Quantitative and Qualitative Variations in TILs in Risk Stratification and Patient Selection for Neoadjuvant Chemotherapy of the Luminal B and Triple-Negative Breast Cancer Immunophenotype
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. The Relationship of TILs and TIL Components to Clinicopathological Data of TNBC and LB-like BC
3.2. Intercorellations of TIL Components in TNBC and LB-like BC
3.3. Predictive Value of TILs and TIL Components in Neoadjuvant Treatment of LB-like BC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bombonati, A.; Sgroi, D.C. The molecular pathology of breast cancer progression. J. Pathol. 2011, 223, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Rakha, E.A.; Tse, G.M.; Quinn, C.M. An update on the pathological classification of breast cancer. Histopathology 2023, 82, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Perou, C.M.; Sørlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; et al. Molecular portraits of human breast tumours. Nature 2000, 406, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Coates, A.S.; Winer, E.P.; Goldhirsch, A.; Gelber, R.D.; Gnant, M.; Piccart-Gebhart, M.; Thürlimann, B.; Senn, H.J.; Panel Members. Tailoring therapies--improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Ann Oncol. 2015, 26, 1533–1546. [Google Scholar] [CrossRef]
- Lehmann, B.D.; Pietenpol, J.A. Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes. J. Pathol. 2014, 232, 142–150. [Google Scholar] [CrossRef]
- Feng, Y.; Spezia, M.; Huang, S.; Yuan, C.; Zeng, Z.; Zhang, L.; Ji, X.; Liu, W.; Huang, B.; Luo, W.; et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018, 5, 77–106. [Google Scholar] [CrossRef]
- Creighton, C.J. The molecular profile of luminal B breast cancer. Biologics 2012, 6, 289–297. [Google Scholar] [CrossRef]
- Du, X.W.; Li, G.; Liu, J.; Zhang, C.Y.; Liu, Q.; Wang, H.; Chen, T.S. Comprehensive analysis of the cancer driver genes in breast cancer demonstrates their roles in cancer prognosis and tumor microenvironment. World J. Surg. Oncol. 2021, 19, 273. [Google Scholar] [CrossRef]
- El Bairi, K.; Haynes, H.R.; Blackley, E.; Fineberg, S.; Shear, J.; Turner, S.; de Freitas, J.R.; Sur, D.; Amendola, L.C.; Gharib, M.; et al. The tale of TILs in breast cancer: A report from The International Immuno-Oncology Biomarker Working Group. NPJ Breast Cancer 2021, 7, 150. [Google Scholar] [CrossRef]
- de Jong, V.M.T.; Wang, Y.; Ter Hoeve, N.D.; Opdam, M.; Stathonikos, N.; Jóźwiak, K.; Hauptmann, M.; Cornelissen, S.; Vreuls, W.; Rosenberg, E.H.; et al. Prognostic Value of Stromal Tumor-Infiltrating Lymphocytes in Young, Node-Negative, Triple-Negative Breast Cancer Patients Who Did Not Receive (neo)Adjuvant Systemic Therapy. J. Clin. Oncol. 2022, 40, 2361–2374. [Google Scholar] [CrossRef]
- Vihervuori, H.; Autere, T.A.; Repo, H.; Kurki, S.; Kallio, L.; Lintunen, M.M.; Talvinen, K.; Kronqvist, P. Tumor-infiltrating lymphocytes and CD8+ T cells predict survival of triple-negative breast cancer. J. Cancer Res. Clin. Oncol. 2019, 145, 3105–3114. [Google Scholar] [CrossRef] [PubMed]
- Morigi, C. Highlights of the 16th St Gallen International Breast Cancer Conference, Vienna, Austria, 20–23 March 2019: Personalised treatments for patients with early breast cancer. Ecancermedicalscience 2019, 13, 924. [Google Scholar] [CrossRef]
- Cardoso, F.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rubio, I.T.; Zackrisson, S.; Senkus, E.; ESMO Guidelines Committee. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019, 30, 1194–1220. [Google Scholar] [CrossRef] [PubMed]
- Dunn, G.P.; Old, L.J.; Schreiber, R.D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 2004, 22, 329–360. [Google Scholar] [CrossRef]
- Glajcar, A.; Szpor, J.; Hodorowicz-Zaniewska, D.; Tyrak, K.E.; Okoń, K. The composition of T cell infiltrates varies in primary invasive breast cancer of different molecular subtypes as well as according to tumor size and nodal status. Virchows Arch. 2019, 475, 13–23. [Google Scholar] [CrossRef]
- Ogiya, R.; Niikura, N.; Kumaki, N.; Bianchini, G.; Kitano, S.; Iwamoto, T.; Hayashi, N.; Yokoyama, K.; Oshitanai, R.; Terao, M.; et al. Comparison of tumor-infiltrating lymphocytes between primary and metastatic tumors in breast cancer patients. Cancer Sci. 2016, 107, 1730–1735. [Google Scholar] [CrossRef] [PubMed]
- Althobiti, M.; Aleskandarany, M.A.; Joseph, C.; Toss, M.; Mongan, N.; Diez-Rodriguez, M.; Nolan, C.C.; Ashankyty, I.; Ellis, I.O.; Green, A.R.; et al. Heterogeneity of tumour-infiltrating lymphocytes in breast cancer and its prognostic significance. Histopathology 2018, 73, 887–896. [Google Scholar] [CrossRef] [PubMed]
- Walker, L.S. Treg and CTLA-4: Two intertwining pathways to immune tolerance. J. Autoimmun. 2013, 45, 49–57. [Google Scholar] [CrossRef]
- Walker, L.S.; Sansom, D.M. Confusing signals: Recent progress in CTLA-4 biology. Trends Immunol. 2015, 36, 63–70. [Google Scholar] [CrossRef]
- Zininga, T.; Ramatsui, L.; Shonhai, A. Heat Shock Proteins as Immunomodulants. Molecules 2018, 23, 2846. [Google Scholar] [CrossRef]
- Linder, M.; Pogge von Strandmann, E. The Role of Extracellular HSP70 in the Function of Tumor-Associated Immune Cells. Cancers 2021, 13, 4721. [Google Scholar] [CrossRef]
- Albakova, Z.; Mangasarova, Y. The HSP Immune Network in Cancer. Front. Immunol. 2021, 12, 796493. [Google Scholar] [CrossRef]
- Ogbodo, E.; Michelangeli, F.; Williams, J.H.H. Exogenous heat shock proteins HSPA1A and HSPB1 regulate TNF-α, IL-1β and IL-10 secretion from monocytic cells. FEBS Open Bio. 2023, 13, 1922–1940. [Google Scholar] [CrossRef]
- Borges, T.J.; Wieten, L.; van Herwijnen, M.J.; Broere, F.; van der Zee, R.; Bonorino, C.; van Eden, W. The anti-inflammatory mechanisms of Hsp70. Front. Immunol. 2012, 3, 95. [Google Scholar] [CrossRef] [PubMed]
- Ferris, D.K.; Harel-Bellan, A.; Morimoto, R.I.; Welch, W.J.; Farrar, W.L. Mitogen and lymphokine stimulation of heat shock proteins in T lymphocytes. Proc. Natl. Acad. Sci. USA 1988, 85, 3850–3854. [Google Scholar] [CrossRef] [PubMed]
- Arasanz, H.; Gato-Cañas, M.; Zuazo, M.; Ibañez-Vea, M.; Breckpot, K.; Kochan, G.; Escors, D. PD1 signal transduction pathways in T cells. Oncotarget 2017, 8, 51936–51945. [Google Scholar] [CrossRef]
- Cai, J.; Wang, D.; Zhang, G.; Guo, X. The Role Of PD-1/PD-L1 Axis In Treg Development And Function: Implications For Cancer Immunotherapy. Onco Targets Ther. 2019, 12, 8437–8445. [Google Scholar] [CrossRef]
- Salgado, R.; Denkert, C.; Demaria, S.; Sirtaine, N.; Klauschen, F.; Pruneri, G.; Wienert, S.; Van den Eynden, G.; Baehner, F.L.; Penault-Llorca, F.; et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: Recommendations by an International TILs Working Group 2014. Ann. Oncol. 2015, 26, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Hortobagyi, G.Y.; Connolly, J.L.; D’Orsi, C.J.; Edge, S.B.; Mittendorf, E.A.; Rugo, H.S.; Solin, L.J.; Weaver, D.L.; Winchester, D.J.; Giuliano, A. Breast Cancer Staging System: AJCC Cancer Staging Manual, 8th ed.; The American College of Surgeons (ACS): Chicago, IL, USA, 2018; Available online: http://www.breastsurgeonsweb.com/wp-content/uploads/downloads/2020/10/AJCC-Breast-Cancer-Staging-System.pdf (accessed on 15 August 2024).
- Residual Cancer Burden Calculator. Available online: https://www3.mdanderson.org/app/medcalc/index.cfm?pagename=jsconvert3 (accessed on 15 August 2024).
- Oner, G.; Altintas, S.; Canturk, Z.; Tjalma, W.; Van Berckelaer, C.; Broeckx, G.; Zwaenepoel, K.; Tholhuijsen, M.; Verhoeven, Y.; Berneman, Z.; et al. The immunologic aspects in hormone receptor positive breast cancer. Cancer Treat. Res. Commun. 2020, 25, 100207. [Google Scholar] [CrossRef]
- Stanton, S.E.; Adams, S.; Disis, M.L. Variation in the Incidence and Magnitude of Tumor-Infiltrating Lymphocytes in Breast Cancer Subtypes: A Systematic Review. JAMA Oncol. 2016, 2, 1354–1360. [Google Scholar] [CrossRef]
- Valenza, C.; Taurelli Salimbeni, B.; Santoro, C.; Trapani, D.; Antonarelli, G.; Curigliano, G. Tumor Infiltrating Lymphocytes across Breast Cancer Subtypes: Current Issues for Biomarker Assessment. Cancers 2023, 15, 767. [Google Scholar] [CrossRef]
- Criscitiello, C.; Vingiani, A.; Maisonneuve, P.; Viale, G.; Viale, G.; Curigliano, G. Tumor-infiltrating lymphocytes (TILs) in ER+/HER2- breast cancer. Breast Cancer Res. Treat. 2020, 183, 347–354. [Google Scholar] [CrossRef]
- He, L.; Wang, Y.; Wu, Q.; Song, Y.; Ma, X.; Zhang, B.; Wang, H.; Huang, Y. Association between levels of tumor-infiltrating lymphocytes in different subtypes of primary breast tumors and prognostic outcomes: A meta-analysis. BMC Women’s Health 2020, 20, 194. [Google Scholar] [CrossRef]
- Gao, Z.H.; Li, C.X.; Liu, M.; Jiang, J.Y. Predictive and prognostic role of tumour-infiltrating lymphocytes in breast cancer patients with different molecular subtypes: A meta-analysis. BMC Cancer 2020, 20, 1150. [Google Scholar] [CrossRef] [PubMed]
- Peterko, A.C.; Rajković-Molek, K.; Gulić, T.; Vujaklija, D.V.; Lovasić, I.B.; Lovasić, F.; Mustać, E.; Avirović, M. HSP70 In triple-negative breast cancer: Prognostic value and clinical significance. Pathol. Res. Pract. 2022, 238, 154127. [Google Scholar] [CrossRef]
- Buisseret, L.; Garaud, S.; de Wind, A.; Van den Eynden, G.; Boisson, A.; Solinas, C.; Gu-Trantien, C.; Naveaux, C.; Lodewyckx, J.N.; Duvillier, H.; et al. Tumor-infiltrating lymphocyte composition, organization and PD-1/ PD-L1 expression are linked in breast cancer. Oncoimmunology 2016, 6, e1257452. [Google Scholar] [CrossRef] [PubMed]
- Sabatier, R.; Finetti, P.; Mamessier, E.; Adelaide, J.; Chaffanet, M.; Ali, H.R.; Viens, P.; Caldas, C.; Birnbaum, D.; Bertucci, F. Prognostic and predictive value of PDL1 expression in breast cancer. Oncotarget 2015, 6, 5449–5464. [Google Scholar] [CrossRef] [PubMed]
- Dieci, M.V.; Miglietta, F.; Guarneri, V. Immune Infiltrates in Breast Cancer: Recent Updates and Clinical Implications. Cells 2021, 10, 223. [Google Scholar] [CrossRef]
- Cardoso, F.; McArthur, H.L.; Schmid, P.; Cortés, J.; Harbeck, N.; Telli, M.L.; Cescon, D.W.; O’Shaughnessy, J.; Fasching, P.; Shao, Z.; et al. Phase III study of neoadjuvant pembrolizumab (pembro) or placebo (pbo) + chemotherapy (chemo), followed by adjuvant pembro or pbo + endocrine therapy (ET) for early-stage high-risk ER+/HER2– breast cancer. Ann. Oncol. 2023, 34, S1261. [Google Scholar] [CrossRef]
- Stanton, S.E.; Disis, M.L. Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J. Immunother. Cancer 2016, 4, 59. [Google Scholar] [CrossRef]
Clinical and Histopathological Data | TNBC n = 36 (%) | LB-like BC n = 53 (%) | Overall n = 89 (%) | |
---|---|---|---|---|
Age | ≤50 | 14 (38.9%) | 21 (39.6%) | 35 (39.3%) |
>50 | 22 (61.1%) | 32 (60.4%) | 54 (60.7%) | |
Clinical status of primary breast tumor (cT) | ||||
1 | 0 (0%) | 0 (0%) | 0 (0%) | |
2 | 35 (97.2%) | 53 (100%) | 88 (98.9%) | |
3 | 0 (0%) | 0 (0%) | 0 (0%) | |
4 | 1 (2.8%) | 0 (0%) | 1 (1.1%) | |
Clinical status of regional lymph nodes (cN) | ||||
0 | 26 (72.2%) | 22 (41.5%) | 48 (53.9%) | |
1 | 6 (16.7%) | 25 (47.2%) | 31 (34.8%) | |
2 | 3 (8.3%) | 6 (11.3%) | 9 (10.1%) | |
3 | 1 (2.8%) | 0 (0%) | 1 (1.1%) | |
‘ RCB group | ||||
0 (pCR) | 13 (36.1%) | 6 (11.3%) | 19 (21.3%) | |
1 | 1 (2.8%) | 5 (9.4%) | 6 (6.7%) | |
2 | 19 (52.8%) | 20 (37.7%) | 39 (43.8%) | |
3 | 3 (8.3%) | 21 (39.6%) | 24 (27%) | |
Breast cancer histological type | ||||
Ductal NST | 32 (88.9%) | 50 (94.3%) | 82 (92.1%) | |
Lobular | 0 (0%) | 2 (3.8%) | 2 (2.2%) | |
Mucinous | 1 (2.8%) | 1 (1.9%) | 2 (2.2%) | |
Metaplastic | 3 (8.3%) | 0 (0%) | 3 (3.4%) | |
Nuclear grade (NG) | ||||
1 | 0 (0%) | 0 (0%) | 0 (0%) | |
2 | 9 (25%) | 33 (62.3%) | 42 (47.2%) | |
3 | 27 (75%) | 20 (37.7%) | 47 (52.8%) | |
‘’ IHC expression of PR | ||||
≤20% | 0 (0%) | 25 (47%) | 25 (47%) | |
>20% | 36 (100%) | 28 (52%) | 28 (52%) | |
IHC expression of Ki67 | ||||
<30% | 1 (2.8%) | 15 (28.3%) | 16 (18%) | |
≥30% | 35 (97.2%) | 38 (71.7%) | 73 (82%) | |
Anatomical stage of the disease | ||||
2A | 26 (72.2%) | 23 (43.4%) | 49 (55.1%) | |
2B | 6 (16.7%) | 25 (47.2%) | 31 (34.8%) | |
3A | 2 (5.6%) | 5 (9.4%) | 7 (7.9%) | |
3B | 1 (2.8%) | 0 (0%) | 1 (1.1%) | |
3C | 1 (2.8%) | 0 (0%) | 1 (1.1%) | |
Clinical prognostic stage of the disease | ||||
1B | 0 (0%) | 11 (20.8%) | 11 (12.4%) | |
2A | 2 (5.6%) | 25 (47.2%) | 27 (30.3%) | |
2B | 24 (66.7%) | 12 (22.6%) | 36 (40.4%) | |
3A | 1 (2.8%) | 4 (7.5%) | 5 (5.6%) | |
3B | 6 (16.7%) | 1 (1.9%) | 7 (7.9%) | |
3C | 3 (8.3%) | 0 (0%) | 3 (3.4%) | |
Recurrence/Progression | ||||
No | 26 (72.2%) | 40 (75.5%) | 66 (74.2%) | |
Yes | 10 (27.8%) | 13 (24.5%) | 23 (25.8%) | |
Locoregional | 3 (8.3%) | 5 (9.4%) | 8 (9%) | |
Distant metastasis | 9 (25%) | 10 (18.9%) | 19 (21.3%) | |
Months until recurrence/progression | ||||
Median (range) | 18.5 (8–45) | 38 (12–72) | 30 (8–72) | |
Overall follow-up time (months) | ||||
Median (range) | 37.5 (11–87) | 49 (11–89) | 44 (11–89) |
Monoclonal Antibody | Manufacturer | Clone | Dilution | Diluent | Incubation (min) |
---|---|---|---|---|---|
CD4 104R-16 | Cell Marque, Rocklin, CA, USA | SP35 | 1:75 | DAKO S0809 | 60 |
CD8 IR623 | DakoCytomation, Glostrup, Denmark | C8/144B | factory diluted | DAKO S0809 | 30 |
FOXP3 ab450 | Abcam, Cambridge, UK | mAbcam450 | 1:200 | DAKO S0809 | 60 |
CTLA4 sc-376016 | Santa Cruz Biotechnology, Dallas, TX, USA | F-8 | 1: 100 | DAKO S0809 | 60 |
HSP70 ab2787 | Abcam, Cambridge, UK | 5A5 | 1: 200 | DAKO S0809 | 30 |
PD-L1 | Roche Diagnostics GMbH, Mannheim, Germany | SP-142 | RTU *, Ventana |
Variable | Control Group (n = 36) (Median) | Mann–Whitney U Test p | 1° Tumor | |||
---|---|---|---|---|---|---|
Whole Cohort (n = 89) (Median) | TNBC (n = 36) (Median) | Mann–Whitney U Test p | LB-like BC (n = 53) (Median) | |||
TILs CNB (%) | 13.000 | 12.000 | 0.345 | 13.000 | ||
CD4/CD8 | 1.000 | 1.000 | 0.018 | 0.940 | ||
CD4+ ly ’ (%) | 1.000 | <0.001 | 13.000 | 15.000 | 0.140 | 9.000 |
CD8+ ly ’ (%) | 0.647 | <0.001 | 12.500 | 12.250 | 0.848 | 12.500 |
PDL1+ IC ‘’ (%) | 0.000 | <0.001 | 0.0000 | 0.1500 | 0.190 | 0.0000 |
FOXP3+ ly ’ (N) | 0.000 | <0.001 | 37.500 | 41.500 | 0.340 | 21.250 |
CTLA4+ ly ’ (N) | 0.000 | <0.001 | 27.000 | 31.500 | 0.346 | 23.250 |
HSP70+ IC ‘’ (N) | 2.000 | <0.001 | 11.250 | 20.000 | 0.206 | 7.500 |
Variable | β | SE | Odds Ratio | 95% CI | p |
---|---|---|---|---|---|
HSP+ IC | 0.005 | 0.009 | 0.995 | 0.977 to 1.014 | 0.583 |
CD8+ IC | 0.047 | 0.025 | 0.954 | 0.908 to 1.003 | 0.065 |
Ki67 | 0.067 | 0.033 | 0.935 | 0.877 to 0.998 | 0.042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Car Peterko, A.; Rajković Molek, K.; Savić Vuković, A.; Gulić, T.; Valković Zujić, P.; Cini Tešar, E.; Juranić, D.; Pirjavec Mahić, A.; Lovasić, F.; Đorđević, G.; et al. Quantitative and Qualitative Variations in TILs in Risk Stratification and Patient Selection for Neoadjuvant Chemotherapy of the Luminal B and Triple-Negative Breast Cancer Immunophenotype. Sci 2025, 7, 69. https://doi.org/10.3390/sci7020069
Car Peterko A, Rajković Molek K, Savić Vuković A, Gulić T, Valković Zujić P, Cini Tešar E, Juranić D, Pirjavec Mahić A, Lovasić F, Đorđević G, et al. Quantitative and Qualitative Variations in TILs in Risk Stratification and Patient Selection for Neoadjuvant Chemotherapy of the Luminal B and Triple-Negative Breast Cancer Immunophenotype. Sci. 2025; 7(2):69. https://doi.org/10.3390/sci7020069
Chicago/Turabian StyleCar Peterko, Ana, Koraljka Rajković Molek, Anita Savić Vuković, Tamara Gulić, Petra Valković Zujić, Eleonora Cini Tešar, Damir Juranić, Aleksandra Pirjavec Mahić, Franjo Lovasić, Gordana Đorđević, and et al. 2025. "Quantitative and Qualitative Variations in TILs in Risk Stratification and Patient Selection for Neoadjuvant Chemotherapy of the Luminal B and Triple-Negative Breast Cancer Immunophenotype" Sci 7, no. 2: 69. https://doi.org/10.3390/sci7020069
APA StyleCar Peterko, A., Rajković Molek, K., Savić Vuković, A., Gulić, T., Valković Zujić, P., Cini Tešar, E., Juranić, D., Pirjavec Mahić, A., Lovasić, F., Đorđević, G., & Avirović, M. (2025). Quantitative and Qualitative Variations in TILs in Risk Stratification and Patient Selection for Neoadjuvant Chemotherapy of the Luminal B and Triple-Negative Breast Cancer Immunophenotype. Sci, 7(2), 69. https://doi.org/10.3390/sci7020069