A Review on Innovative Strategies Towards Sustainable Drug Waste Management Through Algae-Based Systems
Abstract
1. Introduction
2. Research Strategies and Bibliographic Sources
3. Quantitative Data on Drugs as Emerging Contaminants
3.1. Wastewater Treatment Plant and Their Challenges
3.2. Algal Species-Specific Drug Removal Performance
3.2.1. Scenedesmus spp. for Phytoremediation
3.2.2. Chlorella spp. for Phytoremediation
3.2.3. Galdieria spp. Potential in Phytoremediation
3.2.4. Other Notably Algae Species Used in Phytoremediation
3.3. Mechanisms and Applications of Algal–Bacterial Consortia
3.4. Antibiotic Disruption Mechanism by Algae
3.4.1. Superficial Adsorption and Intracellular Bioaccumulation
3.4.2. Biodegradation and Photodegradation
3.4.3. Molecular and Genetic Responses to Pharmaceutical Contaminants: Detoxification Pathways and Adaptive Mechanisms
3.5. Microalgae for the Green Transition
4. Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UW | Urban Wastewater |
AMR | Antimicrobial Resistance |
EC | Emerging Contaminants |
WHO | World Health Organization |
WWTP | Wastewater Treatment Plant |
EU-WFD | European Water Framework Directive |
PBR | Closed Photobioreactor |
BOD5 | Biochemical Oxygen Demand |
COD | Chemical Oxygen Demand |
TSS | Total Suspended Solid |
TN | Total Nitrogen |
TP | Total Phosphorus |
LHU | Local Health Unit |
NSAID | Non-Steroidal Anti Inflammatory Drug |
PNEC | Predicted No Effect Concentration |
EDC | Endocrine-Disrupting Compound |
HRAP | High-Rate Algal Pond |
IC50 | Inhibition Concentration |
SMX | Sulfamethoxazole |
TEA | Techno-Economic Analysis |
SOD | Superoxyde Dismutase |
CAT | Catalase |
TEs | Transportable Elements |
PFK | Phosphofructokinase |
CS | Citrate Synthase |
FDA | Food And Drugs Administration |
EFSA | European Food Safety Authority |
SDGs | Sustainable Development Goals |
References
- Tong, X.; Mohapatra, S.; Zhang, J.; Tran, N.H.; You, L.; He, Y.; Gin, K.Y.-H. Source, Fate, Transport and Modelling of Selected Emerging Contaminants in the Aquatic Environment: Current Status and Future Perspectives. Water Res. 2022, 217, 118418. [Google Scholar] [CrossRef] [PubMed]
- Mofijur, M.; Hasan, M.M.; Ahmed, S.F.; Djavanroodi, F.; Fattah, I.M.R.; Silitonga, A.S.; Kalam, M.A.; Zhou, J.L.; Khan, T.Y. Advances in Identifying and Managing Emerging Contaminants in Aquatic Ecosystems: Analytical Approaches, Toxicity Assessment, Transformation Pathways, Environmental Fate, and Remediation Strategies. Environ. Pollut. 2024, 341, 122889. [Google Scholar] [CrossRef] [PubMed]
- Bavumiragira, J.P.; Yin, H. Fate and Transport of Pharmaceuticals in Water Systems: A Processes Review. Sci. Total Environ. 2022, 823, 153635. [Google Scholar] [CrossRef] [PubMed]
- Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 22 April 2025).
- Jonas, O.B.; Irwin, A.; Berthe, F.C.J.; Le Gall, F.G.; Marquez, P.V. Drug-Resistant Infections: A Threat to Our Economic Future. World Bank. Rep. 2017, 2, 1–132. [Google Scholar]
- Moreno Ríos, A.L.; Gutierrez-Suarez, K.; Carmona, Z.; Ramos, C.G.; Silva Oliveira, L.F. Pharmaceuticals as Emerging Pollutants: Case Naproxen an Overview. Chemosphere 2022, 291, 132822. [Google Scholar] [CrossRef]
- Eniola, J.O.; Kumar, R.; Barakat, M.A.; Rashid, J. A Review on Conventional and Advanced Hybrid Technologies for Pharmaceutical Wastewater Treatment. J. Clean. Prod. 2022, 356, 131826. [Google Scholar] [CrossRef]
- Sophia, A.C.; Lima, E.C. Removal of Emerging Contaminants from the Environment by Adsorption. Ecotoxicol. Environ. Saf. 2018, 150, 1–17. [Google Scholar] [CrossRef]
- Alessandretti, I.; Rigueto, C.V.T.; Nazari, M.T.; Rosseto, M.; Dettmer, A. Removal of Diclofenac from Wastewater: A Comprehensive Review of Detection, Characteristics and Tertiary Treatment Techniques. J. Environ. Chem. Eng. 2021, 9, 106743. [Google Scholar] [CrossRef]
- Liu, H.; Ramnarayanan, R.; Logan, B.E. Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell. Environ. Sci. Technol. 2004, 38, 2281–2285. [Google Scholar] [CrossRef]
- Küçükbayrak, M.; Alver, A. Innovative and Cost-Effective Approaches to Enhance Nutrient Removal and Energy Efficiency in Conventional Wastewater Treatment Plants. J. Environ. Manag. 2025, 382, 125350. [Google Scholar] [CrossRef]
- Dulio, V.; Van Bavel, B.; Brorström-Lundén, E.; Harmsen, J.; Hollender, J.; Schlabach, M.; Slobodnik, J.; Thomas, K.; Koschorreck, J. Emerging Pollutants in the EU: 10 Years of NORMAN in Support of Environmental Policies and Regulations. Environ. Sci. Eur. 2018, 30, 5. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Morales, D.; Masís-Mora, M.; Montiel-Mora, J.R.; Méndez-Rivera, M.; Gutiérrez-Quirós, J.A.; Brenes-Alfaro, L.; Rodríguez-Rodríguez, C.E. Pharmaceuticals, Hazard and Ecotoxicity in Surface and Wastewater in a Tropical Dairy Production Area in Latin America. Chemosphere 2024, 346, 140443. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022; World Health Organization: Geneva, Switzerland, 2022; ISBN 92-4-006270-X.
- Hejna, M.; Kapuścińska, D.; Aksmann, A. Pharmaceuticals in the Aquatic Environment: A Review on Eco-Toxicology and the Remediation Potential of Algae. Int. J. Environ. Res. Public Health 2022, 19, 7717. [Google Scholar] [CrossRef] [PubMed]
- Deo, R.P. Pharmaceuticals in the Surface Water of the USA: A Review. Curr. Environ. Health Rep. 2014, 1, 113–122. [Google Scholar] [CrossRef]
- Nikolaou, A.; Meric, S.; Fatta, D. Occurrence Patterns of Pharmaceuticals in Water and Wastewater Environments. Anal. Bioanal. Chem. 2007, 387, 1225–1234. [Google Scholar] [CrossRef]
- Leboeuf, C. Global Indicator Framework for the Sustainable Development Goals. 2018. Available online: https://unstats.un.org/sdgs/indicators/Global%20Indicator%20Framework%20after%202022%20refinement_Eng.pdf (accessed on 14 January 2025).
- Delanka-Pedige, H.M.K.; Munasinghe-Arachchige, S.P.; Abeysiriwardana-Arachchige, I.S.A.; Nirmalakhandan, N. Wastewater Infrastructure for Sustainable Cities: Assessment Based on UN Sustainable Development Goals (SDGs). Int. J. Sustain. Dev. World Ecol. 2021, 28, 203–209. [Google Scholar] [CrossRef]
- Habuda-Stanić, M. Quaternary Wastewater Treatment-An Overview. In Proceedings of the 4th International Conference “Waters in Sensitive and Protected Areas”, Pula, Croatia, 10–13 April 2024; Croatian Water Pollution Control Society: Zagreb, Croatia, 2024; pp. 69–70. [Google Scholar]
- Bieroza, M.Z.; Bol, R.; Glendell, M. What Is the Deal with the Green Deal: Will the New Strategy Help to Improve European Freshwater Quality beyond the Water Framework Directive? Sci. Total Environ. 2021, 791, 148080. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, J.; Chu, H.; Zhou, X.; Zhang, Y. Advances in Microalgae-Based Livestock Wastewater Treatment: Mechanisms of Pollutants Removal, Effects of Inhibitory Components and Enhancement Strategies. Chem. Eng. J. 2024, 483, 149222. [Google Scholar] [CrossRef]
- Shahid, A.; Malik, S.; Zhu, H.; Xu, J.; Nawaz, M.Z.; Nawaz, S.; Asraful Alam, M.; Mehmood, M.A. Cultivating Microalgae in Wastewater for Biomass Production, Pollutant Removal, and Atmospheric Carbon Mitigation; a Review. Sci. Total Environ. 2020, 704, 135303. [Google Scholar] [CrossRef]
- González Peña, O.I.; López Zavala, M.Á.; Cabral Ruelas, H. Pharmaceuticals Market, Consumption Trends and Disease Incidence Are Not Driving the Pharmaceutical Research on Water and Wastewater. Int. J. Environ. Res. Public. Health 2021, 18, 2532. [Google Scholar] [CrossRef]
- Caban, M.; Stepnowski, P. How to Decrease Pharmaceuticals in the Environment? A Review. Environ. Chem. Lett. 2021, 19, 3115–3138. [Google Scholar] [CrossRef]
- Samal, K.; Mahapatra, S.; Hibzur Ali, M. Pharmaceutical Wastewater as Emerging Contaminants (EC): Treatment Technologies, Impact on Environment and Human Health. Energy Nexus 2022, 6, 100076. [Google Scholar] [CrossRef]
- Russo, V.; Orlando, V.; Monetti, V.M.; Galimberti, F.; Casula, M.; Olmastroni, E.; Tragni, E.; Menditto, E.; EDU.RE.DRUG Group. Geographical Variation in Medication Prescriptions: A Multiregional Drug-Utilization Study. Front. Pharmacol. 2020, 11, 418. [Google Scholar] [CrossRef] [PubMed]
- Johansson, N.; Svensson, M. Regional Variation in Prescription Drug Spending: Evidence from Regional Migrants in Sweden. Health Econ. 2022, 31, 1862–1877. [Google Scholar] [CrossRef]
- Massano, M.; Salomone, A.; Gerace, E.; Alladio, E.; Vincenti, M.; Minella, M. Wastewater Surveillance of 105 Pharmaceutical Drugs and Metabolites by Means of Ultra-High-Performance Liquid-Chromatography-Tandem High Resolution Mass Spectrometry. J. Chromatogr. A 2023, 1693, 463896. [Google Scholar] [CrossRef]
- Rapp-Wright, H.; Regan, F.; White, B.; Barron, L.P. A Year-Long Study of the Occurrence and Risk of over 140 Contaminants of Emerging Concern in Wastewater Influent, Effluent and Receiving Waters in the Republic of Ireland. Sci. Total Environ. 2023, 860, 160379. [Google Scholar] [CrossRef]
- Khasawneh, O.F.S.; Palaniandy, P. Occurrence and Removal of Pharmaceuticals in Wastewater Treatment Plants. Process Saf. Environ. Prot. 2021, 150, 532–556. [Google Scholar] [CrossRef]
- Giunchi, V.; Fusaroli, M.; Cangini, A.; Fortinguerra, F.; Zito, S.; Pierantozzi, A.; Lunghi, C.; Poluzzi, E.; Trotta, F. Assessing the Environmental Impact of Medicines in Italy Using Data from the Italian Medicines Agency. Br. J. Clin. Pharmacol. 2025, 91, 1297–1305. [Google Scholar] [CrossRef]
- Makowska, M.; Spychała, M.; Gajewska, K. Impact of Pharmaceuticals on the Individual Wastewater Treatment System. J. Ecol. Eng. 2024, 25, 257–266. [Google Scholar] [CrossRef]
- Moghaddam, A.; Khayatan, D.; Esmaeili Fard Barzegar, P.; Ranjbar, R.; Yazdanian, M.; Tahmasebi, E.; Alam, M.; Abbasi, K.; Esmaeili Gouvarchin Ghaleh, H.; Tebyaniyan, H. Biodegradation of Pharmaceutical Compounds in Industrial Wastewater Using Biological Treatment: A Comprehensive Overview. Int. J. Environ. Sci. Technol. 2023, 20, 5659–5696. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, Z.; Liu, H.; Dong, S.; Nghiem, L.D.; Gao, L.; Chaves, A.V.; Zamyadi, A.; Li, X.; Wang, Q. A Review on Microalgae-Mediated Biotechnology for Removing Pharmaceutical Contaminants in Aqueous Environments: Occurrence, Fate, and Removal Mechanism. J. Hazard. Mater. 2023, 443, 130213. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Cao, K.-L.; Lv, S.-B.; Hu, Y.-X.; Lin, J.; Zhou, Q.-Z.; Wang, J.-H. Algal Strains, Treatment Systems and Removal Mechanisms for Treating Antibiotic Wastewater by Microalgae. J. Water Process Eng. 2023, 56, 104266. [Google Scholar] [CrossRef]
- Leng, L.; Wei, L.; Xiong, Q.; Xu, S.; Li, W.; Lv, S.; Lu, Q.; Wan, L.; Wen, Z.; Zhou, W. Use of Microalgae Based Technology for the Removal of Antibiotics from Wastewater: A Review. Chemosphere 2020, 238, 124680. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Chen, C.; Zhang, C.; Su, G.; Ren, N.; Ho, S.-H. Revealing the Role of Adsorption in Ciprofloxacin and Sulfadiazine Elimination Routes in Microalgae. Water Res. 2020, 172, 115475. [Google Scholar] [CrossRef]
- Xiong, Q.; Hu, L.-X.; Liu, Y.-S.; Zhao, J.-L.; He, L.-Y.; Ying, G.-G. Microalgae-Based Technology for Antibiotics Removal: From Mechanisms to Application of Innovational Hybrid Systems. Environ. Int. 2021, 155, 106594. [Google Scholar] [CrossRef]
- Vesilind, P. Wastewater Treatment Plant Design; IWA Publishing: London, UK, 2003; Volume 2, ISBN 1-84339-052-3. [Google Scholar]
- Sen, B.; Alp, M.T.; Sonmez, F.; Kocer, M.A.T.; Canpolat, O. Relationship of Algae to Water Pollution and Waste Water Treatment. Water Treat. 2013, 14, 335–354. [Google Scholar]
- Wang, L.; Min, M.; Li, Y.; Chen, P.; Chen, Y.; Liu, Y.; Wang, Y.; Ruan, R. Cultivation of Green Algae Chlorella Sp. in Different Wastewaters from Municipal Wastewater Treatment Plant. Appl. Biochem. Biotechnol. 2010, 162, 1174–1186. [Google Scholar] [CrossRef]
- Li, S.-N.; Zhang, C.; Li, F.; Ren, N.-Q.; Ho, S.-H. Recent Advances of Algae-Bacteria Consortia in Aquatic Remediation. Crit. Rev. Environ. Sci. Technol. 2023, 53, 315–339. [Google Scholar] [CrossRef]
- Pan, S.; Dixon, K.L.; Nawaz, T.; Rahman, A.; Selvaratnam, T. Evaluation of Galdieria sulphuraria for Nitrogen Removal and Biomass Production from Raw Landfill Leachate. Algal Res. 2021, 54, 102183. [Google Scholar] [CrossRef]
- Carone, M.; Malaguti, M.; Zanetti, M.; Tiraferri, A.; Riggio, V.A. Towards Sustainable Water Management for Galdieria sulphuraria Cultivation. Sci. Total Environ. 2024, 950, 175267. [Google Scholar] [CrossRef]
- Pandey, A.; Srivastava, S.; Kumar, S. Carbon Dioxide Fixation and Lipid Storage of Scenedesmus sp. ASK22: A Sustainable Approach for Biofuel Production and Waste Remediation. J. Environ. Manag. 2023, 332, 117350. [Google Scholar] [CrossRef] [PubMed]
- Roy, H.P.; Eldiehy, K.S.; Deka, D. Phycoremediation of Rice Bran Oil Processing Wastewater and Biodiesel Production Using Green Microalgae, Scenedesmus obliquus: A Green Approach to Environmental Protection and Remediation. Environ. Sci. Pollut. Res. 2024, 31, 65288–65301. [Google Scholar] [CrossRef] [PubMed]
- Rajivgandhi, G.; Ramachandran, G.; Chelliah, C.K.; Maruthupandy, M.; Quero, F.; Vijayalakshmi, S.; Al-Mekhlafi, F.A.; Wadaan, M.A.; Ranjitha, J.; Li, W.-J. Green Microalgal Strain Chlorella vulgaris Isolated from Industrial Wastewater with Remediation Capacity. Environ. Technol. Innov. 2022, 28, 102597. [Google Scholar] [CrossRef]
- Amaral, E.T.; Bender, L.B.Y.C.; Rizzetti, T.M.; de Souza Schneider, R.d.C. Removal of Organic Contaminants in Water Bodies or Wastewater by Microalgae of the Genus Chlorella: A Review. Case Stud. Chem. Environ. Eng. 2023, 8, 100476. [Google Scholar] [CrossRef]
- Shi, J.; Podola, B.; Melkonian, M. Removal of Nitrogen and Phosphorus from Wastewater Using Microalgae Immobilized on Twin Layers: An Experimental Study. J. Appl. Phycol. 2007, 19, 417–423. [Google Scholar] [CrossRef]
- Xiong, J.-Q.; Kurade, M.B.; Jeon, B.-H. Can Microalgae Remove Pharmaceutical Contaminants from Water? Trends Biotechnol. 2018, 36, 30–44. [Google Scholar] [CrossRef]
- Matamoros, V.; Uggetti, E.; García, J.; Bayona, J.M. Assessment of the Mechanisms Involved in the Removal of Emerging Contaminants by Microalgae from Wastewater: A Laboratory Scale Study. J. Hazard. Mater. 2016, 301, 197–205. [Google Scholar] [CrossRef]
- Chen, N.; Zhang, X.; Du, Q.; Huo, J.; Wang, H.; Wang, Z.; Guo, W.; Ngo, H.H. Advancements in Swine Wastewater Treatment: Removal Mechanisms, Influential Factors, and Optimization Strategies. J. Water Process Eng. 2023, 54, 103986. [Google Scholar] [CrossRef]
- Reddy, K.; Renuka, N.; Kumari, S.; Bux, F. Algae-Mediated Processes for the Treatment of Antiretroviral Drugs in Wastewater: Prospects and Challenges. Chemosphere 2021, 280, 130674. [Google Scholar] [CrossRef]
- Bano, F.; Malik, A.; Ahammad, S.Z. Removal of Estradiol, Diclofenac, and Triclosan by Naturally Occurring Microalgal Consortium Obtained from Wastewater. Sustainability 2021, 13, 7690. [Google Scholar] [CrossRef]
- Grimes, K.L.; Dunphy, L.J.; Loudermilk, E.M.; Melara, A.J.; Kolling, G.L.; Papin, J.A.; Colosi, L.M. Evaluating the Efficacy of an Algae-Based Treatment to Mitigate Elicitation of Antibiotic Resistance. Chemosphere 2019, 237, 124421. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xi, H.; Xu, L.; Jin, M.; Zhao, W.; Liu, H. Ecotoxicological Effects, Environmental Fate and Risks of Pharmaceutical and Personal Care Products in the Water Environment: A Review. Sci. Total Environ. 2021, 788, 147819. [Google Scholar] [CrossRef] [PubMed]
- Al-Mashhadani, E.; Al-Mashhadani, M. Utilization of Chlorella vulgaris after the Extraction Process in Wastewater Treatment as a Biosorption Material for Ciprofloxacin Removal. J. Ecol. Eng. 2023, 24, 1–15. [Google Scholar] [CrossRef]
- Kharel, H.L.; Shrestha, I.; Tan, M.; Selvaratnam, T. Removal of Cadmium and Lead from Synthetic Wastewater Using Galdieria sulphuraria. Environments 2023, 10, 174. [Google Scholar] [CrossRef]
- Lin, Y.; Abraham, J.; RoyChowdhury, A.; Su, T.-L.; Braida, W.; Christodoulatos, C. Ecotoxicological Response of Scenedesmus obliquus to Pure Energetic Compounds and Metal Ions Found in Wastewater Streams from Munitions Manufacturing. Algal Res. 2020, 48, 101927. [Google Scholar] [CrossRef]
- Ling, Y.; Sun, L.; Wang, S.; Lin, C.S.K.; Sun, Z.; Zhou, Z. Cultivation of Oleaginous Microalga Scenedesmus obliquus Coupled with Wastewater Treatment for Enhanced Biomass and Lipid Production. Biochem. Eng. J. 2019, 148, 162–169. [Google Scholar] [CrossRef]
- Shen, Q.-H.; Jiang, J.-W.; Chen, L.-P.; Cheng, L.-H.; Xu, X.-H.; Chen, H.-L. Effect of Carbon Source on Biomass Growth and Nutrients Removal of Scenedesmus obliquus for Wastewater Advanced Treatment and Lipid Production. Bioresour. Technol. 2015, 190, 257–263. [Google Scholar] [CrossRef]
- Martınez, M.E.; Sánchez, S.; Jimenez, J.M.; El Yousfi, F.; Munoz, L. Nitrogen and Phosphorus Removal from Urban Wastewater by the Microalga Scenedesmus obliquus. Bioresour. Technol. 2000, 73, 263–272. [Google Scholar] [CrossRef]
- Daneshvar, E.; Zarrinmehr, M.J.; Hashtjin, A.M.; Farhadian, O.; Bhatnagar, A. Versatile Applications of Freshwater and Marine Water Microalgae in Dairy Wastewater Treatment, Lipid Extraction and Tetracycline Biosorption. Bioresour. Technol. 2018, 268, 523–530. [Google Scholar] [CrossRef]
- Marchello, A.E.; Lombardi, A.T.; Dellamano-Oliveira, M.J.; Souza, C.W.O.D. Microalgae Population Dynamics in Photobioreactors with Secondary Sewage Effluent as Culture Medium. Braz. J. Microbiol. 2015, 46, 75–84. [Google Scholar] [CrossRef]
- Ansari, F.A.; Ravindran, B.; Gupta, S.K.; Nasr, M.; Rawat, I.; Bux, F. Techno-Economic Estimation of Wastewater Phycoremediation and Environmental Benefits Using Scenedesmus obliquus Microalgae. J. Environ. Manag. 2019, 240, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Msanne, J.; Polle, J.; Starkenburg, S. An Assessment of Heterotrophy and Mixotrophy in Scenedesmus and Its Utilization in Wastewater Treatment. Algal Res. 2020, 48, 101911. [Google Scholar] [CrossRef]
- Pittman, J.K.; Dean, A.P.; Osundeko, O. The Potential of Sustainable Algal Biofuel Production Using Wastewater Resources. Bioresour. Technol. 2011, 102, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Morillas-España, A.; Sánchez-Zurano, A.; Lafarga, T.; Del Mar Morales-Amaral, M.; Gómez-Serrano, C.; Acién-Fernández, F.G.; González-López, C.V. Improvement of Wastewater Treatment Capacity Using the Microalga Scenedesmus sp. and Membrane Bioreactors. Algal Res. 2021, 60, 102516. [Google Scholar] [CrossRef]
- Couto, E.; Assemany, P.P.; Assis Carneiro, G.C.; Ferreira Soares, D.C. The Potential of Algae and Aquatic Macrophytes in the Pharmaceutical and Personal Care Products (PPCPs) Environmental Removal: A Review. Chemosphere 2022, 302, 134808. [Google Scholar] [CrossRef]
- Sánchez-Zurano, A.; Lafarga, T.; Morales-Amaral, M.D.M.; Gómez-Serrano, C.; Fernández-Sevilla, J.M.; Acién-Fernández, F.G.; Molina-Grima, E. Wastewater Treatment Using Scenedesmus almeriensis: Effect of Operational Conditions on the Composition of the Microalgae-Bacteria Consortia. J. Appl. Phycol. 2021, 33, 3885–3897. [Google Scholar] [CrossRef]
- Sánchez-Sandoval, D.S.; González-Ortega, O.; Vazquez-Martínez, J.; García De La Cruz, R.F.; Soria-Guerra, R.E. Diclofenac Removal by the Microalgae Species Chlorella vulgaris, Nannochloropsis oculata, Scenedesmus acutus, and Scenedesmus obliquus. 3Biotech 2022, 12, 210. [Google Scholar] [CrossRef]
- Silambarasan, S.; Logeswari, P.; Sivaramakrishnan, R.; Incharoensakdi, A.; Kamaraj, B.; Cornejo, P. Scenedesmus Sp. Strain SD07 Cultivation in Municipal Wastewater for Pollutant Removal and Production of Lipid and Exopolysaccharides. Environ. Res. 2023, 218, 115051. [Google Scholar] [CrossRef]
- De Oliveira, F.R.; Rizzetti, T.M.; Zanella, R.; De Oliveira, J.A.; Rathke, C.R.; Butzke, V.L.L.; Machado, Ê.L.; Lutterbeck, C.A.; De Souza Schneider, R.D.C. Scenedesmus subspicatus Potential for Pharmacological Compounds Removal from Aqueous Media. Algal Res. 2024, 84, 103771. [Google Scholar] [CrossRef]
- Widyaningrum, D.; Prianto, A.D. Chlorella as a Source of Functional Food Ingredients: Short Review. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 794, p. 012148. [Google Scholar]
- Becker, E.W. Micro-Algae as a Source of Protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for Biodiesel Production and Other Applications: A Review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef]
- Oh, Y.-K.; Kim, S.; Ilhamsyah, D.P.A.; Lee, S.-G.; Kim, J.R. Cell Disruption and Lipid Extraction from Chlorella Species for Biorefinery Applications: Recent Advances. Bioresour. Technol. 2022, 366, 128183. [Google Scholar] [CrossRef] [PubMed]
- Markou, G.; Georgakakis, D. Cultivation of Filamentous Cyanobacteria (Blue-Green Algae) in Agro-Industrial Wastes and Wastewaters: A Review. Appl. Energy 2011, 88, 3389–3401. [Google Scholar] [CrossRef]
- Kim, J.; Lingaraju, B.P.; Rheaume, R.; Lee, J.-Y.; Siddiqui, K.F. Removal of Ammonia from Wastewater Effluent by Chlorella vulgaris. Tsinghua Sci. Technol. 2010, 15, 391–396. [Google Scholar] [CrossRef]
- Kusuma, H.S.; Illiyanasafa, N.; Jaya, D.E.C.; Darmokoesoemo, H.; Putra, N.R. Utilization of the Microalga Chlorella vulgaris for Mercury Bioremediation from Wastewater and Biomass Production. Sustain. Chem. Pharm. 2024, 37, 101346. [Google Scholar] [CrossRef]
- Pacheco, D.; Rocha, A.C.S.; Garcia, A.; Bóia, A.; Pereira, L.; Verdelhos, T. Municipal Wastewater: A Sustainable Source for the Green Microalgae Chlorella vulgaris Biomass Production. Appl. Sci. 2021, 11, 2207. [Google Scholar] [CrossRef]
- Baldisserotto, C.; Demaria, S.; Arcidiacono, M.; Benà, E.; Giacò, P.; Marchesini, R.; Ferroni, L.; Benetti, L.; Zanella, M.; Benini, A. Enhancing Urban Wastewater Treatment through Isolated Chlorella Strain-Based Phytoremediation in Centrate Stream: An Analysis of Algae Morpho-Physiology and Nutrients Removal Efficiency. Plants 2023, 12, 1027. [Google Scholar] [CrossRef]
- Geiger, E.; Hornek-Gausterer, R.; Saçan, M.T. Single and Mixture Toxicity of Pharmaceuticals and Chlorophenols to Freshwater Algae Chlorella vulgaris. Ecotoxicol. Environ. Saf. 2016, 129, 189–198. [Google Scholar] [CrossRef]
- Hasan, H.A.; Muhamad, M.H.; Ji, B.; Nazairi, N.A.; Jiat, K.W.; Sim, S.I.S.W.A.; Poh, A.F.M.S. Revolutionizing Wastewater Treatment with Microalgae: Unveiling Resource Recovery, Mechanisms, Challenges, and Future Possibilities. Ecol. Eng. 2023, 197, 107117. [Google Scholar] [CrossRef]
- Rempel, A.; Gutkoski, J.P.; Nazari, M.T.; Biolchi, G.N.; Cavanhi, V.A.F.; Treichel, H.; Colla, L.M. Current Advances in Microalgae-Based Bioremediation and Other Technologies for Emerging Contaminants Treatment. Sci. Total Environ. 2021, 772, 144918. [Google Scholar] [CrossRef]
- De Jesus Oliveira Santos, M.; Oliveira De Souza, C.; Marcelino, H.R. Blue Technology for a Sustainable Pharmaceutical Industry: Microalgae for Bioremediation and Pharmaceutical Production. Algal Res. 2023, 69, 102931. [Google Scholar] [CrossRef]
- Park, S.I.; Cho, C.H.; Ciniglia, C.; Huang, T.; Liu, S.; Bustamante, D.E.; Calderon, M.S.; Mansilla, A.; McDermott, T.; Andersen, R.A.; et al. Revised Classification of the Cyanidiophyceae Based on Plastid Genome Data with Descriptions of the Cavernulicolales Ord. Nov. and Galdieriales Ord. Nov. (Rhodophyta). J. Phycol. 2023, 59, 444–466. [Google Scholar] [CrossRef] [PubMed]
- Retta, B.; Iovinella, M.; Ciniglia, C. Significance and Applications of the Thermo-Acidophilic Microalga Galdieria sulphuraria (Cyanidiophytina, Rhodophyta). Plants 2024, 13, 1786. [Google Scholar] [CrossRef] [PubMed]
- Carbone, D.A.; Olivieri, G.; Pollio, A.; Melkonian, M. Biomass and Phycobiliprotein Production of Galdieria sulphuraria, Immobilized on a Twin-Layer Porous Substrate Photobioreactor. Appl. Microbiol. Biotechnol. 2020, 104, 3109–3119. [Google Scholar] [CrossRef]
- Pleissner, D.; Händel, N. Reduction of the Microbial Load of Digestate by the Cultivation of Galdieria sulphuraria under Acidic Conditions. Waste Biomass Valorization 2023, 14, 2621–2627. [Google Scholar] [CrossRef]
- Chai, W.; Wang, Z.; Zhao, C.; Lu, B.; Liu, J.; Zhao, Y. Efficient Nutrient and Antibiotics Removal from Aquaculture Wastewater Using Different Microalgae-Based Systems by Agricultural Multi-Phytohormone Induction. Algal Res. 2024, 82, 103659. [Google Scholar] [CrossRef]
- He, P.J.; Mao, B.; Lü, F.; Shao, L.M.; Lee, D.J.; Chang, J.S. The Combined Effect of Bacteria and Chlorella vulgaris on the Treatment of Municipal Wastewaters. Bioresour. Technol. 2013, 146, 562–568. [Google Scholar] [CrossRef]
- Fallahi, A.; Rezvani, F.; Asgharnejad, H.; Nazloo, E.K.; Hajinajaf, N.; Higgins, B. Interactions of Microalgae-Bacteria Consortia for Nutrient Removal from Wastewater: A Review. Chemosphere 2021, 272, 129878. [Google Scholar] [CrossRef]
- Hom-Diaz, A.; Jaén-Gil, A.; Bello-Laserna, I.; Rodríguez-Mozaz, S.; Vicent, T.; Barceló, D.; Blánquez, P. Performance of a Microalgal Photobioreactor Treating Toilet Wastewater: Pharmaceutically Active Compound Removal and Biomass Harvesting. Sci. Total Environ. 2017, 592, 1–11. [Google Scholar] [CrossRef]
- Hena, S.; Gutierrez, L.; Croué, J.-P. Removal of Pharmaceutical and Personal Care Products (PPCPs) from Wastewater Using Microalgae: A Review. J. Hazard. Mater. 2021, 403, 124041. [Google Scholar] [CrossRef]
- Ambrosino, A.; Chianese, A.; Zannella, C.; Piccolella, S.; Pacifico, S.; Giugliano, R.; Franci, G.; De Natale, A.; Pollio, A.; Pinto, G.; et al. Galdieria sulphuraria: An Extremophilic Alga as a Source of Antiviral Bioactive Compounds. Mar. Drugs 2023, 21, 383. [Google Scholar] [CrossRef] [PubMed]
- Di Cicco, M.R.; Iovinella, M.; Palmieri, M.; Lubritto, C.; Ciniglia, C. Extremophilic Microalgae Galdieria Gen. for Urban Wastewater Treatment: Current State, the Case of “POWER” System, and Future Prospects. Plants 2021, 10, 2343. [Google Scholar] [CrossRef] [PubMed]
- Delanka-Pedige, H.M.; Cheng, X.; Munasinghe-Arachchige, S.P.; Abeysiriwardana-Arachchige, I.S.; Xu, J.; Nirmalakhandan, N.; Zhang, Y. Metagenomic Insights into Virus Removal Performance of an Algal-Based Wastewater Treatment System Utilizing Galdieria sulphuraria. Algal Res. 2020, 47, 101865. [Google Scholar] [CrossRef]
- Cheng, X.; Delanka-Pedige, H.M.K.; Munasinghe-Arachchige, S.P.; Abeysiriwardana-Arachchige, I.S.A.; Smith, G.B.; Nirmalakhandan, N.; Zhang, Y. Removal of Antibiotic Resistance Genes in an Algal-Based Wastewater Treatment System Employing Galdieria sulphuraria: A Comparative Study. Sci. Total Environ. 2020, 711, 134435. [Google Scholar] [CrossRef]
- Bleotu, C.; Matei, L.; Dragu, L.D.; Necula, L.G.; Pitica, I.M.; Chivu-Economescu, M.; Diaconu, C.C. Viruses in Wastewater—A Concern for Public Health and the Environment. Microorganisms 2024, 12, 1430. [Google Scholar] [CrossRef]
- Nagarajan, D.; Lee, D.-J.; Varjani, S.; Lam, S.S.; Allakhverdiev, S.I.; Chang, J.-S. Microalgae-Based Wastewater Treatment–Microalgae-Bacteria Consortia, Multi-Omics Approaches and Algal Stress Response. Sci. Total Environ. 2022, 845, 157110. [Google Scholar] [CrossRef]
- Salman, J.M.; Kaduem, N.F.; Juda, S.A. Algal Immobilization as a Green Technology for Domestic Wastewater Treatment. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; Volume 1088, p. 012005. [Google Scholar]
- Han, M.; Zhang, C.; Ho, S.-H. Immobilized Microalgal System: An Achievable Idea for Upgrading Current Microalgal Wastewater Treatment. Environ. Sci. Ecotechnol. 2023, 14, 100227. [Google Scholar] [CrossRef]
- Jiang, L.; Li, Y.; Pei, H. Algal–Bacterial Consortia for Bioproduct Generation and Wastewater Treatment. Renew. Sustain. Energy Rev. 2021, 149, 111395. [Google Scholar] [CrossRef]
- Rossi, S.; Pizzera, A.; Bellucci, M.; Marazzi, F.; Mezzanotte, V.; Parati, K.; Ficara, E. Piggery Wastewater Treatment with Algae-Bacteria Consortia: Pilot-Scale Validation and Techno-Economic Evaluation at Farm Level. Bioresour. Technol. 2022, 351, 127051. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, N.; Sharma, S.G.; Dhir, A.; Kocher, G.S.; Mamane, H. Application of Microbial Consortium to the Pilot-Scale Treatment of Primary Treated Sewage Wastewater. Water Air Soil. Pollut. 2024, 235, 132. [Google Scholar] [CrossRef]
- Gong, W.; Guo, L.; Huang, C.; Xie, B.; Jiang, M.; Zhao, Y.; Zhang, H.; Wu, Y.; Liang, H. A Systematic Review of Antibiotics and Antibiotic Resistance Genes (ARGs) in Mariculture Wastewater: Antibiotics Removal by Microalgal-Bacterial Symbiotic System (MBSS), ARGs Characterization on the Metagenomic. Sci. Total Environ. 2024, 930, 172601. [Google Scholar] [CrossRef] [PubMed]
- Renganathan, P.; Gaysina, L.A.; Holguín-Peña, R.J.; Sainz-Hernández, J.C.; Ortega-García, J.; Rueda-Puente, E.O. Phycoremediated Microalgae and Cyanobacteria Biomass as Biofertilizer for Sustainable Agriculture: A Holistic Biorefinery Approach to Promote Circular Bioeconomy. Biomass 2024, 4, 1047–1077. [Google Scholar] [CrossRef]
- Yu, T.; Wang, S.; Yang, H.; Sun, Y.; Chen, Z.; Xu, G.; Zhang, C. Carbon Capture and Resource Utilization by Algal–Bacterial Consortium in Wastewater Treatment: A Mini-Review. Water 2024, 16, 2197. [Google Scholar] [CrossRef]
- Qi, F.; Jia, Y.; Mu, R.; Ma, G.; Guo, Q.; Meng, Q.; Yu, G.; Xie, J. Convergent Community Structure of Algal–Bacterial Consortia and Its Effects on Advanced Wastewater Treatment and Biomass Production. Sci. Rep. 2021, 11, 21118. [Google Scholar] [CrossRef]
- Zaytsev, P.A.; Shurygin, B.M.; Rodin, V.A.; Panova, T.V.; Zvereva, M.I.; Skripnikova, E.V.; Solovchenko, A.E. Comparative Metagenomics for Monitoring the Hidden Dynamics of the Algal-Bacterial Wastewater Community under the Influence of Drugs. Nanotechnol. Russ. 2024, 19, 393–407. [Google Scholar] [CrossRef]
- Kiki, C.; Qin, D.; Liu, L.; Qiao, M.; Adyari, B.; Ifon, B.E.; Adeoye, A.B.E.; Zhu, L.; Cui, L.; Sun, Q. Unraveling the Role of Microalgae in Mitigating Antibiotics and Antibiotic Resistance Genes in Photogranules Treating Antibiotic Wastewater. Environ. Sci. Technol. 2023, 57, 16940–16952. [Google Scholar] [CrossRef]
- Mantovani, M.; Rossi, S.; Ficara, E.; Collina, E.; Marazzi, F.; Lasagni, M.; Mezzanotte, V. Removal of Pharmaceutical Compounds from the Liquid Phase of Anaerobic Sludge in a Pilot-Scale High-Rate Algae-Bacteria Pond. Sci. Total Environ. 2024, 908, 167881. [Google Scholar] [CrossRef]
- Gururani, P.; Bhatnagar, P.; Kumar, V.; Vlaskin, M.S.; Grigorenko, A.V. Algal Consortiums: A Novel and Integrated Approach for Wastewater Treatment. Water 2022, 14, 3784. [Google Scholar] [CrossRef]
- Hu, X.; Jalalah, M.; Wu, J.; Zheng, Y.; Li, X.; Salama, E.-S. Microalgal Growth Coupled with Wastewater Treatment in Open and Closed Systems for Advanced Biofuel Generation. Biomass Convers. Biorefin. 2022, 12, 1939–1958. [Google Scholar] [CrossRef]
- Michelon, W.; Viancelli, A. Microalgae-Based Solutions for Sustainable Swine Wastewater Management: Challenges, Opportunities, and Future Directions [Soluciones Basadas En Microalgas Para La Gestión Sostenible de Las Aguas Residuales Porcinas: Desafíos, Oportunidades y Direcciones Futuras]. Rev. Latinoam. Biotecnol. Ambient. Algal 2024, 15, 1–27. [Google Scholar]
- Morais, E.G.; Cristofoli, N.L.; Maia, I.B.; Magina, T.; Cerqueira, P.R.; Teixeira, M.R.; Varela, J.; Barreira, L.; Gouveia, L. Microalgal Systems for Wastewater Treatment: Technological Trends and Challenges towards Waste Recovery. Energies 2021, 14, 8112. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Mehariya, S.; Bhatia, R.K.; Kumar, M.; Pugazhendhi, A.; Awasthi, M.K.; Atabani, A.E.; Kumar, G.; Kim, W.; Seo, S.-O.; et al. Wastewater Based Microalgal Biorefinery for Bioenergy Production: Progress and Challenges. Sci. Total Environ. 2021, 751, 141599. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Xue, G. Algal-Based Immobilization Process to Treat the Effluent from a Secondary Wastewater Treatment Plant (WWTP). J. Hazard. Mater. 2010, 178, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Koller, M. Design of Closed Photobioreactors for Algal Cultivation. In Algal Biorefineries; Prokop, A., Bajpai, R.K., Zappi, M.E., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 133–186. ISBN 978-3-319-20199-3. [Google Scholar]
- Chattaraj, S.; Das, S.; Ganguly, A.; Thatoi, H.; Das Mohapatra, P.K. Valorization of Wastewater by the Application of Probiotic, Nitrifying, and Denitrifying Bacterial Consortium. In Application of Microbial Technology in Wastewater Treatment and Bioenergy Recovery; Springer: Berlin/Heidelberg, Germany, 2024; pp. 133–156. [Google Scholar]
- Dammak, I.; Fersi, M.; Hachicha, R.; Abdelkafi, S. Current Insights into Growing Microalgae for Municipal Wastewater Treatment and Biomass Generation. Resources 2023, 12, 119. [Google Scholar] [CrossRef]
- Aditya, L.; Mahlia, T.I.; Nguyen, L.N.; Vu, H.P.; Nghiem, L.D. Microalgae-Bacteria Consortium for Wastewater Treatment and Biomass Production. Sci. Total Environ. 2022, 838, 155871. [Google Scholar] [CrossRef]
- Satiro, J.; Dos Santos Neto, A.G.; Marinho, T.; Sales, M.; Marinho, I.; Kato, M.T.; Simões, R.; Albuquerque, A.; Florencio, L. The Role of the Microalgae–Bacteria Consortium in Biomass Formation and Its Application in Wastewater Treatment Systems: A Comprehensive Review. Appl. Sci. 2024, 14, 6083. [Google Scholar] [CrossRef]
- Singh Mehra, K.; Abrar, I.; Kant Bhatia, R.; Goel, V. A Comprehensive Review of Algae Consortium for Wastewater Bioremediation and Biodiesel Production. Energy Convers. Manag. 2025, 325, 119428. [Google Scholar] [CrossRef]
- Xiao, Z.; Meng, H.; Li, S.; Ning, W.; Song, Y.; Han, J.; Chang, J.-S.; Wang, Y.; Ho, S.-H. Insights into the Removal of Antibiotics from Livestock and Aquaculture Wastewater by Algae-Bacteria Symbiosis Systems. Environ. Res. 2024, 257, 119326. [Google Scholar] [CrossRef]
- Liang, Y.; Qi, X.; Xu, J.-M.; Kurade, M.B.; Jeon, B.-H.; Yang, L.-Q.; Xiong, J.-Q. Improved Tolerance Capacity and Expression of Degradation Genes Drive Efficient Removal of Sulfamethizole by Chlorella pyrenoidosa. J. Environ. Chem. Eng. 2024, 12, 111633. [Google Scholar] [CrossRef]
- Li, M.; Chen, Z.; Li, X.; Yu, S.; Xu, S.; Qiu, S.; Ge, S. Physiological and Genetic Responses of Chlorella sp. to Nitrite Accumulation in Microalgal-Bacterial Consortium with Partial Nitrification Treating Municipal Wastewater. Water Res. 2025, 280, 123473. [Google Scholar] [CrossRef]
- Moustafa, A.A.; Mofeed, J.; Abd-El Hakim, R.M.; Soror, A.S. Response of Chlorella vulgaris to Some Selected Pharmaceutical Drugs. Catrina: Int. J. Environ. Sci. 2024, 29, 79–92. [Google Scholar] [CrossRef]
- Mehmood, M.A.; Amin, M.; Haider, M.N.; Malik, S.; Malik, H.A.; Alam, M.A.; Xu, J.; Alessa, A.H.; Khan, A.Z.; Boopathy, R. Wastewater-Grown Algal Biomass as Carbon-Neutral, Renewable, and Low Water Footprint Feedstock for Clean Energy and Bioplastics. Curr. Pollut. Rep. 2024, 10, 172–188. [Google Scholar] [CrossRef]
- Kandasamy, S.; Narayanan, M.; Raja, R.; Devarayan, K.; Kavitha, R. The Current State of Algae in Wastewater Treatment and Energy Conversion: A Critical Review. Curr. Opin. Environ. Sci. Health 2023, 33, 100469. [Google Scholar] [CrossRef]
- Ahmad, A.; Banat, F.; Alsafar, H.; Hasan, S.W. Algae Biotechnology for Industrial Wastewater Treatment, Bioenergy Production, and High-Value Bioproducts. Sci. Total Environ. 2022, 806, 150585. [Google Scholar] [CrossRef]
- Xue, J.; Lei, D.; Zhao, X.; Hu, Y.; Yao, S.; Lin, K.; Wang, Z.; Cui, C. Antibiotic Residue and Toxicity Assessment of Wastewater during the Pharmaceutical Production Processes. Chemosphere 2022, 291, 132837. [Google Scholar] [CrossRef]
- Fatta-Kassinos, D.; Vasquez, M.I.; Kümmerer, K. Transformation Products of Pharmaceuticals in Surface Waters and Wastewater Formed during Photolysis and Advanced Oxidation Processes–Degradation, Elucidation of Byproducts and Assessment of Their Biological Potency. Chemosphere 2011, 85, 693–709. [Google Scholar] [CrossRef]
- Arashiro, L.T.; Josa, I.; Ferrer, I.; Van Hulle, S.W.H.; Rousseau, D.P.L.; Garfí, M. Life Cycle Assessment of Microalgae Systems for Wastewater Treatment and Bioproducts Recovery: Natural Pigments, Biofertilizer and Biogas. Sci. Total Environ. 2022, 847, 157615. [Google Scholar] [CrossRef]
- Vassalle, L.; Ferrer, I.; Passos, F.; Filho, C.R.M.; Garfí, M. Nature-Based Solutions for Wastewater Treatment and Bioenergy Recovery: A Comparative Life Cycle Assessment. Sci. Total Environ. 2023, 880, 163291. [Google Scholar] [CrossRef]
- Murujew, O.; Whitton, R.; Kube, M.; Fan, L.; Roddick, F.; Jefferson, B.; Pidou, M. Recovery and Reuse of Alginate in an Immobilized Algae Reactor. Environ. Technol. 2021, 42, 1521–1530. [Google Scholar] [CrossRef]
- Obaid, Z.H.; Salman, J.M.; Kadhim, N.F. Review on Toxicity and Removal of Pharmaceutical Pollutants Using Immobilised Microalgae. Ecol. Eng. Environ. Technol. 2023, 24, 44–60. [Google Scholar] [CrossRef]
Drug | Class | Species/Genus | Mechanism | Removal Efficiency | Ref. |
---|---|---|---|---|---|
Sulfamethoxazole | Antibiotic | C. sorokiniana | Bioaccumulation + Biodegradation | 99% | [53] |
Ciprofloxacin | Antibiotic | C. sorokiniana | Bioaccumulation + Enzymatic degradation (CYP450) | 100% | [53] |
Diclofenac | NSAID | Chlorella spp., Scenedesmus spp. | Bioaccumulation, photodegradation, biodegradation | up to 99% | [54,55,56,57] |
Ibuprofen | NSAID | C. vulgaris, Scenedesmus spp. | Bioaccumulation, biodegradation | up to 40% | [54,58] |
Paracetamol (acetaminophen) | Analgesic | Chlorella spp. | Bioaccumulation, biodegradation | up to 90% | [54] |
Metoprolol | Beta-blocker | Chlorella spp. | Bioaccumulation + Photodegradation | up to 60% | [54] |
Estradiol (E2) | Steroid hormone | S. obliquus | Bioaccumulation + Biodegradation | 99% | [59] |
Estrone (E1) | Steroid hormone | S. obliquus | Bioaccumulation + Biodegradation | 91% | [59] |
Galaxolide | Synthetic fragrance | Scenedesmus spp., Chlorella spp. | Photodegradation | up to 99% | [54] |
Tributyl phosphate | Plasticizer | Scenedesmus spp. | Volatilization | up to 99% | [54] |
4-octylphenol | Surfactant/EDC | Scenedesmus spp. | Volatilization | up to 99% | [54] |
Algae | pH | Temp (°C) | Cultivation Mode | References |
---|---|---|---|---|
Scenedesmus spp. | 7 | 20–30 °C | Mixotrophic, phototrophic, heterotrophic | [61,67,69,87] |
Chlorella spp. | 6.5–8 | 25–30 °C | Phototrophic, heterotrophic | [58,76,78,81,82] |
Galdieria spp. | 1.5–4 | Up to 56 °C | Autotrophic, heterotrophic, mixotrophic | [59,88,89,90,91] |
ABC | Depends on system | Ambient (variable) | Self-regulating in photobioreactors | [92,93,94,95,96] |
Feature | PBR Alga | PBR Consortia |
---|---|---|
Control Requirements | Precise control of light, temperature, CO2, and hydraulic retention time | More robust and adaptable to variable environmental conditions |
Maintenance | High maintenance costs; risk of contamination without bacteria | Simpler maintenance compared to monoculture systems |
Scalability | Limited scalability because of high construction and operational costs | Scalable and cost-effective for large-scale applications |
Best-Use Case | Small-scale applications or high-value biomass production | Large-scale |
Sustainability | Highly sustainable with renewable energy | Lower environmental footprint overall |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avilia, S.; Pozzuoli, E.; Iovinella, M.; Ciniglia, C.; Papa, S. A Review on Innovative Strategies Towards Sustainable Drug Waste Management Through Algae-Based Systems. Sci 2025, 7, 92. https://doi.org/10.3390/sci7030092
Avilia S, Pozzuoli E, Iovinella M, Ciniglia C, Papa S. A Review on Innovative Strategies Towards Sustainable Drug Waste Management Through Algae-Based Systems. Sci. 2025; 7(3):92. https://doi.org/10.3390/sci7030092
Chicago/Turabian StyleAvilia, Salvatore, Elio Pozzuoli, Manuela Iovinella, Claudia Ciniglia, and Stefania Papa. 2025. "A Review on Innovative Strategies Towards Sustainable Drug Waste Management Through Algae-Based Systems" Sci 7, no. 3: 92. https://doi.org/10.3390/sci7030092
APA StyleAvilia, S., Pozzuoli, E., Iovinella, M., Ciniglia, C., & Papa, S. (2025). A Review on Innovative Strategies Towards Sustainable Drug Waste Management Through Algae-Based Systems. Sci, 7(3), 92. https://doi.org/10.3390/sci7030092