Genetic Relationships of Cultivated Flax and Its Wild Progenitor as Revealed by 454 Pyrosequencing, Sanger Resequencing and Microsatellite Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and DNA Extraction
2.2. 454. Pyrosequencing
2.3. Sanger Resequencing
2.4. EST-SSR Analysis
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Helbaek, H. Domestication of food plants in the Old World. Science 1959, 130, 365–372. [Google Scholar] [CrossRef]
- Van Zeist, W.; Bakker-Heeres, J.A.H. Evidence for linseed cultivation before 6000 BC. J. Archaeol. Sci. 1975, 2, 215–219. [Google Scholar] [CrossRef]
- Maier, U.; Schlichtherle, H. Flax cultivation and textile production in Neolithic wetland settlements on Lake Constance and in Upper Swabia (south-west Germany). Veg. Hist. Archaeobot. 2011, 20, 567–578. [Google Scholar] [CrossRef]
- Tammes, T. The genetics of the genus Linum. Bibliogr. Genet. 1928, 4, 1–36. [Google Scholar]
- Gill, K.S. Linseed; Indian Council of Agricultural Research: New Delhi, India, 1987. [Google Scholar]
- Fu, Y.B.; Peterson, G.; Diederichsen, A.; Richards, K.W. RAPD analysis of genetic relationships of seven flax species in the genus Linum L. Genet. Resour. Crop Evol. 2002, 49, 253–259. [Google Scholar] [CrossRef]
- Fu, Y.B.; Allaby, R.G. Phylogenetic network of Linum species as revealed by non-coding chloroplast DNA sequences. Genet. Resour. Crop Evol. 2010, 57, 667–677. [Google Scholar] [CrossRef]
- Hillman, G. The plant remains from Tell Abu Hureyra: A preliminary report. Proc. Prehist. Soc. 1975, 41, 70–73. [Google Scholar]
- Zohary, D.; Hopf, M.; Weiss, E. Domestication of Plants in the Old World: The Origin and Spread of Domesticated Plants in Southwest Asia, Europe, and the Mediterranean Basin; Oxford University Press: New York, NY, USA, 2012; pp. 100–113. [Google Scholar]
- Herbig, C.; Maier, U. Flax for oil or fiber? Morphometric analysis of flax seeds and new aspects of flax cultivation in Late Neolithic wetland settlements in southwest Germany. Veg. Hist. Archaeobot. 2011, 20, 527–533. [Google Scholar] [CrossRef]
- Gutaker, R.; Zaidem, M.; Fu, Y.B.; Diederichsen, A.; Smith, O.; Ware, R.; Allaby, R. Flax latitudinal adaptation at LuTFL1 altered architecture and promoted fiber production. Sci. Rep. 2019, 9, 976. [Google Scholar] [CrossRef]
- Diederichsen, A.; Hammer, K. Variation of cultivated flax (Linum usitatissimum L. subsp. usitatissimum) and its wild progenitor pale flax (subsp. angustifolium (Huds.) Thell.). Genet. Resour. Crop Evol. 1995, 42, 263–272. [Google Scholar] [CrossRef]
- Allaby, R.G.; Peterson, G.W.; Merriwether, D.A.; Fu, Y.B. Evidence of the domestication history of flax (Linum usitatissimum) from genetic diversity of the sad2 locus. Theor. Appl. Genet. 2005, 112, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Hammer, K. Linaceae. In Verzeichnis Landwirtschaftlicher und Gärtnerischer Kulturpflanzen; Mansfeld, R., Schultze-Motel, J., Benedix, E.H., Fritsch, R., Grebenscikov, I., Eds.; Akademie-Verlag: Berlin, Germany, 1986; pp. 710–713. [Google Scholar]
- Uysal, H.; Kurt, O.; Fu, Y.B.; Diederichsen, A.; Kusters, P. Variation in phenotypic characters of pale flax (Linum bienne Mill.) from Turkey. Genet. Resour. Crop Evol. 2011, 59, 19–30. [Google Scholar] [CrossRef]
- Fu, Y.B. Pale flax (Linum bienne): An underexplored flax wild relative. In The Flax Genome, Compendium of Plant Genomes; You, F.M., Fofana, B., Eds.; Springer: Cham, Switzerland, 2023; pp. 37–53. [Google Scholar]
- Hammer, K. Das Domestikationssyndrom. Kulturpflanze 1984, 32, 11–34. [Google Scholar] [CrossRef]
- Elladi, V.N. Linum usitatissimum (L.) Vav. consp. nov.—Len. In Kul’turnaja Flora SSSR, Prjadil’nye [Flora of Cultivated Plants of the USSR, Fiber Plants]; Vul’f, E.V., Vavilov, N.I., Eds.; Sel’chozgiz: Moscow, Russia; Leningrad, Russia, 1940; Volume 5, Part 1; pp. 109–207. (In Russian) [Google Scholar]
- Dillman, A.C. USDA Technical Bulletin No. 1054: Classification of Flax Varieties, 1946; United States Department of Agriculture: Washington, DC, USA, 1953.
- Kulpa, W.; Danert, S. Zur systematik von Linum usitatissimum L. Kulturpflanze 1962, 3, 341–388. [Google Scholar]
- Diederichsen, A.; Fu, Y.B. Phenotypic and molecular (RAPD) differentiation of four infraspecific groups of cultivated flax (Linum usitatissimum L. subsp. usitatissimum). Genet. Resour. Crop Evol. 2006, 53, 77–90. [Google Scholar] [CrossRef]
- Uysal, H.; Fu, Y.B.; Kurt, O.; Peterson, G.W.; Diederichsen, A.; Kusters, P. Genetic diversity of cultivated flax (Linum usitatissimum L.) and its wild progenitor pale flax (Linum bienne Mill.) as revealed by ISSR markers. Genet. Resour. Crop Evol. 2010, 57, 1109–1119. [Google Scholar] [CrossRef]
- Fu, Y.B.; Diederichsen, A.; Allaby, R.G. Locus-specific view of flax domestication history. Ecol. Evol. 2012, 2, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Zeder, M.A.; Bradley, D.G.; Emshwiller, E.; Smith, B.D. Documenting Domestication: New Genetic and Archaeological Paradigms; University of California Press: Berkeley, CA, USA; Los Angeles, CA, USA, 2006. [Google Scholar]
- Brown, T.A.; Jones, M.K.; Powell, W.; Allaby, R.G. The complex origins of domesticated crops in the Fertile Crescent. Trends Ecol. Evol. 2008, 24, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Allaby, R. Integrating the processes in the evolutionary systems of domestication. J. Exp. Bot. 2010, 61, 935–944. [Google Scholar] [CrossRef]
- Fu, Y.B. Genetic evidence for early flax domestication with capsular dehiscence. Genet. Resour. Crop Evol. 2011, 58, 1119–1128. [Google Scholar] [CrossRef]
- Fu, Y.B. Population-based resequencing revealed an ancestral winter group of cultivated flax: Implication for flax domestication processes. Ecol. Evol. 2012, 2, 622–635. [Google Scholar] [CrossRef] [PubMed]
- Ohlrogge, J.B.; Jaworski, J.B. Regulation of fatty acid synthesis. Ann. Rev. Plant Biol. 1997, 48, 109–136. [Google Scholar] [CrossRef]
- Fu, Y.B.; Peterson, G.W. Developing genomic resources in two Linum species via 454 pyrosequencing and genomic reduction. Mol. Ecol. Resour. 2012, 12, 492–500. [Google Scholar] [CrossRef]
- Ratan, A.; Zhang, Y.; Hayes, V.M.; Schuster, S.C.; Miller, W. Calling SNPs without a reference sequence. BMC Bioinform. 2010, 11, 130. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Cloutier, S.; Niu, X.; Datla, R.; Duguid, S. Development and analysis of EST-SSRs for flax (Linum usitatissimum L.). Theor. Appl. Genet. 2009, 119, 53–63. [Google Scholar] [CrossRef]
- Fu, Y.B.; Peterson, G.W. Characterization of expressed sequence tag-derived simple sequence repeat markers for 17 Linum species. Botany 2010, 88, 537–543. [Google Scholar] [CrossRef]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.R.; Hosein, F.; Johnson, E.; Waugh, R.; Powell, W. Genetic differentiation of cocoa (Theobroma cacao L.) populations revealed by RAPD analysis. Mol. Ecol. 1993, 2, 89–97. [Google Scholar] [CrossRef]
- Reyes-Valdés, M.H.; Williams, C.G. An entropy-based measure of founder informativeness. Genet. Res. 2005, 85, 81–88. [Google Scholar] [CrossRef]
- SAS Institute Inc. The SAS System for Windows V8.02; SAS Institute Inc.: Cary, NC, USA, 2004. [Google Scholar]
- Swofford, D.L. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4; Sinauer Associates: Sunderland, MA, USA, 2002. [Google Scholar]
- Tamura, K.; Dudley, J.; Nei, M.; Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 2007, 24, 1596–1599. [Google Scholar] [CrossRef] [PubMed]
- Bryant, D.; Moulton, V. NeighborNet: An agglomerative algorithm for the construction of phylogenetic networks. Mol. Biol. Evol. 2004, 21, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Huson, D.H.; Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Drummond, A.J.; Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 2007, 7, 214. [Google Scholar] [CrossRef] [PubMed]
- Rutschmann, F. Molecular dating of phylogenetic trees: A brief review of current methods that estimate divergence times. Divers. Distrib. 2006, 12, 35–48. [Google Scholar] [CrossRef]
- Corander, J.; Marttinen, P.; Sirén, J.; Tang, J. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinform. 2008, 9, 539. [Google Scholar] [CrossRef] [PubMed]
- Excoffier, L.; Laval, G.; Schneider, S. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol. Bioinform. Online 2005, 1, 47–50. [Google Scholar] [CrossRef]
- Wang, Z.; Hobson, N.; Galindo, L.; Zhu, S.; Shi, D.; McDill, J.; Yang, L.; Hawkins, S.; Neutelings, G.; Datla, R.; et al. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J. 2012, 72, 461–473. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.B.; Diederichsen, A.; Richards, K.W.; Peterson, G. Genetic diversity within a range of cultivars and landraces of flax (Linum usitatissimum L.) as revealed by RAPDs. Genet. Resour. Crop Evol. 2002, 49, 167–174. [Google Scholar] [CrossRef]
- You, F.M.; Moumen, I.; Khan, N.; Cloutier, S. Reference genome sequence of flax. In The Flax Genome. Compendium of Plant Genomes; You, F.M., Fofana, B., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Geleta, M.; Ortiz, R. Molecular and genomic tools provide insights on crop domestication and evolution. Adv. Agron. 2016, 135, 181–223. [Google Scholar]
- Levy, A.A.; Feldman, M. Evolution and origin of bread wheat. Plant Cell 2022, 34, 2549–2567. [Google Scholar] [CrossRef] [PubMed]
- Gutaker, R.M.; Groen, S.C.; Bellis, E.S.; Choi, J.Y.; Pires, I.S.; Bocinsky, R.K.; Slayton, E.R.; Wilkins, O.; Castillo, C.C.; Negrão, S.; et al. Genomic history and ecology of the geographic spread of rice. Nat. Plants 2020, 6, 492–502. [Google Scholar] [CrossRef]
- Yang, N.; Wang, Y.; Liu, X.; Jin, M.; Vallebueno-Estrada, M.; Calfee, E.; Chen, L.; Dilkes, B.; Gui, S.; Fan, X.; et al. Two teosintes made modern maize. Science 2023, 382, eadg8940. [Google Scholar] [CrossRef] [PubMed]
- Larsson, M. Cultivation and processing of Linum usitatissimum and Camelina sativa in southern Scandinavia during the Roman Iron Age. Veg. Hist. Archaeobot. 2013, 22, 509–520. [Google Scholar] [CrossRef]
- Karg, S.; Diederichsen, A.; Jeppson, S. Discussing flax domestication in Europe using biometric measurements on recent and archaeological flax seeds—A pilot study. In First Textiles: The Beginnings of Textile Manufacture in Europe and the Mediterranean; Siennicka, M., Rahmstorf, L., Ulanowska, A., Eds.; Oxbow Books: Oxford, UK, 2018; pp. 31–38. [Google Scholar]
- Omran, A.O.; Atkins, I.M.; Gilmore, E.C., Jr. Heritability of cold hardness in flax (Linum usitatissinum L.). Crop Sci. 1968, 8, 716–719. [Google Scholar] [CrossRef]
- Charlesworth, D. Don’t forget the ancestral polymorphisms. Heredity 2010, 105, 509–510. [Google Scholar] [CrossRef]
CN a | Description b | Group | Origin c | Label d |
Cultivated flax | ||||
18974 | CDC Bethune | Oil | Canada | cdcbO |
33399 | Bison | Oil | USA | bisonO |
18989 | Atalante | Oil | France | atalanteO |
18991 | Nike | Fiber | Poland | nikeF |
101111 | Viking | Fiber | France | vikingF |
100837 | LIN-1193 | Dehiscent | Turkey | turkeyD |
97605 | PI522770 | Dehiscent | Russia | russiaD |
97769 | Abertico | Dehiscent | Portugal | portgD |
96848 | PI165006 | Winter | Turkey | turkeyW |
98509 | PI523675 | Winter | Israel | israelW |
97009 | Beladi Y 6903 | Winter | Egypt | egyptW |
Pale flax | ||||
113606 | Samsun | Pale | Turkey | turkey1P |
113628 | Karabük | Pale | Turkey | turkey2P |
113638 | Çanakkale | Pale | Turkey | turkey3P |
113296 | Rhodes airport | Pale | Greece | greece1P |
113299 | Island of Evia | Pale | Greece | greece2P |
Group-Specific Fst | Nucleotide Diversity | ||||
Group | Size | 454-SNP | EST-SSR | Sanger-SNP | Sanger-Sequence |
Oil | 3 | 0.524 | 0.461 | 0.368 | 0.00485 |
Fiber | 2 | 0.461 | 0.503 | 0.498 | 0.00199 |
Dehiscent | 3 | 0.322 | 0.484 | 0.239 | 0.00830 |
Winter | 3 | 0.575 | 0.399 | 0.327 | 0.00628 |
Pale | 5 | 0.418 | 0.345 | 0.141 | 0.01002 |
mean | 0.470 | 0.462 | 0.358 | 0.00629 | |
range | 0.321–0.575 | 0.345–0.503 | 0.141–0.498 | 0.00199–0.01002 | |
Paired group | Paired group Fst a | ||||
Oil-Fiber | 0.378 | 0.323 | 0.142 | ||
Oil-Dehiscent | 0.492 | 0.626 | 0.513 | ||
Oil-Winter | 0.116 | 0.156 | 0.080 | ||
Oil-Pale | 0.489 * | 0.378 * | 0.207 * | ||
Fiber-Dehiscent | 0.558 | 0.650 | 0.526 | ||
Fiber-Winter | 0.224 | 0.267 | 0.119 | ||
Fiber-Pale | 0.592 + | 0.364 * | 0.169 * | ||
Dehiscent-Winter | 0.419 | 0.546 | 0.420 | ||
Dehiscent-Pale | 0.355 * | 0.474 * | 0.248 + | ||
Winter-Pale | 0.425 * | 0.290 * | 0.180 * | ||
mean | 0.405 | 0.407 | 0.260 | ||
range | 0.116–0.592 | 0.156–0.650 | 0.080–0.526 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
Crown Copyright: © His Majesty the King in Right of Canada, 2024. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.-B. Genetic Relationships of Cultivated Flax and Its Wild Progenitor as Revealed by 454 Pyrosequencing, Sanger Resequencing and Microsatellite Data. Sci 2024, 6, 35. https://doi.org/10.3390/sci6020035
Fu Y-B. Genetic Relationships of Cultivated Flax and Its Wild Progenitor as Revealed by 454 Pyrosequencing, Sanger Resequencing and Microsatellite Data. Sci. 2024; 6(2):35. https://doi.org/10.3390/sci6020035
Chicago/Turabian StyleFu, Yong-Bi. 2024. "Genetic Relationships of Cultivated Flax and Its Wild Progenitor as Revealed by 454 Pyrosequencing, Sanger Resequencing and Microsatellite Data" Sci 6, no. 2: 35. https://doi.org/10.3390/sci6020035
APA StyleFu, Y. -B. (2024). Genetic Relationships of Cultivated Flax and Its Wild Progenitor as Revealed by 454 Pyrosequencing, Sanger Resequencing and Microsatellite Data. Sci, 6(2), 35. https://doi.org/10.3390/sci6020035