# Multi-Domain Design Structure Matrix Approach Applied to Urban System Modeling

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{8}

^{9}

^{10}

^{11}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Design Structure Matrix and Multi-Domain Design Structure Matrix Concept

#### 2.1. Design Structure Matrix (DSM)

#### 2.2. Multi-Domain Design Structure Matrix (MDDSM)

- An expert can confirm his/her tacit knowledge about dependencies among system elements and can find unnoticed ones;
- Experts from different domains can communicate and build up common understandings of complex systems;
- DSM algorithms are available for the arrangement of the system model, which provide a better understanding of the system.

#### 2.3. Clustering Algorithm

## 3. Urban System Modeling Approaches within UrbMod

#### 3.1. Atmospheric Models

#### 3.2. Atmospheric Chemistry Transport Models

_{2}), carbon monoxide (CO), ozone (O

_{3}), and particulate matter (PM). The underlying relevant chemical transformations can only be described by a rather complex set of chemical reaction equations.

_{2}and PM concentrations and need to be determined (e.g., [36]).

#### 3.3. Exposure Models

#### 3.3.1. Agent-Based Models

#### 3.3.2. Mathematical Models

#### 3.4. Travel Demand Models

#### 3.5. Noise Models

#### 3.6. Social Models

#### 3.7. Health Models

#### 3.8. Biometeorological Models

## 4. Application of the MDDSM Approach to the Conceptual Model of UrbWellth

## 5. Discussion

## 6. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Brunekreef, B.; Holgate, S.T. Air pollution and health. Lancet
**2002**, 360, 1233–1242. [Google Scholar] [CrossRef] - Kovats, R.S.; Hajat, S. Heat stress and public health: A critical review. Annu. Rev. Public Health
**2008**, 29, 41–55. [Google Scholar] [CrossRef] [PubMed] - Babisch, W.; Wolf, K.; Petz, M.; Heinrich, J.; Cyrys, J.; Peters, A. Associations between traffic noise, particulate air pollution, hypertension, and isolated systolic hypertension in adults: The KORA study. Environ. Health Perspect.
**2014**, 122, 492–498. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Von Szombathely, M.; Albrecht, M.; Antanaskovic, D.; Augustin, J.; Augustin, M.; Bechtel, B.; Bürk, T.; Fischereit, J.; Grawe, D.; Hoffmann, P.; et al. A conceptual modeling approach to health-related urban well-being. Urban Sci.
**2017**, 1, 17. [Google Scholar] [CrossRef] [Green Version] - Bach, P.M.; Rauch, W.; Mikkelsen, P.S.; McCarthy, D.T.; Deletic, A. A critical review of integrated urban water modelling–Urban drainage and beyond. Environ. Model. Softw.
**2014**, 54, 88–107. [Google Scholar] [CrossRef] - Krol, M.S.; Jaeger, A.; Bronstert, A.; Krywkow, J. The semi-arid integrated model (SIM), a regional integrated model assessing water availability, vulnerability of ecosystems and society in NE-Brazil. Phys. Chem. Earthpart B Hydrol. Ocean. Atmos.
**2001**, 26, 529–533. [Google Scholar] [CrossRef] [Green Version] - Yang, L.; Scheffran, J.; Süsser, D.; Dawson, R.; Chen, Y.D. Assessment of flood losses with household responses: Agent-based simulation in an urban catchment area. Environ. Model. Assess.
**2018**, 23, 369–388. [Google Scholar] [CrossRef] [Green Version] - Daniell, K.A.; Sommerville, H.C.; Foley, B.A.; Maier, H.R.; Malovka, D.J.; Kingsborough, A.B. Integrated urban system modelling: Methodology and case study using multi-agent systems. In Proceedings of the MODSIM International Congress on Modelling and Simulation (by Modelling and Simulation Society of Australia and New Zealand), Melbourne, Australia, 12–15 December 2005; pp. 2026–2032. [Google Scholar]
- Putman, S. Integrated Urban Models: Policy Analysis of Transportation and Land Use; Pion Limited: London, UK, 1983. [Google Scholar]
- Bettencourt, L.M. The origins of scaling in cities. Science
**2013**, 340, 1438–1441. [Google Scholar] [CrossRef] [Green Version] - Arcaute, E.; Hatna, E.; Ferguson, P.; Youn, H.; Johansson, A.; Batty, M. Constructing cities, deconstructing scaling laws. J. R. Soc. Interface
**2015**, 12, 20140745. [Google Scholar] [CrossRef] - Hoffmann, P.; Fischereit, J.; Heitmann, S.; Schlünzen, K.H.; Gasser, I. Modeling exposure to heat stress with a simple urban model. Urban Sci.
**2018**, 2, 9. [Google Scholar] [CrossRef] [Green Version] - Yang, L.E.; Hoffmann, P.; Scheffran, J.; Rühe, S.; Fischereit, J.; Gasser, I. An agent-based modeling framework for simulating human exposure to environmental stresses in urban areas. Urban Sci.
**2018**, 2, 36. [Google Scholar] [CrossRef] [Green Version] - Sterman, J.D. Business Dynamics: Systems Thinking and Modeling for a Complex World; McGraw-Hill: New York, NY, USA, 2000. [Google Scholar]
- Olafsdottir, A.H.; Gudbrandsdottir, I.; Sverdrup, H.U.; Bogason, S.G.; Olafsdottir, G.; Stefansson, G. System dynamics modelling and system analysis applied in complex research projects-the case of VALUMICS. Int. J. Food Syst. Dyn.
**2018**, 9, 409–418. [Google Scholar] - Friedenthal, S.; Moore, A.; Steiner, R. A Practical Guide to SysML: The Systems Modeling Language; Morgan Kaufmann: Burlington, MA, USA, 2008. [Google Scholar]
- Rokach, L.; Oded, M. Clustering Methods, Data Mining and Knowledge Discovery Handbook; Springer: Boston, MA, USA, 2005; pp. 321–352. [Google Scholar]
- Eppinger, S.D.; Browning, T.R. Design Structure Matrix Methods and Applications; The MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Nomaguchi, Y.; Saito, M.; Fujita, K. Multi-domain DSM method for design process management of complex system. J. Ind. Prod. Eng.
**2015**, 32, 465–472. [Google Scholar] [CrossRef] - Brady, T.K. Utilization of Dependency Structure Matrix Analysis to Assess Complex Project Designs. In Proceedings of the ASME Design Engineering Technical Conference, DETC2002/DTM-34031, Montreal, QC, Canada, 29 September–2 October 2002. [Google Scholar]
- Lambe, A.B.; Martins, J.R.R.A. Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes. Struct. Multidiscip. Optim.
**2012**, 46, 273–284. [Google Scholar] [CrossRef] - INCOSE. Systems Engineering Handbook: A Guide for System Life Cycle Processes and Activities, 4th ed.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Yu, T.L.; Yassine, A.A.; Goldberg, D.E. An information theoretic method for developing modular architectures using genetic algorithms. Res. Eng. Des.
**2007**, 18, 91–109. [Google Scholar] [CrossRef] - Browning, T.R. Design Structure Matrix Extensions and Innovations: A Survey and New Opportunities. IEEE Trans. Eng. Manag.
**2016**, 63, 27–52. [Google Scholar] [CrossRef] - Sawai, K.; Nomaguchi, Y.; Fujita, K. Case study of extended product architecture design for modularization reflecting customer needs of industrial robots. J. Adv. Mech. Des. Syst. Manuf.
**2017**, 11, JAMDSM0050. [Google Scholar] [CrossRef] [Green Version] - Yassine, A.A.; Chidiac, R.H.; Osman, I.H. Simultaneous optimisation of products, processes, and people in development projects. J. Eng. Des.
**2013**, 24, 272–292. [Google Scholar] [CrossRef] - Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol.
**2003**, 23, 1–26. [Google Scholar] [CrossRef] - Hoffmann, P.; Schoetter, R.; Schlünzen, K.H. Statistical-dynamical downscaling of the urban heat island in Hamburg, Germany. Meteorol. Z.
**2018**, 27, 89–109. [Google Scholar] [CrossRef] - Salim, M.H.; Schlünzen, K.H.; Grawe, D. Including trees in the numerical simulations of the wind flow in urban areas: Should we care? J. Wind Eng. Ind. Aerodyn.
**2015**, 144, 84–95. [Google Scholar] [CrossRef] [Green Version] - Salim, M.H.; Schlünzen, K.H.; Grawe, D.; Boettcher, M.; Gierisch, A.M.; Fock, B. The microscale obstacle-resolving meteorological model MITRAS v2.0: Model theory. Geosci. Model. Dev.
**2018**, 11, 3427–3445. [Google Scholar] [CrossRef] [Green Version] - Grawe, D.; Thompson, H.L.; Salmond, J.A.; Cai, X.-M.; Schlünzen, K.H. Modelling the impact of urbanisation on regional climate in the Greater London Area. Int. J. Climatol.
**2013**, 33, 2388–2401. [Google Scholar] [CrossRef] [Green Version] - Byun, D.W.; Schere, K.L. Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev.
**2006**, 59, 51–77. [Google Scholar] [CrossRef] - Grawe, D. High Resolution Assessment of Concentrations in the Urban Canopy Layer. Ph.D. Thesis, Fachbereich Geowissenschaften, Universität Hamburg, Hamburg, Germany, 2019. [Google Scholar]
- Matthias, V.; Arndt, J.A.; Aulinger, A.; Bieser, J.; Denier van der Gon, H.; Kranenburg, R.; Kuenen, J.; Neumann, D.; Pouliot, G.; Quante, M. Modeling emissions for three-dimensional atmospheric chemistry transport models. J. Air Waste Manag. Assoc.
**2017**, 68, 763–800. [Google Scholar] [CrossRef] - Bieser, J.; Aulinger, A.; Matthias, V.; Quante, M.; Builtjes, P. SMOKE for Europe—Adaptation, modification and evaluation of a comprehensive emission model for Europe. Geosci. Model. Dev.
**2011**, 4, 47–68. [Google Scholar] [CrossRef] [Green Version] - Ramacher, M.; Karl, M.; Aulinger, A.; Bieser, J.; Matthias, V.; Quante, M. The impact of emissions from ships in ports on regional and urban scale air quality. In Air Pollution Modelling and its Application XXV; Mensink, C., Kallos, G., Eds.; Springer International Publishing: Basel, Switzerland, 2018; pp. 309–316. [Google Scholar]
- Krefis, A.C.; Albrecht, M.; Kis, A.; Jagodzinski, A.; Augustin, M.; Augustin, J. Associations of noise and socioeconomic and –demographic status on cardiovascular and respiratory diseases on borough level in a large German city state. Urban Sci.
**2017**, 1, 27. [Google Scholar] [CrossRef] [Green Version] - Krefis, A.C.; Albrecht, M.; Kis, A.; Langenbruch, A.; Augustin, M.; Augustin, J. Multivariate analysis of noise, socioeconomic and sociodemographic factors and their association with depression on borough level in the city state of Hamburg, Germany. J. Depress. Ther.
**2017**, 1, 4. [Google Scholar] [CrossRef] [Green Version] - BenDor, T.K.; Scheffran, J. Agent-Based Modeling of Environmental Conflict and Cooperation; Taylor & Francis, CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Zhang, J.; Mehner, W.; Holl, S.; Boltes, M.; Andresen, E.; Schadschneider, A.; Seyfried, A. Universal flow-density relation of single-file bicycle, pedestrian and car motion. Phys. Lett. A
**2014**, 378, 3274–3277. [Google Scholar] [CrossRef] [Green Version] - McNally, M.G. The four-step model. In Handbook of Transport Modelling, 2nd ed.; Hensher, D.A., Button, K.J., Eds.; Emerald: Amsterdam, The Netherlands, 2008; pp. 35–53. [Google Scholar]
- UBA. Umweltbewusstsein in Deutschland 2014; UBA: Dessau-Roßlau, Germany, 2014. [Google Scholar]
- WHO. Quantification of Healthy Life Years Lost in Europe; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Piercy, J.E.; Embleton, T.F.; Sutherland, L.C. Review of noise propagation in the atmosphere. J. Acoust. Soc. Am.
**1977**, 61, 1403–1418. [Google Scholar] [CrossRef] - Probst, W. Zur Berechnung des Lärms von Straßenverkehr; Hg. v. DataKustik GmbH: Greifenberg, Germany, 2015. [Google Scholar]
- Guarnaccia, C. Advanced tools for traffic noise modelling and prediction. WSEAS Trans. Syst.
**2013**, 12, 121–130. [Google Scholar] - Lerch, R.; Sessler, G.M.; Wolf, D. Technische Akustik. Grundlagen und Anwendungen; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- International Organization for Standardization. Acoustics—Description, Measurement and Assessment of Environmental Noise—Part 2: Determination of Sound Pressure Levels; 1996 ISO 1996-2:2007; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- Dutilleux, G.; Defrance, J.; Ecotière, D.; Gauvreau, B.; Bérengier, M.; Besnard, F.; Le Duc, E. NMPB-Routes-2008. The revision of the French method for road traffic noise prediction. Acta Acust. United Acust.
**2010**, 96, 452–462. [Google Scholar] [CrossRef] - Quartieri, M.; Iannone, G.; D’Ambrosio, T. A Review of Traffic Noise Predictive Models. Proc. Recent Adv. Appl. Theoret. Mech.
**2009**, 72–80. [Google Scholar] - Federal Republic of Germany. Bekanntmachung der Vorläufigen Berechnungsverfahren für den Umgebungslärm nach § 5 Abs. 1 der Verordnung über die Lärmkartierung (34. BImSchV); Federal Republic of Germany: Berlin, Germany, 2006. [Google Scholar]
- Lopez, G.A.P.; Souza, L.C.L.D. Comparison of mathematical methods and measurements of traffic noise indices in pedestrian routes. Ambiente Construído
**2020**, 20, 351–364. [Google Scholar] [CrossRef] [Green Version] - Bourdieu, P. Die Feinen Unterschiede. Kritik der Gesellschaftlichen Urteilskraft; Suhrkamp: Frankfurt am Main, Germany, 1992. [Google Scholar]
- Harvey, D. Social Justice and the City; The University of Georgia Press: London, UK, 1973. [Google Scholar]
- Giddens, A. The Constitution of Society; University of California Press: Berkeley, CA, USA; Los Angeles, CA, USA, 1984. [Google Scholar]
- Han, J.; Liang, H.; Hara, K.; Uwasu, M.; Dong, L. Quality of life in China’s largest city, Shanghai: A 20-year subjective and objective composite assessment. J. Clean. Prod.
**2018**, 173, 135–142. [Google Scholar] [CrossRef] - Von Szombathely, M.; Albrecht, M.; Augustin, J.; Bechtel, B.; Dwinger, I.; Gaffron, P.; Krefis, A.C.; Oßenbrügge, J.; Strüver, A. Relation between observed and perceived traffic noise and socio-economic status in urban blocks of different characteristics. Urban Sci.
**2018**, 2, 20. [Google Scholar] [CrossRef] [Green Version] - Preisendörfer, P. Umweltgerechtigkeit: Von sozial-räumlicher Ungleichheit hin zu postulierter Ungerechtigkeit lokaler Umweltbelastungen. Soz. Welt
**2014**, 65, 25–45. [Google Scholar] [CrossRef] - Von Szombathely, M.; Bechtel, B.; Lemke, B.; Oßenbrügge, J.; Pohl, T.; Pott, M. Empirical evidences for urban influences on public health in Hamburg. Appl. Sci.
**2019**, 9, 2303. [Google Scholar] [CrossRef] [Green Version] - Gehl, J. Cities for People; Island Press: Washington, DC, USA, 2010. [Google Scholar]
- Hägerstrand, T. The Impact of Transport on the Quality of Life; Lunds Universitets Kulturgeografiska Institution: Lund, Sweden, 1974. [Google Scholar]
- Schoetter, R.; Grawe, D.; Hoffmann, P.; Kirschner, P.; Grätz, A.; Schlünzen, K.H. Impact of local adaptation measures and regional climate change on perceived temperature. Meteorol. Z.
**2013**, 22, 117–130. [Google Scholar] [CrossRef] - Fischereit, J.; Schlünzen, K.H. Evaluation of thermal indices for their applicability in obstacle resolving meteorology models. Int. J. Biometeorol.
**2018**, 62, 1887. [Google Scholar] [CrossRef] [Green Version] - De Freitas, C.; Grigorieva, E. A comprehensive catalogue and classification of human thermal climate indices. Int. J. Biometeorol.
**2015**, 59, 109–120. [Google Scholar] [CrossRef] [PubMed] - Toi, M.; Nomaguchi, Y.; Fujita, K. Structural design exploration for product architecture design. In Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE 2020), St. Louis, MO, USA, 16–19 August 2020. IDETC2020-22599. [Google Scholar]
- Eisenack, K.; Lüdeke, M.K.B.; Petschel-Held, G.; Scheffran, J.; Kropp, J.P. Qualitative modelling techniques to assess patterns of global change. In Advanced Methods for Decision Making and Risk Management in Sustainability Science; Kropp, J., Scheffran, J., Eds.; Nova Science: New York, NY, USA, 2007; pp. 99–146. [Google Scholar]

**Figure 1.**Conceptual model of health-related urban well-being (UrbWellth) [4].

**Figure 2.**Design structure matrix [19]. (

**a**) Dependency diagram; (

**b**) DSM representation of dependency; (

**c**) type of dependency.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Hoffmann, P.; Nomaguchi, Y.; Hara, K.; Sawai, K.; Gasser, I.; Albrecht, M.; Bechtel, B.; Fischereit, J.; Fujita, K.; Gaffron, P.;
et al. Multi-Domain Design Structure Matrix Approach Applied to Urban System Modeling. *Urban Sci.* **2020**, *4*, 28.
https://doi.org/10.3390/urbansci4020028

**AMA Style**

Hoffmann P, Nomaguchi Y, Hara K, Sawai K, Gasser I, Albrecht M, Bechtel B, Fischereit J, Fujita K, Gaffron P,
et al. Multi-Domain Design Structure Matrix Approach Applied to Urban System Modeling. *Urban Science*. 2020; 4(2):28.
https://doi.org/10.3390/urbansci4020028

**Chicago/Turabian Style**

Hoffmann, Peter, Yutaka Nomaguchi, Keishiro Hara, Kana Sawai, Ingenuin Gasser, Myriam Albrecht, Benjamin Bechtel, Jana Fischereit, Kikuo Fujita, Philine Gaffron,
and et al. 2020. "Multi-Domain Design Structure Matrix Approach Applied to Urban System Modeling" *Urban Science* 4, no. 2: 28.
https://doi.org/10.3390/urbansci4020028