al. [79], Cairo, Egypt | Ficus elastica, Peltophorum pterocarpum |
Köppen climate “C” | |
Rahman et al. [68], Taipei, Taiwan, China | Ulmus parvifolia |
Rahman et al. [68], Manchester, UK | Tilia europea, Crataegus laevigata, Sorbus arnoldiana, Prunus Umineko Pyrus calleryana, Malus Rudolph |
Rahman et al. [68], Melbourne, Australia | Fraxinus excelsior, Angophora floribunda |
Köppen climate “D” | |
Rahman et al. [68], Toronto, Canada | Morus alba, Acer saccharinum, A. saccharum, Quercus robur, Fraxinus pennsylvanica, Gleditsia triacanthos, Betula pendula, Tilia cordata |
Rahman et al. [68], Munich, Germany | Robinia pseudoacacia; Tilia cordata, Tilia cordata, Acer platanoides, A. campestre, Carpinus betulus, Ostrya carpinifolia, T. tomentosa |
Rahman et al. [68], Budapest, Hungary | A. pseudoplatanus, Fraxinus excelsior, Tilia cordata, T. tomentosa |
Rahman et al. [68], Beijing, China | Ginkgo biloba, Populus tomentosa |
Rahman et al. [68], Gothenburg, Sweden | Acer platanoides, Aesculus hippocastanum, Prunus serrulate, Betula pendula, Fagus sylvatica, Quercus robur, Tilia cordata |
Rahman et al. [68], Basel, Switzerland | Acer platanoides, Aesculus carnea, T. tomentosa, A. hippocastanum, Platanus acerifolia, Tilia cordata, T. platyphyllos |
Reference and Location | Scientific Name |
---|---|
Köppen climate “A” | |
Wong et al. [70] | Heliconia spp., Rhapis excelsa, Pandanus amaryllifolius, Erythrina variegata, Bougainvillea, Ixora coccinea |
Nugroho [84], Indonesia | Amaranthus hybridus, Brassica juncea |
Galagoda et al. [85] | Thunergia laurifolia, Dracaena reflexa |
Abdul-Rahman et al. [86], Malaysia | Psophocarpus tetrogonobulus |
Widiastuti et al. [87], Indonesia | Passiflora flavicarva, Pseudocalym maalliaceum |
Jaafar et al. [88], Malaysia | Thumbergia selecta |
Charoenkit and Yiemwattana [89] | Cuphea hyssopifola, Tibouchina urvilleana, Excoecaria cochinchinensis |
Widiastuti et al. [90] | Dracaena warneckii |
Ismail et al. [91], Malaysia | Ipomoea pescapre |
Tan et al. [92] | Heliconia “American Dwarf” |
Köppen climate “B” | |
Schneider et al. [93], Denver | Amorpha fruticosa “Nana”, Cercocarpus breviflorus |
Pérez et al. [94], Lleida, Spain | Lonicera japonica, Clematis sp. |
Köppen climate “C” | |
Bianco et al. [95], Turin, Italy | Lonicera nitida L. |
Cameron et al. [96], UK | Jasminum officinale “Clotted cream, Fuchsia” Lady Boothby, Lonicera “Gold Flame” |
Akther et al. [97] | Lavandula dentata |
Köppen climate “D” | |
Zhao et al. [98] | Caragana pekinensis, Caragana rosea, Euonymus alatus, Euonymus maackii Rupr, Forsythia suspensa, Lespedeza bicolor, Philadelphus incanus Koehne, Physocarpus amurensis, Prunus triloba, Ribes mandshuricum, Rosa davurica, Spiraea fritschiana, Syringa oblata, Syringa reticulata ssp. Pekinensis, Viburnum opulus Linn. var. calvescens (Rehd.) Hara, Weigela florida |
Larking et al. [99] | Alnus alnobetula, Betula glandulosa |
Reference and Location | Scientific Name |
---|---|
Köppen climate “A” | |
Wong et al. [70] | Hymenocallis littoralis, Ophiopogon |
Jaafar et al. [88] | Ophiopogon verigated |
Wong et al. [100] | Ophiopogon japonicus |
Rupasinghe and Halwatura [101] | Axonopus compressus |
Leite and Antunes [102] | Zoysia japonica |
Köppen climate “B” | |
Ondoño et al. [103], Murcia, Spain | Lagurus ovatus L. |
Bousselot et al. [104], Fort Collins, CO, USA | Bouteloua gracilis (Kunth) Lag. |
Ntoulas et al. [105], Athens, Greece | Zoysia matrella |
Sánchez-Reséndiz et al. [106] | Tall fescue (grass) |
Köppen climate “C” | |
Cheng et al. [107], Hongkong | Zoysia japonica |
Bakhshoodeh et al. [108], Perth, Western Australia, | Hardenbergia violacea, Drosanthemum hispidium |
Lin and Lin [109], Taipei, Taiwan; China | Eremochloa ophiuroides |
Armson et al. [110], UK | Rye grass |
Nagase and Dunnett [111], UK | Anthoxanthum odoratum, Festuca ovina, Koeleria macrantha, Trisetum flavescens |
Mårtensson et al. [112] | Molinia caerulea |
Köppen climate “D” | |
Vandegrift et al. [113] | Eragrostis spectabilis, Koeleria macrantha, Schizachyrium scoparium, Sporobolus heterolepis |
Reference | Scientific Name |
---|---|
Köppen climate “B” | |
Rahman et al. [68] | Platymiscium pinnatum |
Asgarzadeh et al. [78] | Gleditsia triacanthos, Aesculus glabra |
Fahmy et al. [79] | Peltophorum pterocarpum |
Schneider et al. [93] | Amorpha fruticosa “Nana”, Cercocarpus breviflorus |
Pérez et al. [94] | Clematis sp. |
Leite and Antunes [102] | Sedum spectabile |
Ondoño et al. [103] | Silene vulgaris, Lagurus ovatus L. |
Bousselot et al. [104] | Antennaria parvifolia Nutt., Delosperma cooperi (Hook. f.) L. Bol., Eriogonum umbellatum Torr. aureum ‘Psdowns’, Opuntia fragilis Nutt., Sedum lanceolatum Torr. |
Sánchez-Reséndiz et al. [106] | Sedum reflexum, Sedum mexicanum, Sedum moranense, Sedum obtusifolium, Sedum crassulaceae |
Carlucci et al. [117] | Gazania rigens var. leucolaena, Lavandula anguistifolia, Mentha spicata, Origanum vulgare, Portulaca grandiflora, Rosmarinus officinalis, Thymus vulgaris. |
Razzaghmanesh et al. [118] | Carpobrotus rossii, Dianella caerula “Breeze” |
Köppen climate “A” | |
Wong et al. [70] | Erythrina variegata, Heliconia spp., Hymenocallis littoralis, Erythrina variegata, bougainvillea, Ixora coccinea |
Junid et al. [72] | Mesua ferrea, Brownea ariza, Milletia atropurpurea, Peltophorum pterocarpum, |
Ali and Patnaik [73] | Delonix regia, Kigelia africana, Spathodea campanulata, |
Misni [74] | Schizolobium parahyba, Erythrina fusca |
Ali and Patnaik [75] | Mimusops elengi, Delonix regia |
Shahidan et al. [76] | Hura crepitans |
Nugroho [84] | Amaranthus hybridus |
Galagoda et al. [85] | Thunergia laurifolia |
Widiastuti et al. [87] | Passiflora flavicarva, Pseudocalym maalliaceum |
Jaafar et al. [88] | Thumbergia selecta |
Charoenkit and Yiemwattana [89] | Cuphea hyssopifola, Tibouchina urvilleana, |
Widiastutia et al. [90] | Phalaenopsis sp. |
Tan et al. [92] | Heliconia “American Dwarf” |
Safikhani et al. [119] | Blue trumpet vine |
Köppen climate “C” | |
Rahman et al. [68] | Caesalpinia peltophoroides, Cassia fitula, Prunus Umineko, Malus Rudolph, Aesculus hippocastanum, Prunus cerasifera, Jacaranda chelonia, Lagerstroemia indica, Koelreuteria paniculata |
Cameron et al. [96] | Fuchsia ‘Lady Boothby’ |
Akther et al. [97] | Callisia repens |
Bakhshoodeh et al. [108] | Wisteria sinensis |
Mårtensson et al. [112] | Achillea millefolia, Dianthus deltoides, Nepeta faassenii, Salvia nemorosa |
Koyama et al. [120] | Ipomoea tricolor |
Ferrante et al. [121] | Gazania uniflora, Gazania nivea, Mesembryanthemum barbatus |
Rey et al. [122] | Achryrocline bogotensis |
Köppen climate “D” | |
Rahman et al. [68] | Liriodendron tulipifera, Platanus x hispanica, Aesculus x carnea, Aesculus hippocastanum, Prunus serrulata |
Vandegrift et al. [113] | Allium cernuum, Anemone virginiana, Asclepias tuberosa, Aster laevis, Campanula rotundifolia, Coreopsis lanceolata, Echinacea purpurea, Liatris aspera, Monarda fistulosa, Penstemon hirsutus, Tradescantia ohiensis, Aster oolentangiensis |
Zhang et al. [123] | Phedimus aizoon, Phedimus floriferus |
Thuring et al. [124] | Delosperma nubigenum, Dianthus deltoides |
Reference | Scientific Name |
---|---|
Köppen climate “A” | |
Ali and Patnaik [73] | Artocarpus heterophyllus, Magnifera indica, Syzygiumcumini, |
Ali and Patnaik [75] | Mimusops elengi |
Köppen climate “B” | |
Rahman et al. [68] | Terminalia catappa, Melicoccus bijugatus |
Asgarzadeh et al. [78] | Ziziphus jujuba, Cinnamomum camphora, Morus alba (male) |
Köppen climate “C” | |
Rahman et al. [68] | Crataegus laevigata, Sorbus arnoldiana, Malus Rudolph, Olea europea |
Koyama et al. [120] | Momordica charantia, Pueraria lobata, Apios american Medikus |
Köppen climate “D” | |
Rahman et al. [68] | Morus alba, Corylus corluna, Fagus sylvatica |
Vandegrift et al. [113] | Allium cernuum, Asclepias tuberosa, Coreopsis lanceolata, Geum triflorum |
Reference and Location | Scientific Name |
---|---|
Köppen climate “A” | |
Wong et al. [70] | Heliconia spp., Hymenocallis littoralis, Ophiopogon, Rhapis excelsa, Pandanus amaryllifolius, Erythrina variegata, bougainvillea, Ixora coccinea |
Ismail et al. [91], Malaysia | Ipomoea pescapre |
Tan et al. [92], Singapore | Phyllanthus ochinchinensis, Heliconia “American Dwarf”, Sphagneticola trilobata |
Leite and Antunes [102] | Zoysia japonica |
Köppen climate “B” | |
Schneider et al. [93], Denver | Amorpha fruticosa “Nana”, Cercocarpus breviflorus |
Leite and Antunes [102] | Sedum spectabile |
Ondoño et al. [102], Murcia, Spain | Silene vulgaris, Lagurus ovatus L. |
Bousselot et al. [104], Fort Collins, CO, USA | Antennaria parvifolia Nutt., Bouteloua gracilis (Kunth) Lag., Delosperma cooperi (Hook. f.) L. Bol., Eriogonum umbellatum Torr. aureum “Psdowns”, Opuntia fragilis Nutt., Sedum lanceolatum Torr. |
Ntoulas et al. [105], Athene, Greece | Zoysia matrella |
Razzaghmanesh et al. [118], Adelaide, Australia | Carpobrotus rossii, Lomandra longifolia “Tanika”, Dianella caerula “Breeze”, Myoporum parvifolium |
Köppen climate “C” | |
Akther et al. [97] | Sedum floriferum, Sedum hispanicum, Sedum hybridum, Sedum kamtschaticum, Sedum lineare, Sedum r. “Angelina,” Sedum reflexum, Sedum rupestre, Sedum sexangulare, Sedum sediforme, Sedum spurium, Callisia repens, Lavandula dentata |
Leite and Antunes [102] | Sedum acre, Sedum aizoon |
Ferrante et al. [121], Palermo | Phila nordiflora, Gazania uniflora, Gazania nivea, Sedum Aptenia lancifolia Mesembryanthemum barbatus, Aptenia lancifolia |
Rey et al. [122], Bogotá (Colombia) | Paepalanthus alpinus, Echeveria ballsii, Achryrocline bogotensis |
Köppen climate “D” | |
Leite and Antunes [102] | Sedum Aizoon, Sedum kamtschaticum, Sedum lineare, Sedum spectabile, Sedum spurium |
Vandegrift et al. [113] | Allium cernuum, Anemone virginiana, Asclepias tuberosa, Aster laevis (syn. Symphyotrichum laeve), Aster oolentangiensis (syn. Symphyotrichum oolentangiense), Campanula rotundifolia, Coreopsis lanceolata, Echinacea purpurea, Eragrostis spectabilis, Geum triflorum, Koeleria macrantha, Liatris aspera, Monarda fistulosa, Penstemon hirsutus, Schizachyrium scoparium, Sedum album, Sedum kamtschaticum (syn. Phedimus kamtschaticus), Sedum reflexum (syn. Sedum repestre), Sedum sexangulare, Sedum spurium (syn. Phedimus spurius), Sporobolus heterolepis, Tradescantia ohiensis |
Olszewski et al. [133], USA | Sedum spurium, Sedum floriferum |
Thuring et al. [124], Central Pennsylvania, PA, USA | Sedum album, Sedum sexangulare, Delosperma nubigenum, Dianthus deltoides, Petrorhagia saxifraga |
Durhman et al. [134], MI, USA | Phedimus spurious, Sedum acre L., S. album L., S. middendorffianum L., S. reflexum L., S. sediforme J., S. spurium |
Rowe et al. [135], MI, USA | Phedimus spurius, Sedum middendorffianum, Sedum acre, Sedum album, Graptopetalum paraguayense, Phedimus spurius, Rhodiola pachyclada, Rhodiola trollii, Sedum acre, S. album, Sedum clavatum, Sedum confusum, Sedum dasyphyllum, S. dasyphyllum, Sedum diffusum, Sedum hispanicum, S. kamtschaticum, Sedum mexicanum, Sedum middendorffianum, Sedum moranense, Sedum pachyphyllum, S. reflexum, Sedum sediforme, S. spurium, Sedum surculosum var. luteum, Sedum x luteoviride, Sedum x rubrontinctum. |
Reference and Location | Scientific Name |
---|---|
Köppen climate “A” | |
Nugroho [84], Indonesia | Amaranthus hybridus, Brassica juncea |
Galagoda et al. [85], Sri Lanka | Crissie bird nest, Thunergia laurifolia, Fruitzluthi maidenhair, Caledonium Orchid, Dracaena reflexa, Ficus pumila, Ferns (Caledonium) |
Abdul-Rahman et al. [86], Malaysia | Psophocarpus tetrogonobulus |
Widiastuti et al. [87], Indonesia | Passiflora flavicarva, Pseudocalym maalliaceum |
Jaafar et al. [88], Malaysia | Thumbergia selecta, Ophiopogon verigated |
Charoenkit and Yiemwattana [89], Thailand | Cuphea hyssopifola, Tibouchina urvilleana, Excoecaria cochinchinensis |
Widiastutia et al. [90], Indonesia | Phalaenopsis sp., Dracaena warneckii |
Wong et al. [100], Singapore | Nephrolepis exaltat, Urechites lutea, Ophiopogon japonicus, Tradescantia spathacea |
Rupasinghe and Halwatura [101], Sri Lanka | Rhoeo spathacea, Axonopus compressus |
Safikhani et al. [119], Malaysia | Blue trumpet vine |
Sunakorn and Yimprayoon [143], Thailand | Blue trumpet vine |
Jim [144], Malaysia | Psophocarpus tetrogonobulus |
Köppen climate “B” | |
Pérez et al. [94], Lleida, Spain | Hereda helix, Lonicera japonica, Parthenocissus quinquefolia, Clematis sp. |
Sánchez-Reséndiz et al. [106], Mexico | Sedum reflexum, Sedum mexicanum, Sedum moranense, Hedera hélix (ivy), Sedum obtusifolium, Sedum crassulaceae, Tall fescue (grass), Chlorophytum comosum |
Carlucci et al. [117], Nicosia, Cyprus | Gazania rigens var. Leucolaena, Lavandula anguistifolia, Mentha spicata, Origanum vulgare, Portulaca grandiflora, Rosmarinus officinalis, Thymus vulgaris. |
Refaat [145], Egypt | Hedera hélix (ivy) |
Köppen climate “C” | |
Bianco et al. [95], Turin, Italy | Lonicera nitida L., Bergenia cordifolia L. |
Cameron et al. [96], UK | P. Laurocerasus, Jasminum officinale “Clotted Cream”, Hedera helix, Stachys byzantine, Fuchsia “Lady Boothby”, Lonicera “Gold Flame” |
Bakhshoodeh et al. [108], Perth, Australia | Wisteria sinensis, Hibbertia scandens |
Mårtensson et al. [112], Malmö, Sweden | Achillea millefolia, Bergenia cordifolia, Dianthus deltoides, Molinia caerulea, Nepeta faassenii, Salvia nemorosa, Sesleria heuffleriana, Antennaria dioica, Armeria maritima, Iberis sempervirens, Pilosella aurantiaca |
Koyama et al. [120], Japan | Momordica charantia, Ipomoea tricolor, Canavalia gladiate, Pueraria lobata, Apios american Medikus |
Pan and Chu [146], Hongkong | Peperomia claviformis |
Köppen climate “D” | |
Zhang et al. [123], Beijing | Phedimus Aizoon, Phedimus floriferus |
Susorova et al. [147], Chicago | Parthenocissus tricuspidata |
Köppen Climate | Parameters | Trees | Green Walls | Green Roofs | Shrubs | Grasses |
---|---|---|---|---|---|---|
A (Tropical climate) | LAI | High (>4) (e.g., Erythrina variegata, Ficus elastica, Delonix regia) | Medium to High (2–4 to >4) (e.g., Nephrolepis exaltata, Ophiopogon japonicus) | Medium to High (2–4 to >4) (e.g., Heliconia spp., Zoysia japonica) | Medium (2–4) (e.g., Rhapis excelsa, Ixora coccinea) | Low (<2) (e.g., Ophiopogon spp., Hymenocallis littoralis) |
Leaf density | Medium (30–70% coverage) (e.g., Ficus benjamina, Azadirachta indica) | High (>70% coverage) (e.g., Ficus pumila, Tradescantia spathacea) | Medium (30–70% coverage) (e.g., Ixora coccinea, Bougainvillea) | Medium (30–70% coverage) (e.g., Bougainvillea, Rhapis excelsa) | High (>70% coverage) (e.g., Zoysia japonica) | |
Crown shape | Diverse (high variation) (e.g., Samanea saman, Delonix regia) | Low (dense coverage, uniform) (e.g., Tradescantia spathacea, Ficus pumila) | Low (uniform) (e.g., Zoysia japonica) | Various shapes (medium) (e.g., Heliconia spp., Rhapis excelsa) | Low (uniform) (e.g., Zoysia japonica) | |
Foliage color | Medium to High (varied, bright colors) (e.g., Delonix regia, Spathodea campanulata) | Medium to High (varied, bright colors) (e.g., Thunbergia laurifolia, Tradescantia spathacea) | Medium to High (varied, bright colors) (e.g., Heliconia spp.) | Medium to High (varied colors) (e.g., Heliconia spp., Bougainvillea) | Low (basic green tones) (e.g., Ophiopogon spp.) | |
Plant height | High (>5 m) (e.g., Ficus elastica, Delonix regia, Samanea saman) | Low (<1 m) (e.g., Nephrolepis exaltata, Tradescantia spathacea) | Low (<1 m) (e.g., Zoysia japonica, Ophiopogon japonicus) | Medium (1–5 m) (e.g., Rhapis excelsa, Ixora coccinea) | Low (<1 m) (e.g., Ophiopogon spp., Hymenocallis littoralis) | |
B (Dry climate) | LAI | Medium (2–4) (e.g., Gleditsia triacanthos, Quercus coccinea, Ziziphus jujuba) | Medium (2–4) (e.g., Sedum reflexum, Sedum mexicanum, Hedera helix) | Medium (2–4) (e.g., Sedum spectabile, Delosperma cooperi) | Medium (2–4) (Amorpha fruticosa, Cercocarpus breviflorus) | Low (<2) (Bouteloua gracilis, Zoysia matrella) |
Leaf density | Medium (30–70% coverage) (e.g., Gleditsia triacanthos, Quercus douglasii) | High (>70% coverage) (e.g., Hedera helix, Lonicera japonica) | Medium (30–70% coverage) (e.g., Sedum spectabile, Lagurus ovatus) | Medium (30–70% coverage) (e.g., Amorpha fruticosa, Cercocarpus breviflorus) | High (>70% coverage) (e.g., Zoysia matrella) | |
Crown shape | Diverse (high variation) (e.g., Gleditsia triacanthos, Quercus coccinea) | Low (uniform) (e.g., Sedum reflexum, Sedum mexicanum) | Low (uniform) (e.g., Sedum spectabile, Delosperma cooperi) | Various shapes (medium) (e.g., Amorpha fruticosa) | Low (uniform) (e.g., Zoysia matrella) | |
Foliage color | Medium (some variation) (e.g., Gleditsia triacanthos, Ziziphus jujuba) | Medium (some variation) (e.g., Hedera helix, Lonicera japonica) | Medium (some variation) (e.g., Sedum spectabile, Delosperma cooperi) | Medium (some variation) (e.g., Amorpha fruticosa) | Low (basic green tones) (e.g., Zoysia matrella) | |
Plant height | High (>5 m) (e.g., Gleditsia triacanthos, Quercus coccinea, Ziziphus jujuba) | Low (<1 m) (e.g., Sedum reflexum, Hedera helix) | Low (<1 m) (e.g., Sedum spectabile, Delosperma cooperi) | Medium (1–5 m) (e.g., Amorpha fruticosa, Cercocarpus breviflorus) | Low (<1 m) (e.g., Bouteloua gracilis, Lagurus ovatus) | |
C (Temperate climate) | LAI | Medium to High (2–4 to >4) (e.g., Ulmus parvifolia, Acer platanoides, Pistacia chinensis) | Medium (2–4) (e.g., Lonicera nitida, Hedera helix) | Medium (2–4) (e.g., Sedum acre, Gazania uniflora) | Medium (2–4) (e.g., Lonicera nitida, Lavandula dentata) | Low (<2) (e.g., Zoysia japonica, Festuca ovina) |
Leaf density | Medium (30–70% coverage) (e.g., Prunus cerasifera, Ligustrum lucidum) | Medium to High (30–70% to >70% coverage) (e.g., Hedera helix, Lonicera nitida) | Medium (30–70% coverage) (e.g., Sedum acre, Sedum kamtschaticum) | Medium (30–70% coverage) (e.g., Lavandula dentata, Fuchsia) | High (>70% coverage) (e.g., Zoysia japonica, Anthoxanthum odoratum) | |
Crown shape | Various shapes (medium variation) (e.g., Acer platanoides, Pyrus calleryana) | Low (uniform) (e.g., Hedera helix) | Low (uniform) (e.g., Sedum acre) | Various shapes (medium) (e.g., Lavandula dentata) | Low (uniform) (e.g., Festuca ovina) | |
Foliage color | Medium (some variation) (e.g., Liquidambar formosana) | Medium (some variation) (e.g., Lonicera nitida, Salvia nemorosa) | Medium (some variation) (e.g., Sedum acre, Lavandula dentata) | Medium (some variation) (e.g., Lavandula dentata, Lonicera nitida) | Low (basic green tones) (e.g., Zoysia japonica, Festuca ovina) | |
Plant height | High (>5 m) (e.g., Ulmus parvifolia, Acer platanoides, Platanus occidentalis) | Low (<1 m) (e.g., Lonicera nitida, Bergenia cordifolia) | Low (<1 m) (e.g., Sedum acre, Gazania uniflora) | Medium (1–5 m) (e.g., Lavandula dentata, Jasminum officinale) | Low (<1 m) (e.g., Festuca ovina, Zoysia japonica) | |
D (Continental climate) | LAI | Medium (2–4) (e.g., Morus alba, Acer saccharum, Quercus robur) | Medium (2–4) (e.g., Parthenocissus tricuspidata, Phedimus aizoon) | Medium (2–4) (e.g., Sedum album, Sedum kamtschaticum) | Medium (2–4) (e.g., Euonymus alatus, Viburnum opulus) | Low (<2) (e.g., Schizachyrium scoparium, Koeleria macrantha) |
Leaf density | Medium (30–70% coverage) (e.g., Gleditsia triacanthos, Betula pendula) | High (>70% coverage) (e.g., Parthenocissus tricuspidata) | Medium (30–70% coverage) (e.g., Sedum album, Sedum kamtschaticum) | Medium (30–70% coverage) (e.g., Euonymus alatus) | High (>70% coverage) (e.g., Koeleria macrantha, Schizachyrium scoparium) | |
Crown shape | Various shapes (medium variation) (e.g., Quercus rubra, Fraxinus pennsylvanica) | Low (uniform) (e.g., Parthenocissus tricuspidata) | Low (uniform) (e.g., Sedum album, Sedum kamtschaticum) | Various shapes (medium) (e.g., Viburnum opulus) | Low (uniform) (e.g., Sporobolus heterolepis) | |
Foliage color | Medium (some variation) (e.g., Acer saccharinum, Tilia cordata) | Medium (some variation) (e.g., Parthenocissus tricuspidata) | Medium (some variation) (e.g., Sedum album, Sedum kamtschaticum) | Medium (some variation) (e.g., Euonymus alatus, Viburnum opulus) | Low (basic green tones) (e.g., Schizachyrium scoparium, Koeleria macrantha) | |
Plant height | High (>5 m) (e.g., Ulmus x hollandica, Liriodendron tulipifera) | Low (<1 m) (e.g., Phedimus aizoon, Bergenia cordifolia) | Low (<1 m) (e.g., Sedum album, Sedum kamtschaticum) | Medium (1–5 m) (e.g., Euonymus alatus, Philadelphus incanus) | Low (<1 m) (e.g., Koeleria macrantha, Schizachyrium scoparium) |
Factor | Climate Zone | Shrubs | Tree Species | Grass Species | Green Wall Species | Green Roof Species |
---|---|---|---|---|---|---|
Soil | A (Tropical) | Amaranthus hybridus, Ocimum tenuiflorum, Dracaena trifasciata, Monstera delisiosa | Ficus elastica, Erythrina variegata | Hymenocallis littoralis, Ophiopogon japonicus | Blue trumpet vine, Amaranthus hybridus, Epipremnum aureum, Syngonium angustatum, jasminum auriculatum, Brassica juncea | Heliconia spp., Hymenocallis littoralis, Ophiopogon, Rhapis excelsa, Pandanus amaryllifolius, Erythrina variegata, Bougainvillea, Ixora coccinea |
B (Arid) | Lonicera japonica, Clematis sp. | Quercus coccinea, Prosopis juliflora | Bouteloua gracilis, Zoysia matrella | Sedum reflexum, Sedum mexicanum, Hedera helix, Lonicera japonica | Sedum spectabile, Silene vulgaris, Lagurus ovatus | |
C (Temperate) | Lavandula dentata, Lonicera nitida | Liquidambar formosana | Rye grass (Lolium perenne), Festuca ovina | Lonicera nitida, Bergenia cordifolia | Gazania uniflora, Sedum acre, Sedum aizoon, Sedum reflexum | |
D (Continental) | Caragana pekinensis, Rosa davurica | Quercus robur, Acer saccharinum | Koeleria macrantha, Eragrostis spectabilis | Parthenocissus tricuspidata, Phedimus aizoon, Phedimus floriferus | Allium cernuum, Anemone virginiana, Echinacea purpurea, Coreopsis lanceolata | |
Space layout | A (Tropical) | Thunbergia laurifolia, Dracaena reflexa, Brassica juncea | Dyera costulata, Azadirachta indica | Axonopus compressus, Ophiopogon verigated | Blue trumpet vine, Thunbergia laurifolia, Tradescantia spathacea | Heliconia spp., Bougainvillea, Ophiopogon |
B (Arid) | Cercocarpus breviflorus, Amorpha fruticosa “Nana” | Gleditsia triacanthos, Ziziphus jujuba | Lagurus ovatus, Tall fescue (Festuca arundinacea) | Sedum crassulaceae, Hedera helix, Parthenocissus quinquefolia | Sedum spectabile, Opuntia fragilis | |
C (Temperate) | Lonicera nitida, Fuchsia “Lady Boothby” | Prunus serrulata, Malus Rudolph | Anthoxanthum odoratum, Molinia caerulea | Lonicera “Gold Flame”, Jasminum officinale | Gazania uniflora, Sedum reflexum, Callisia repens | |
D (Continental) | Spiraea fritschiana, Philadelphus incanus | Betula pendula, Carpinus betulus | Schizachyrium scoparium, Sporobolus heterolepis | Philadelphus incanus, Spiraea fritschiana | Allium cernuum, Coreopsis lanceolata, Echinacea purpurea | |
Maintenance | A (Tropical) | Psophocarpus tetragonolobus, Heliconia spp. | Ficus benjamina, Pongamia pinnata | Ophiopogon spp., Zoysia japonica | Psophocarpus tetragonolobus, Dracaena reflexa | Heliconia spp., Hymenocallis littoralis, Bougainvillea |
B (Arid) | Amorpha fruticosa “Nana”, Cercocarpus breviflorus | Parrotia persica, Cinnamomum camphora | Bouteloua gracilis, Lagurus ovatus | Sedum mexicanum, Sedum reflexum | Sedum spectabile, Silene vulgaris | |
C (Temperate) | Lavandula dentata, Fuchsia “Lady Boothby” | Brachychiton discolor, Angophora floribunda | Eremochloa ophiuroides, Drosanthemum hispidum | Achillea millefolia, Bergenia cordifolia | Sedum acre, Gazania uniflora | |
D (Continental) | Forsythia suspensa, Philadelphus incanus | Tilia cordata, Robinia pseudoacacia | Koeleria macrantha, Sporobolus heterolepis | Forsythia suspensa, Philadelphus incanus | Allium cernuum, Echinacea purpurea | |
Aesthetics | A (Tropical) | Thunbergia selecta, Cuphea hyssopifolia | Delonix regia, Brownea ariza | Hymenocallis littoralis, Axonopus compressus | Blue trumpet vine, Tradescantia spathacea | Heliconia spp., Bougainvillea, Ixora coccinea |
B (Arid) | Lonicera japonica, Clematis sp. | Cinnamomum camphora, Sorbus aucuparia | Lagurus ovatus, Zoysia matrella | Gazania rigens var. leucolaena, Lavandula angustifolia | Sedum spectabile, Opuntia fragilis | |
C (Temperate) | Lonicera “Gold Flame”, Lavandula dentata | Jacaranda chelonia, Crataegus laevigata | Hardenbergia violacea, Anthoxanthum odoratum | Lonicera “Gold Flame”, Jasminum officinale | Gazania uniflora, Sedum reflexum | |
D (Continental) | Forsythia suspensa, Syringa oblata | Aesculus hippocastanum, Liriodendron tulipifera | Eragrostis spectabilis, Schizachyrium scoparium | Wisteria sinensis, Syringa oblata | Allium cernuum, Echinacea purpurea, Anemone virginiana | |
Environmental benefits | A (Tropical) | Passiflora flavicarva, Rhapis excelsa | Kigelia africana, Callophyllum inophyllum | Zoysia japonica, Ophiopogon japonicus | Blue trumpet vine, Thunbergia laurifolia, Ficus pumila | Heliconia spp., Bougainvillea, Erythrina variegata |
B (Arid) | Cercocarpus breviflorus, Amorpha fruticosa “Nana” | Aesculus glabra | Tall fescue, Bouteloua gracilis | Sedum reflexum, Gazania rigens | Sedum spectabile, Opuntia fragilis | |
C (Temperate) | Lavandula dentata, Lonicera nitida | Ficus macrocarpa, Ligustrum lucidum | Molinia caerulea, Trisetum flavescens | Achillea millefolia, Bergenia cordifolia | Sedum acre, Gazania uniflora, Phila nordiflora | |
D (Continental) | Viburnum opulus var. calvescens, Spiraea fritschiana | Fraxinus pennsylvanica, Platanus acerifolia | Eragrostis spectabilis, Sporobolus heterolepis | Parthenocissus tricuspidata, Philadelphus incanus | Allium cernuum, Echinacea purpurea, Coreopsis lanceolata | |
Pest and disease resistance | A (Tropical) | Excoecaria cochinchinensis, Bougainvillea | Samanea saman, Syzygium cumini | Ophiopogon japonicus, Axonopus compressus | Amaranthus hybridus, Brassica juncea | Heliconia spp., Bougainvillea |
B (Arid) | Cercocarpus breviflorus, Amorpha fruticosa “Nana” | Quercus douglasii, Sorbus aucuparia | Bouteloua gracilis, Zoysia matrella | Sedum mexicanum, Lonicera japonica | Sedum spectabile, Bouteloua gracilis | |
C (Temperate) | Lonicera nitida, Lavandula dentata | Bambusa ventricosa, Cedrus deodar | Festuca ovina, Rye grass (Lolium perenne) | Lonicera nitida, Bergenia cordifolia | Sedum acre, Gazania uniflora | |
D (Continental) | Philadelphus incanus, Spiraea fritschiana | Quercus robur, Corylus colurna | Koeleria macrantha, Eragrostis spectabilis | Philadelphus incanus, Spiraea fritschiana | Echinacea purpurea, Anemone virginiana | |
Human health and well-being | A (Tropical) | Pandanus amaryllifolius, Heliconia spp. | Magnifera indica, Artocarpus heterophyllus | Hymenocallis littoralis, Zoysia japonica | Psophocarpus tetragonolobus, Nephrolepis exaltata | Heliconia spp., Hymenocallis littoralis |
B (Arid) | Lonicera japonica, Clematis sp. | Melicoccus bijugatus, Enterolobium ciclocarpum | Zoysia matrella, Lagurus ovatus | Hedera helix, Lonicera japonica | Sedum spectabile, Opuntia fragilis | |
C (Temperate) | Lavandula dentata, Jasminum officinale | Ulmus parvifolia, Pistacia chinensis | Rye grass (Lolium perenne), Festuca ovina | Achillea millefolia, Jasminum officinale | Gazania uniflora, Echinacea purpurea | |
D (Continental) | Syringa oblata, Spiraea fritschiana | Ginkgo biloba, Acer pseudoplatanus | Schizachyrium scoparium, Sporobolus heterolepis | Syringa oblata, Spiraea fritschiana | Allium cernuum, Anemone virginiana | |
Potential adverse impacts on human health and ecosystem | A (Tropical) | Bougainvillea, Ixora coccinea | Ficus religiosa, Spatheodea campanulata | Hymenocallis littoralis, Ophiopogon japonicus | Bougainvillea, Ixora coccinea | Bougainvillea, Ixora coccinea |
B (Arid) | Prosopis juliflora | Prosopis juliflora, Morus alba (male) | Tall fescue, Zoysia matrella | Prosopis juliflora | Opuntia fragilis | |
C (Temperate) | Platanus occidentalis | Acer platanoides, Platanus occidentalis | Rye grass (Lolium perenne), Anthoxanthum odoratum | Platanus occidentalis | Platanus occidentalis | |
D (Continental) | Betula pendula, Acer saccharinum | Betula pendula, Robinia pseudoacacia | Eragrostis spectabilis, Koeleria macrantha | Betula pendula, Acer saccharinum | Betula pendula, Acer saccharinum |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Priya, U.K.; Senthil, R. Framework for Enhancing Urban Living Through Sustainable Plant Selection in Residential Green Spaces. Urban Sci. 2024, 8, 235. https://doi.org/10.3390/urbansci8040235
Priya UK, Senthil R. Framework for Enhancing Urban Living Through Sustainable Plant Selection in Residential Green Spaces. Urban Science. 2024; 8(4):235. https://doi.org/10.3390/urbansci8040235
Chicago/Turabian StylePriya, Udayasoorian Kaaviya, and Ramalingam Senthil. 2024. "Framework for Enhancing Urban Living Through Sustainable Plant Selection in Residential Green Spaces" Urban Science 8, no. 4: 235. https://doi.org/10.3390/urbansci8040235
APA StylePriya, U. K., & Senthil, R. (2024). Framework for Enhancing Urban Living Through Sustainable Plant Selection in Residential Green Spaces. Urban Science, 8(4), 235. https://doi.org/10.3390/urbansci8040235